Lie Algebra Sudoku

A traditional Sudoku puzzle involves a 9×9 grid and the numbers 1 through 9. However, any set of nine symbols can be used. Through happy coincidence, there are nine complex simple Lie algebras: the four series of classical algebras and the five exceptional algebras. Therefore, it is possible to have a Sudoku puzzle using Lie algebras.

Instructions: Fill in the grid with complex simple Lie algebras so that each row and column and each highlighted 3×3 sub-grid contains each of the algebras $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}, \mathrm{G}_{2}, \mathrm{~F}_{4}$, $\mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8} without repeats.
-Puzzle by Edward Dunne

Solution on page 1473 (in www. ams.org/notices/201311/rnotip1471.pdf).

	E_{7}		C_{n}				E_{6}	
$\mathrm{~B}_{\mathrm{n}}$	E_{6}		E_{8}	$\mathrm{~A}_{\mathrm{n}}$				
		C_{n}		B_{n}		E_{8}	$\mathrm{~F}_{4}$	
E_{6}		G_{2}	$\mathrm{~A}_{\mathrm{n}}$			E_{6}		$\mathrm{~B}_{\mathrm{n}}$
		A_{n}			G_{2}	C_{n}		
	E_{8}	D_{n}		E_{6}		$\mathrm{~F}_{4}$		
				E_{8}	C_{n}		A_{n}	E_{6}
	$\mathrm{~A}_{\mathrm{n}}$				F_{4}		E_{8}	

