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I think I can say, without fear of contradiction, that
it takes a brave mathematician to write a scientific
biography of Poincaré. It is remarkable that Jeremy
Gray has dared to do it and even more remarkable
that he has succeeded so brilliantly.

Poincaré was, with the possible exception of
Hilbert, the deepest, most prolific, and most
versatile mathematician of his time. His collected
works fill eleven large volumes, and that does not
include several volumes on mathematical physics
and another several volumes of essays on science
and philosophy for the educated reader. For most
people it would be a life’s work simply to read
his output, let alone understand it well enough to
write a clear and absorbing account. We are very
fortunate to have this book.

Poincaré is probably best known to modern
mathematicians for his contributions to non-
Euclidean geometry, his discovery of chaos (in
celestial mechanics), and his creation of algebraic
topology (in which the “Poincaré conjecture” was
the central unsolved problem for almost a century).
These topics also belong to the three main areas
of Poincaré’s research that have been translated
into English, and I discuss them further below. But
they are merely some highlights, and they cannot
be properly understood without knowing how they
fit into the big picture of Poincaré’s scientific work
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Figure 1. The modular tessellation.

and philosophy. Gray, who has written and edited
many books on nineteenth-century mathematics,
particularly geometry and complex analysis, is the
ideal guide to this big picture.

Non-Euclidean Geometry
How did Poincaré find himself in non-Euclidean
geometry? Bolyai and Lobachevskii developed non-
Euclidean geometry in the 1820s, and Beltrami
put it on a firm foundation (using Riemann’s
differential geometry) in 1868. So non-Euclidean
geometry was already old news, in some sense,
when Poincaré began his research in the late 1870s.
But in another sense it wasn’t. Non-Euclidean
geometry was still a fringe topic in the 1870s,
and Poincaré brought it into the mainstream by
noticing that non-Euclidean geometry was already
present in classical mathematics.

Specifically, there are classical functions with
“non-Euclidean periodicity”, such as the modular
function j in the theory of elliptic functions and
number theory. The periodicity of the modular
function was observed by Gauss, and beautiful

378 Notices of the AMS Volume 61, Number 4



pictures illustrating this periodicity were produced
in the late nineteenth century at the instigation of
Felix Klein. Figure 1 is one such picture.

The function j(z) repeats its values in the
pattern shown: namely, at corresponding points in
each of the curved black and white triangles. More
precisely, j(z+1) = j(z) (corresponding to the ob-
vious symmetry of the tessellation under horizontal
translation), and less obviously j(−1/z) = j(z)
(which corresponds to a half turn around the vertex
z = i). It turns out that non-Euclidean periodicity
is actually more common than the Euclidean pe-
riodicity that nineteenth-century mathematicians
knew well from their study of elliptic functions.

At least, that is how it looks with hindsight.
Poincaré found his way into non-Euclidean geom-
etry by a more roundabout route, partly due to
his ignorance of the existing literature (a common
occurrence with Poincaré). He began by studying
some functions defined by complex differential
equations in response to a question posed in an
essay competition by his former teacher Charles
Hermite. The equations in question were first
studied by Lazarus Fuchs, so Poincaré gave the
name “Fuchsian” to the equations, to the functions
they defined, and later to the symmetry groups he
found those functions to possess.

Just as an elliptic function f (z) repeats its
value when z is replaced by z +ω1 or z +ω2

(whereω1 andω2 are the so-called “periods” of f ),
Poincaré discovered that a Fuchsian function g(z)
repeats its value when z is replaced by αz+β

γz+δ for
certain quadruples α,β, γ, δ of real numbers. The
periodicity of a Fuchsian function can be illustrated
by tessellating the upper half-plane by “polygons”
whose sides are arcs of semicircles with centers
on the real axis. The polygons are mapped onto
each other by the transformations z , αz+β

γz+δ .
At some point (Poincaré tells us it was as

he was stepping onto an omnibus), he had the
epiphany that such transformations are the same
as those of non-Euclidean geometry. In particular,
the polygonal cells tessellating the half-plane are
congruent in the sense of non-Euclidean geometry,
and the transformations mapping one cell onto
another are non-Euclidean isometries. Poincaré
had in fact rediscovered the half-plane model of
the non-Euclidean (hyperbolic) plane first found
by Beltrami [2], but in a mainstream mathematical
context. He also rediscovered Beltrami’s related
disk model.

His non-Euclidean tessellations were also a
rediscovery. The modular tessellation was one
(though it had not yet been accurately drawn),
and so too was a beautiful tessellation of the disk
given by Schwarz [19] (see Figure 2) in connection
with hypergeometric functions. What was new,

and crucial, was Poincaré’s realization of their
non-Euclidean nature.

Figure 2. The Schwarz triangle tessellation.

Poincaré was not at first even aware of Schwarz’s
paper, which led to some awkward repercussions,
related by Gray on page 229. In a letter to
Klein, Poincaré admitted that he would not have
called the functions “Fuchsian” had he known
of Schwarz’s work. Indeed, the triangle functions
and their symmetry groups are now, belatedly,
named after Schwarz. But at the time Schwarz
got no satisfaction and was said (in a letter from
Mittag-Leffler to Poincaré) to be very angry with
himself “for having had an important result in his
hand and not profiting from it.”

Thus Poincaré’s first steps in non-Euclidean
geometry were mainly a matter of finding a bet-
ter language to describe known situations: the
non-Euclidean interpretation made it possible to de-
scribe linear fractional transformations z , αz+β

γz+δ
in traditional geometric terms such as congruence
and rigid motions. His next step was more pro-
found: he used this language to describe a situation
which, until then, had been incomprehensible. This
situation arises when the transformations are of
the form z , az+b

cz+d , where a, b, c, d are complex.
In this case one again has a tessellation of C by
curvilinear cells mapped onto each other by the
given transformations, but the tessellation can be
enormously complicated.

The limit points, where the (Euclidean) size of
the cells tends to zero, can form a nondifferentiable
curve (“if one can call it a curve,” said Poincaré)
or other highly complicated sets. Poincaré’s inspi-
ration was to view this tessellated plane as the
boundary of the upper half-space, which turns out
to be none other than non-Euclidean 3-dimensional
space. The upper half-space is nicely tessellated
with 3-dimensional cells, bounded by portions of
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hemispheres whose centers lie in the plane we
started with. Thus the nasty tessellation of the
plane can be replaced by the nice tessellation of
space, and all is well again. In this way Poincaré
was able to make progress with functions that were
previously intractable: the so-called Kleinian func-
tions, whose values repeat under transformations
of the form z , az+b

cz+d . (The name “Kleinian” was
mischievously suggested by Poincaré after Klein
had complained to him about the name “Fuchsian”.
It had some basis in Klein’s mathematics, but not
much.)

English translations of Poincaré’s papers on
Fuchsian and Kleinian groups may be found in
[14].

Celestial Mechanics and Chaos
For most of his career, Poincaré was as much a
physicist as a mathematician. He taught courses
on mechanics, optics, electromagnetism, thermo-
dynamics, and elasticity, and contributed to the
early development of relativity and quantum theory.
He was even nominated for the Nobel Prize in
physics and garnered a respectable number of
votes. But it is probably his contribution to the
3-body problem that is of greatest interest today.
Like some of his other groundbreaking work, his
results on the 3-body problem were a triumph over
initial mistakes.

The story was first uncovered by June Barrow-
Green [1], and it is updated in Chapter 4 of Gray’s
book.

Poincaré’s first attempt was an entry in a
mathematical prize competition sponsored by
King Oscar II of Sweden. The king had a more than
amateur interest in mathematics, but the prize
questions were probably devised by Poincaré’s
friend Gösta Mittag-Leffler to ensure Poincaré’s
participation. At any rate, Poincaré submitted an
entry for question 1, on the stability of the solar
system, and duly won. His entry was an essay on
the 3-body problem, the simplest case where the
stability is not obvious.

The judges—Mittag-Leffler, Weierstrass, and
Hermite—were agreed that Poincaré should win
because of the originality of his results, among
them what later became known as the Poincaré
return theorem. Nevertheless, they found his essay
hard to follow, and Poincaré eventually added
ninety-three pages to clarify it. This satisfied them
enough to confirm their decision and to go ahead
with publication of the essay. Meanwhile, Poincaré
had continued thinking about the essay—and he
discovered a mistake.

Fortunately, Poincaré was able to fix the error
in a month, but not before Mittag-Leffler had
frantically recalled all known published copies
and asked Poincaré to pay for the printing of

a corrected version. This Poincaré willingly did,
even though the cost was 50 percent more than
the value of the prize. The reason for the panic
was that Mittag-Leffler for years had championed
Poincaré’s work, with its frequent intuitive leaps,
over the objections of German mathematicians
such as Kronecker. Kronecker was already miffed
that he had not been chosen as one of the judges,
so if he learned how much Poincaré had been
“helped” to win the prize there would be hell to
pay. Luckily, he never found out.

Perhaps with some discomfort over his first
venture into celestial mechanics, Poincaré decided
to write up his ideas properly in the 1890s. The
result was the 3-volume Les Méthodes Nouvelles
de la Mécanique Céleste (1892, 1893, 1899), a
monumental work that launched the modern theory
of dynamical systems. An English translation [15]
was produced on the initiative of NASA. The third
volume ends with a glimpse of chaos in the 3-body
problem:

One is struck by the complexity of this
figure that I am not even attempting to
draw. Nothing can give us a better idea of
the complexity of the three-body problem
and of all the problems of dynamics in
general. . . .

(Méthodes Nouvelles, Vol. 3, p. 389)

Before leaving the question of the stability of
the solar system, I would like to mention a result
that Gray hints at but seemingly forgets to explain.
On p. 253 he remarks that the implications of
Poincaré’s later work

. . .opened for serious investigation for the
first time the idea that Newton’s laws might
permit a planet to exit the system altogether.

I am guessing that Gray here is referring to the
result of Xia [21] that there is a 5-body system in
which one of the bodies escapes to infinity in finite
time. Xia’s result is discussed in the book of Diacu
and Holmes [5], a book that Gray does mention.

Algebraic Topology
To appreciate how much Poincaré did for algebraic
topology, one needs to review the state of the
subject before Poincaré burst onto the scene in
1892.

The topology of compact 2-dimensional mani-
folds (“closed surfaces”) was quite well understood,
partly because Riemann had seen the value of
orientable surfaces in complex analysis and partly
because of the lucky fact that topology is simple
for orientable surfaces. It is captured by a single
invariant number, the genus p (or, equivalently, by
the Euler characteristic). Riemann [17] described p
in terms of connectivity—the maximum number of
closed cuts that can be made without separating
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the surface—and Möbius [7] introduced the normal
form of a genus p surface, namely, the “sphere with
p handles”. Möbius also observed the existence of
nonorientable surfaces, such as the Möbius band,
but it turns out that they do not greatly complicate
the topological classification of surfaces.

Thus by the 1880s the topology of surfaces was
well understood and unexpectedly easy. Virtually
the only progress in higher-dimensional topology
was made by Betti [3] when he generalized Rie-
mann’s idea of connectivity to obtain a series of
invariants that became known as the Betti numbers.
A 3-dimensional manifold, for example, has a
2-dimensional connectivity number P2, equal to
the maximum number of disjoint surfaces in M
that fail to separate it. M also has a 1-dimensional
connectivity number P1, equal to the maximum
numbers of closed curves that can lie inM without
forming the boundary of a surface.

The dream of topology, at this point, was
to find a finite set of invariant numbers that
characterize each compact n-dimensional manifold
up to homeomorphism.

Poincaré [9] struck the first blow against this
dream by showing that the Betti numbers do not
suffice to characterize 3-dimensional manifolds M .
He did so with the help of a new kind of invariant,
the fundamental group π1(M), by showing that
certain manifolds M with the same Betti numbers
have different fundamental groups.

The fundamental group is an essentially alge-
braic invariant, because it does not readily reduce
to a set of numbers (if at all). What one calcu-
lates from M is a set of generators and defining
relations for π1(M), and it is generally hard to
tell when two sets of defining relations define
the same group. In the case of a surface S of
genus ≥ 2, π1(S) is actually one of the Fuchsian
groups introduced by Poincaré in the early 1880s.
However, Poincaré at that time interpreted Fuch-
sian groups geometrically—as symmetry groups of
tessellations—and it was Klein [6] who first saw the
connection between the group and the topology
of the surface obtained by identifying equivalent
sides of a tile in the tessellation.

By the 1890s Poincaré had absorbed the topolog-
ical viewpoint and was ready to extend it to three
dimensions. In his first long paper on topology,
entitled “Analysis situs” (the name then given
to topology), Poincaré [10] constructed several
3-manifolds by identifying sides of polyhedra and
calculated their Betti numbers and fundamental
groups. They include, in more detail, his 1892
example showing that the fundamental group
can distinguish certain 3-manifolds that the Betti
numbers cannot. (He also remarks that the Betti
numbers can be extracted from π1 by allowing its
generators to commute (“abelianization”), so π1 is

Figure 3. Poincaré’s diagram for his homology
sphere.

a strictly stronger invariant than the set of Betti
numbers.)

Nevertheless, Poincaré did not give up on the
Betti numbers. He spent much of “Analysis situs”
developing the algebra of homology, proving what
we now call Poincaré duality, and concluding with
a generalization of the Euler polyhedron formula
to n dimensions.

He made some errors. In 1898 Heegaard pointed
out that Poincaré duality was incorrect as it stood.
Poincaré [11] responded with a supplement to
“Analysis situs”, revising his definition of the Betti
numbers and formulating his homology theory in
a more combinatorial way. He assumed that each
manifold could be divided into cells and calculated
its Betti numbers from incidence matrices. A
second supplement [12] followed when he realized
that he had overlooked the presence of torsion in
the homology of manifolds. The word “torsion”,
which today appears as much in algebra as in
topology, originates here. It reflects Poincaré’s
view that topological torsion is characteristic of
manifolds that are “twisted upon themselves”,
such as the Möbius band.

Having now found all the invariant numbers
that homology had to offer, Poincaré [12] dared to
conjecture that the three-dimensional sphere is the
only closed three-dimensional manifold with trivial
Betti and torsion numbers. This was the first, and
incorrect, version of the “Poincaré conjecture”.

Eventually there were three more supplements,
the most important of which is the fifth [13]. In it
Poincaré makes two interesting excursions: the first
is an analysis of 3-manifolds from the viewpoint
of what we now call Morse theory ; the second is
an interesting application of geometrization (in
this case, the hyperbolic structure of surfaces of
genus ≥ 2) to simple curves on surfaces. These
excursions lead, in a roundabout way, to one of
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Poincaré’s greatest discoveries: a 3-manifold H
with trivial homology but nontrivial fundamental
group—the Poincaré homology sphere.

The construction of H is based on the diagram
in Figure 3, which I include mainly to show
how unenlightening it is. Despite the apparent
asymmetry of its construction, π1(H) falls out as
a group with a 2-to-1 homomorphism onto the
icosahedral group A5. This shows that π1(H) is
nontrivial, but, likeA5, it has a trivial abelianization.
How much of this construction was good luck and
how much good management is a mystery. Gray
makes a plausible case that Poincaré picked the
group first, then tinkered with manifolds until
he found one that realized the group. (English
translations of Poincaré’s topology papers are
given in [16].)

We now know that the Poincaré homology sphere
can be arrived at by several different symmetric
constructions. See, for example, [18]. So perhaps
it is more “inevitable” than it seemed at first. We
also know now that it is the only homology sphere
with finite fundamental group.

The immediate effect of Poincaré’s discovery
was to refute the “Poincaré conjecture” of the
second supplement and to amend it to its cor-
rect form: the three-dimensional sphere is the only
closed three-dimensional manifold with trivial fun-
damental group. The latter is the conjecture that
launched a thousand topology papers, from Tietze
[20] and Dehn [4] to Perelman [8]. The early attacks
on the conjecture assumed that Poincaré’s com-
binatorial methods in topology and group theory
would suffice to settle it. But that hope gradually
faded, and in the 1970s Thurston upped the ante
to a geometrization conjecture, greatly extending
the geometrization long known for surfaces.

In the 1980s Hamilton proposed an approach
to geometrization through differential geometry,
hoping to approach the nice geometric structures
conjectured by Thurston by letting nastier (but
easily obtained) geometric structures flow towards
nice ones. Hamilton’s program was finally carried
out by Perelman in 2003 by a tour de force
of differential geometry and PDE. Among the
mathematicians of Poincaré’s era, perhaps only
Poincaré himself would have felt at home with such
high-powered geometric and analytic equipment.

General Remarks
The three topics above are thoroughly covered in
Gray’s book, together with their complex web of
historical and mathematical connections. There is
also much else to enjoy. The book is structured to
lead the reader gently into Poincaré’s work: first an
introduction that could stand alone as a splendid
essay on Poincaré, then a chapter on Poincaré’s
popular science essays, and then a chapter on

Poincaré’s career. All of this comes before the
chapters on more specialized and difficult topics.

Of course, as a reviewer I read everything in the
book, but I believe it would be easy to skip topics
according to taste. It is a big book, and there is
something for everyone.

I found the description of the French mathemat-
ical community and how they differed from the
Germans particularly fascinating. Compared with
most eminent mathematicians today and with the
Germans then, Poincaré was unusually isolated.
He had no graduate students and no immediate
successors in France. The next generation of French
mathematicians (Borel, Lebesgue, Hadamard) had
different interests, and the generation after that
was almost destroyed in World War I. Bourbaki
emerged from the wreckage with a conscious effort
to catch up with the Germans, who had forged
ahead under the leadership of Klein and Hilbert.

Another interesting thread that runs through
the book is Poincaré’s interest in physics, particu-
larly his near-discovery of special relativity. Gray
shows how Poincaré took many of the right steps,
starting from Maxwell’s equations and getting
as far as introducing the Lorentz group. But he
lacked Einstein’s physical insight, and the mathe-
matical insight that could have made up for this,
Minkowski’s space-time, was not yet available. As
Gray memorably puts it (p. 378):

For Poincaré. . .to have grasped the full
implications of special relativity he would
have had to be not Einstein, but Minkowski.

Gray has obviously spent an enormous amount
of time immersed in Poincaré’s work and has
become totally familiar with Poincaré’s way of
thinking. My only complaint is that occasionally he
seems to channel Poincaré only too well, reliving
some aspects of Poincaré that are hard for the
modern reader to follow. Sometimes complicated
geometric arguments are expressed in words when
a picture would be clearer; sometimes he is too
faithful to Poincaré’s notation, as in the topology
chapter, where relations in the fundamental group
are written additively, even when they are not
commutative.

But there is so much excellent exposition in
this book that it is easy to skip the occasional
difficult formula. I warmly recommend the book
to anyone with an interest in the development of
modern mathematics. It will surely be the definitive
scientific biography of Poincaré for the foreseeable
future.
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