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Exploring the Galois group of the rational numbers:

recent breakthroughs

Jared Weinstein

1 Motivation: the splitting problem

Suppose f(x) is a monic irreducible polynomial with integer coefficients. If
p is a prime number, then reducing the coefficients of f(x) modulo p gives
a new polynomial fp(x), which may be reducible. We say that f(x) is split
modulo p if fp(x) is the product of distinct linear factors.

This article is concerned with the following simple question.

Question A. Given an irreducible polynomial f(x) with integer coefficients,
is there a rule which, given a prime p, determines whether f(x) is split
modulo p?

This motivating question is lifted almost verbatim from B. Wyman’s
1972 article, [Wym72], of which the present article is merely an updated
version. It may surprise the reader to learn that a large swath of modern
number theory known as the Langlands program is dedicated to variations
on the theme of Question A.

We ought to clarify what is meant by a “rule” in Question A. We are
not looking for an algorithm to factor a polynomial modulo a prime. Rather
we are seeking a systematic connection to some other part of mathematics.
Such a rule will be called a reciprocity law. Our search for reciprocity laws
can be rephrased as the study of a single group, the absolute Galois group
of the field of rational numbers, written Gal(Q/Q). The representation
theory of Gal(Q/Q) has been particularly fruitful in answering instances of
Question A. In this article we will review reciprocity laws in three successive
epochs:

1. The solution of Question A in the case of f(x) = x2 + 1 is due to
Fermat. The solution for a general quadratic polynomial was conjec-
tured by Euler and first proved by Gauss; this is the famous quadratic
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reciprocity law. Thereafter, many other reciprocity laws followed, due
to Eisenstein, Kummer, Hilbert, Artin, and others, leading up to the
formulation of class field theory in the early 20th century. These reci-
procity laws are abelian. They only apply to those instances of Ques-
tion A where the polynomial f(x) is solvable.

2. In the second half of the 20th century, a remarkable link was found be-
tween modular forms and 2-dimensional representations of Gal(Q/Q),
due to Eichler, Shimura, and especially Deligne. This made it possible
to find reciprocity laws for certain quintic f(x) which are not solvable.

3. The 21st century has seen an explosion of results which link repre-
sentations of Gal(Q/Q) to the geometry of arithmetic manifolds. We
highlight Scholze’s recent work [Sch13], which employs techniques in-
vented within the past three years.

2 Fermat, Gauss, and solvable reciprocity laws

Which positive integers n are the sum of two squares? Fermat settled this
question in 1640. Using his method of “descent”, he showed that if a prime
number p divides a sum of two squares, neither of which is divisible by
p, then p is itself a sum of two squares. Also one sees from the identity
(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac+ bd)2 that the property of being a sum
of two squares is preserved under multiplication. From there is simple to
check that n is a sum of two squares if and only if n = p1 · · · pkm2, where
each of the primes p1, . . . , pk are sums of two squares.

Thus we are reduced to the case that n = p is prime. We wish to
determine when the congruence a2 + b2 ≡ 0 (mod p) has a solution for
a, b 6≡ 0 (mod p). Recall that the ring Z/pZ of integers modulo p is a
field. After dividing by b2 and relabeling, this becomes x2 + 1 ≡ 0 (mod p).
Solving it is equivalent to Question A for f(x) = x2 + 1.

Theorem 2.1. Let p be an odd prime. Then x2 + 1 ≡ 0 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

Proof. Suppose x2 + 1 ≡ 0 (mod p). Then xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2

(mod p). But by Fermat’s Little Theorem, xp−1 ≡ 1 (mod p), implying that
(−1)(p−1)/2 = 1 and therefore p ≡ 1 (mod 4).

Conversely, suppose p ≡ 1 (mod 4). Let x = ((p − 1)/2)!. We have
x2 ≡ (−1)(p−1)/2(p− 1)! (mod p) (by pairing up n with −n in the product),
which by Wilson’s theorem is ≡ −1 (mod p).
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Another way of phrasing Thm. 2.1 is that x2+1 splits modulo a prime p if
and only if p ≡ 1 (mod 4). (Note that modulo 2, (x2 +1) ≡ (x+1)2 contains
a repeated root, and so is not split as we have defined it. Given f(x), the
primes p for which fp(x) has a repeated factor all divide the discriminant of
f(x), and hence are finite in number.)

Thm. 2.1 demonstrates the simplest possible sort of reciprocity law,
which namely one where the factorization of f(x) modulo p is determined by
a congruence condition on p. This is also the case for x2 +x+1, which splits
modulo p if and only if p ≡ 1 (mod 3). (Sketch of proof: if p ≡ 1 (mod 3),
and g is a generator of the cyclic group (Z/pZ)×, then x = g(p−1)/3 is a
root.) In fact one has a congruence condition whenever f(x) is a quadratic
polynomial:

Theorem 2.2 (Quadratic Reciprocity). Let f(x) = x2 + bx + c be an ir-
reducible polynomial, so that d = b2 − 4c is not a square. Then for p not
dividing d, the splitting behavior of f(x) modulo p is determined by the con-
gruence class of p modulo d.

Note that f(x) factors modulo p if and only if d is congruent to a square

modulo p. One introduces the Legendre symbol
(
d
p

)
for any prime p and

any integer d prime to p, defined to be 1 if d is a square modulo p and

−1 otherwise. Thus for instance Thm. 2.1 is the statement that
(
−1
p

)
=

(−1)(p−1)/2. In elementary number theory texts one learns a more precise
version of Thm. 2.2: if q 6= p is an odd prime then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

which implies that the splitting behavior of x2− q modulo p depends on the
congruence class of p modulo 4q. The symmetry between p and q explains
the term “reciprocity” for such laws.

Let us return for a moment to Fermat’s theorem on sums of squares.
Could it apply to the representation of integers by other quadratic forms,
such as a2 +5b2? Thm. 2.2 shows that a prime p 6= 2, 5 divides an integer of
the form x2 + 5 if and only if p satisfies a congruence condition modulo 20,
which happens to be the condition that p ≡ 1, 3, 7, 9 (mod 20). But such
primes (for instance 7) are not necessarily of the form a2 + 5b2. It turns out
that Fermat’s method of descent fails in this context; phrased in modern
terms, the culprit is the failure of Z[

√
−5] to be a principal ideal domain. In

fact p = a2 + 5b2 if and only if p ≡ 1, 9 (mod 20). For a fascinating account
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of the problem of classifying primes of the form x2 + ny2, see Cox’s book of
the same title, [Cox89].

What about polynomials f(x) of higher degree? A little experimentation
will reveal that the factorization behavior of a “random” cubic will be influ-
enced, but not completely determined by, a congruence condition modulo p.
There are special cases: for instance the polynomial x3 + x2 − 2x+ 1 splits
modulo p if and only if p ≡ ±1 (mod 7). So when is the splitting behavior
of a polynomial determined by congruence conditions?

For a clue, let m ≥ 1 and consider the polynomial xm − 1. It splits
modulo p if and only if the multiplicative group (Z/pZ)× contains m distinct
elements of order dividing m. Since (Z/pZ)× is a cyclic group of order p−1,
this happens exactly when p ≡ 1 (mod m). This logic extends to show
that the splitting behavior of f(x) is determined by congruence conditions
whenever f(x) is a cyclotomic polynomial, that is, an irreducible divisor of
some xm−1. Using some algebraic number theory, one even gets congruence
conditions for those f(x) whose roots are contained in a cyclotomic field
Q(ζm), where ζm = exp(2πi/m). (The roots of x3 +x2−2x+1, for instance,
are 2 cos(2πk/7), where k = 1, 2, 3.)

What would a reciprocity law look like if it isn’t a congruence condition?
As with the quadratic reciprocity law, the following theorem was conjectured
by Euler and proved by Gauss.

Theorem 2.3. The polynomial x4 − 2 splits modulo p if and only if p =
a2 + 64b2 for integers a and b.

Unlike the case of a2 + b2, the representation of p by the quadratic form
a2+64b2 is not determined by a congruence condition on p. But in fact there
is a disguised congruence condition in Thm. 2.3, which was well known to
Gauss. If x4−2 splits modulo p, then the quotient of two of its roots in Z/pZ
must be a square root of −1, so that by Thm. 2.1 we have p ≡ 1 (mod 4).
By Fermat’s theorem p = a2 + b2. Without loss of generality, assume that
a is odd and b is even. We now pass to the ring Z[i] of Gaussian integers,
the subring of C consisting of those a + bi with a, b ∈ Z. In Z[i], p is no
longer prime; we have p = ωω, where ω = a+ bi. Thm. 2.3 says that x4− 2
splits modulo p if and only if ω is congruent to a rational integer modulo
8. Indeed, this condition translates into the statement that b = 8b0 for an
integer b0, in which case p = a2 +64b20. Thus the splitting behavior of x4−2
modulo a prime p ≡ 1 (mod 4) is determined by a congruence condition on
a prime of Z[i] which divides p.

At this point it is appropriate to introduce some basic notions from
algebraic number theory. If f(x) is an irreducible polynomial with rational
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coefficients, then K = Q[x]/f(x) is an algebraic number field. Let OK be
the integral closure of Z in K. It is a basic fact of algebraic number theory
that OK is a Dedekind domain. This means that even though OK may not
have the property of unique factorization into prime elements, it does have
the corresponding property for ideals. As an example, in the ring Z[

√
−5],

the element 6 admits the two factorizations 2 · 3 = (1 +
√
−5)(1 −

√
−5)

into irreducible elements, none of which divide any other. However, the
ideal 6OK admits a factorization into prime ideals in one way only: 6OK =
(2, 1 +

√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

If p is a prime number, then pOK = pe11 · · · p
ek
k is a product of powers of

distinct prime ideals. In fact we have ei = 1 for all i unless p belongs to a
finite list of ramified primes. For each i, the quotient OK/pi is a finite field
extension of Fp; the degree of pi is defined as the degree of this extension.
We say that p is split in K if pOK is the product of distinct prime ideals
of degree 1. These concepts all have relative notions with respect to an
extension of number fields L/K.

The “correct” generalization of Question A is then:

Question B. Let L/K be an extension of number fields. Is there a rule for
determining when a prime ideal of K is split in L?

Question B is inextricably linked with Galois theory. Recall that if K
is a field, f(x) an irreducible polynomial with coefficients in K, and L =
K[x]/f(x), then L/K is Galois if it is normal (meaning that L contains all
roots of f(x)) and separable (meaning that f(x) contains no repeated roots;
this is automatically satisfied in characteristic 0). If L/K is Galois, one
defines the Galois group Gal(L/K) as the group of field automorphisms of
L which act as the identity on K. Its cardinality is the same as the degree
of L/K.

As an example, the splitting field of the polynomial x4 − 2 over Q is
L = Q(i, 21/4). The Galois group Gal(L/Q) is the dihedral group of order
8, generated by two elements σ and τ , defined by the table

σ(21/4) = i21/4, τ(21/4) = 21/4,
σ(i) = i, τ(i) = i.

These generators satisfy the relations σ4 = 1, τ2 = 1, and τστ = σ−1.
If L/K is Galois and p is a prime ideal of K which is unramified in L,

let P be a prime ideal of L dividing p. The number of elements of OK/p
is denoted Np. The Galois group Gal((OL/P)/(OK/p)) is cyclic of order
equal to the degree of P|p, with a distinguished generator x 7→ xNp. It turns
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out that there exists a unique element FrobP|p ∈ Gal(L/K), the Frobenius
element, which lifts this generator. That is:

FrobP|p(x) ≡ xNp (mod P)

for all x ∈ OL. If a different prime P′ dividing p is chosen, the resulting
Frobenii FrobP and FrobP′ are conjugate in Gal(L/K). Thus one can talk
about Frobp as a well-defined conjugacy class in Gal(L/K). An important
observation is that

Frobp = 1 if and only if p is split in L.

Class field theory refers to the complete solution of Question B in the
case that Gal(L/K) is abelian. Roughly speaking, it predicts that for a
prime p of K which is unramified in L, the element Frobp ∈ Gal(L/K) is
determined by “congruence conditions” on p, where the modulus is an ideal
f of K divisible only by ramified primes. Rather than making this precise,
we spell out the example relevant to Gauss’ a2 + 64b2 theorem.

Example 2.4. Let K = Q(i) and L = K(21/4), so that Gal(L/K) is a
cyclic group of order 4 generated by σ. Here f = (8). Class field theory
shows that if p = (ω) is a prime of K which is relatively prime to 2, then
Frobp is determined by the image of ω in (Z[i]/8Z[i])×. There exists a unique
surjective homomorphism

r : (Z[i]/8Z[i])× → Gal(L/K)

which is trivial on (Z/8Z)× and i, and which sends 1 + 2i to σ. Then
Frobp = r(ω). As a result, Frobp = 1 if and only if p = (p) for p ≡ 3
(mod 4) or else if p = (a+ 8bi) with p = a2 + 64b2 prime.

Class field theory allows us to answer Question B in the case that the
polynomial f(x) is solvable, meaning that its roots lie in a tower of number
fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K, with each Ki+1/Ki abelian. A prime
p splits in K if and only if p splits in K1, a prime above p in K1 splits in K2,
and so on, with each splitting being governed by congruences. In example
2.4, the relevant tower was Q ⊂ Q(i) ⊂ Q(i, 21/4).

It is immensely useful to talk about all of the extensions of Q at once,
as living in an algebraic closure Q. One considers the absolute Galois group
Gal(Q/Q); this is just the automorphism group of the field Q. More to the
point, we have

Gal(Q/Q) = lim←−
K

Gal(K/Q),
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whereK ranges over finite Galois extensions of Q. Written this way, Gal(Q/Q)
becomes a topological group, whose open subgroups are exactly the sub-
groups Gal(Q/K) consisting of automorphisms which act trivially on a finite
extension K/Q. Focus can then shift from particular number fields K/Q to
representations of the group Gal(Q/Q).

Example 2.5. The group D8 has a two-dimensional representation which

sends σ to

(
1

−1

)
and τ to

(
1

1

)
. The character of this representation

is 2 on the identity of D8, −2 on σ2, and 0 everywhere else. Thus we can
construct a 2-dimensional Galois representation

ρ : Gal(Q/Q)→ GL2(C)

which factors through Gal(Q(i, 21/4)/Q). This will have the property that
for all odd primes p, ρ is unramified at p, meaning that the fixed field of the
kernel of ρ is unramified at p. Consequently ρ(Frobp) is well defined. We
have

tr ρ(Frobp) =


2, p = a2 + 64b2,

−2, p = a2 + 16b2, b odd,

0, otherwise.

(2.1)

3 Elliptic modular forms

The theory of modular forms developed in a context completely unrelated to
the arithmetic questions posed in this article. They arose in relation to the
elliptic functions investigated by Abel and Jacobi in the early 19th century,
which in turn arose in association with finding the arc length of an ellipse.
For an introduction to the subject, we recommend the book [Ser73].

In brief, a modular form is a certain kind of holomorphic function on
the upper half-plane H = {τ |Im τ > 0}, which we view simultaneously as a
complex manifold and as a Riemannian manifold equipped with a hyperbolic
metric. The automorphism group of H is the group of Möbius transforma-

tions z 7→ (az + b)/(cz + d), where

(
a b
c d

)
∈ SL2(R). In brief, a modular

form is a holomorphic function f(τ) on H which transforms in a certain way
under a subgroup of SL2(R).

For a nonzero integer N , let Γ0(N) denote the subgroup of SL2(Z) con-
sisting of matrices which are upper-triangular modulo N .
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Definition 3.1. Let N, k ≥ 1 be integers, and let χ : (Z/NZ)× → C× be a
homomorphism. A modular form of weight k, level N and character χ is a
holomorphic function g on H which satisfies

g

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kg(τ)

for all

(
a b
c d

)
∈ Γ0(N), and which is “holomorphic at the cusps”.

In particular g(τ + 1) = g(τ), so that g is a function of the parameter
q = e2πiτ . “Holomorphic at the cusps” means that the Fourier expansion of
g(τ), a priori a series of the form

∑
n∈Z an(g)qn, has an(g) = 0 for n < 0;

a similar condition is imposed for all functions g((aτ + b)/(cτ + d)) with(
a b
c d

)
∈ SL2(Z). We say g is a cusp form if it is zero at the cusps,

meaning that a0(g) = 0 as well.
Some modular forms known as theta functions arise from sums involving

rings of integers in quadratic fields, such as Z[i]. Suppose f ⊂ Z[i] is an
ideal, and χ : (Z[i]/f)× → C× is a nontrivial homomorphism. Extend χ to
a function on Z[i] by declaring it 0 on elements which are not prime to f.
Then

θχ(τ) =
1

4

∑
α∈Z[i]

χ(α)qN(α)

is a modular form of weight 1 and level 4N(f).

Example 3.2. Let χ : (Z[i]/8Z[i])× → C× be the homomorphism which is
trivial on i and (Z/8Z)×, and which sends 1 + 2i to i. Then θχ is a modular
form of weight 1; for a prime p, its pth Fourier coefficient is

ap(θχ) =

{
χ(a+ bi) + χ(a− bi), p ≡ 1 (mod 4), p = a2 + b2,

0, p ≡ 3 (mod 4) or p = 2

Now if p ≡ 1 (mod 4), we can write p = a2 + b2 with a odd and b even. A
short calculation shows that

ap(θχ) =


2, 8|b
−2, 4|b but 8 - b,
0, 4 - b.
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Referring back to Eq. (2.1), we find that

ap(θχ) = tr ρ(Frobp)

for the Galois representation ρ constructed in Example 2.5. This equation
hints at an extraordinary relationship between modular forms and represen-
tations of Gal(Q/Q).

The space of cusp forms of weight N and level k is finite-dimensional.
For each prime p not dividing N one defines a Hecke operator Tp on this
space, which has the following effect on q-expansions:

Tpg(τ) =
∑
n≥0

cpnq
n + pk−1

∑
n≥0

cnq
pn.

(There are similar operators for primes dividing N .) These operators com-
mute with one another, and so it makes sense to attempt to diagonalize
them simultaneously. A modular form is an eigenform if it is an eigenvector
for all Hecke operators. If g =

∑
n≥1 an(g)qn is a cuspidal eigenform with

a1(g) = 1, then the eigenvalue of Tp on g is just ap(g).

Theorem 3.3. Let g(τ) =
∑

n≥1 an(f)qn be a cuspidal eigenform of weight
k and level N with character χ. Let E a number field containing the an(g).

1. Suppose k ≥ 2. Then for all prime ideals λ of OE there exists an odd
irreducible Galois representation

ρf,λ : Gal(Q/Q)→ GL2(OE,λ)

such that for all p prime to Nλ, ρg,λ is unramified at p, and the char-
acteristic polynomial of ρg,λ(Frobp) is x2 − ap(g)x+ χ(p)pk−1.

2. Suppose k = 1. Then there exists an odd irreducible Galois represen-
tation

ρf : Gal(Q/Q)→ GL2(C)

such that for all p prime to N , ρg is unramified at p, and the charac-
teristic polynomial of ρg(Frobp) is x2 − ap(g)x+ χ(p).

These two statements are proved in [Del71] and [DS74], respectively. In
the first statement, OE,λ is the completion of OE with respect to the ideal
λ; the image of ρg,λ is infinite. In the second statement, where k = 1, the
image of ρg is finite. A Galois representation ρ is odd if det ρ(c) = −1, where
c is complex conjugation.
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Example 3.4 (An icosahedral form). The following example is due to Joe
Bühler, [Buh78]. Let

f(x) = x5 + 10x3 − 10x2 + 35x− 18.

The discriminant of f(x) is 2658112, a square number. This means that the
Galois group of f is contained in the icosahedral group A5; in fact it equals
A5. The group A5 doesn’t have any irreducible 2-dimensional representa-
tions, but there exists a 4-fold cover Ã5 which does. It can be shown that
there is an odd irreducible representation ρ : Gal(Q/Q) → GL2(C) whose
image is Ã5, such that in the diagram

GL2(C)

��

Gal(Q/Q)

ρ
88

Pρ &&
PGL2(C)

the fixed field of the kernel of Pρ is the splitting field K of f . Artin’s
conjecture predicts a weight 1 cusp form g(τ) of level 800 and character χ
associated to ρ, where χ is a Dirichlet character of conductor 100 and order
10. Indeed there is one:

g(τ) = q − iq3 − ijq7 − q9 + jq13 + (i− ij)q19 − jq21 + . . . ,

where i =
√
−1 and j = (1+

√
5)/2. A prime p 6= 2, 5 splits inK if and only if

ρ(Frobp) is a scalar matrix. Since ρ(Frobp) has finite order, it is semisimple,
and therefore it is scalar if and only if its characteristic polynomial has zero
discriminant. But the characteristic polynomial is x2 − ap(g)x+ χ(p), with
discriminant ap(g)2 − 4χ(p). Therefore we have the following answer to
Question B: p splits in K if and only if ap(g)2 = 4χ(p).

Example 3.5 (The Ramanujan ∆-function). The product

∆(τ) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

defines a cuspidal eigenform of weight 12 and level 1, and so Thm. 3.3 as-
sociates to it an `-adic representation ρ∆,` for all primes `. This can be re-
duced modulo ` to obtain a mod ` Galois representation ρ∆,` : Gal(Q/Q)→
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GL2(Z/`Z), whose kernel cuts out a number field which is ramified only at
`. It is a difficult computational problem to compute this number field. For
some small primes ` this has been carried out in [Bos11], at least for the as-
sociated projective representation Pρ∆,` : Gal(Q/Q) → PGL2(Z/`Z). For
instance if ` = 11, the fixed field of the kernel of Pρ∆,` is the splitting field
of

f(x) = x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6

+330x5 − 165x4 − 55x3 + 99x2 − 41x− 111.

From this we can conclude the following reciprocity law, valid for for almost
all p: if f(x) splits modulo p then τ(p)2 ≡ 4p (mod 11).

4 The cohomology of arithmetic manifolds

Modular forms are holomorphic forms on H which admit symmetries with
respect to a finite-index subgroup Γ0(N) ⊂ SL2(Z). It stands to reason that
they correspond to objects defined on the quotient Y0(N) = Γ0(N)\H, a
(non-compact) Riemann surface. For instance, if f(τ) is a modular form
of weight 2, level N , and trivial character, then f(τ)dτ is invariant under
Γ0(N), and so descends to a differential form on Y0(N). If f(τ) happens
to be a cusp form, then f(τ)dτ extends to a differential form on X0(N),
the smooth compactification of Y0(N). In fact the space of cusp forms of
weight 2 is isomorphic to the space H0(X0(N),Ω1

X0(N)/C) of holomorphic

differential forms on X0(N).
On the other hand, the Hodge decomposition for the compact Riemann

surface X0(N) shows that the singular cohomology H1(X0(N),C) is the di-
rect sum of H0(X0(N),Ω1

X0(N)/C) and its complex conjugate. All of these
spaces come equipped with actions by the Hecke operators Tp. The conclu-
sion is that systems of Hecke eigenvalues coming from weight 2 forms are
present already in the singular cohomology H1(X0(N),C). (There is a simi-
lar statement for forms of higher weight; one replaces the C inH1(X0(N),C)
with a non-constant coefficient system.) Therefore one could have phrased
Thm. 3.3 (at least the part pertaining to forms of weight k ≥ 2) in terms
of Hecke eigenclasses in the singular cohomology of X0(N). (Equivalently,
one can phrase it in terms of the group cohomology H1(Γ0(N),C).)

One might seek to generalize Thm. 3.3 to higher dimension as fol-
lows. The upper halfplane H is the quotient SL2(R)/SO(2), so let us put
Hn = SLn(R)/SO(n); this is a manifold with a left action by SLn(R). Let
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us abuse notation and write Γ0(N) ⊂ SLn(Z) for the subgroup of matri-
ces whose first column is congruent to (∗, 0, . . . , 0) modulo N . Then one
can form the quotient Γ0(N)\Hn, an arithmetic manifold. The cohomol-
ogy Hj(Γ0(N)\Hn,C) admits actions by Hecke operators. For each prime
p - N , there isn’t just one Hecke operator Tp but rather n − 1 operators
Tp,1, . . . , Tp,n−1. These operators commute with one another, and so one
can talk about eigenclasses in Hj(Γ0(N)\Hn,C) for all the Tp,i. Do these
correspond to n-dimensional Galois representations?

The main obstacle to generalizing Thm. 3.3 is this: in the n = 2 case,
H = H2 is a complex manifold and X0(N) is an algebraic curve which
even admits a model over the rational numbers. This fact is critical for
the construction of Galois representations, which live in the `-adic étale
cohomology of X0(N). However if n > 2, Hn isn’t even a complex manifold,
and so no quotient of it is going to be an algebraic variety. (For instance,
H3 has dimension 5, which is odd.) Nonetheless, the following theorem was
announced in 2012:

Theorem 4.1 ([MHT],[Sch13]). Let g be a Hecke eigenclass in the singular
cohomology Hj(Γ0(N)\Hn,C), and let ap,i(g) be the eigenvalue of Tp,i on
g for p - N prime. Let E be a number field containing all the ap,i(g), and
let λ be a prime of E. Then there exists a continuous semisimple Galois
representation

ρg,λ : Gal(Q/Q)→ GLn(Eλ)

which is associated to g in the sense that for all primes p which are prime
to Nλ, ρg,λ is unramified at Frobp, and the characteristic polynomial of
ρg,λ(Frobp) is

xn +
n−1∑
k=1

(−1)kpk(k−1)/2ap,k(g)xn−k + (−1)npn(n−1)/2.

The results of [MHT] and [Sch13] are rather stronger than this: they
show that “every cuspidal regular algebraic automorphic representation of
GLn over a totally real or CM field F has an associated Galois representa-
tion”. It would take us rather far afield to define the terms in the preceding
sentence, but suffice it to say that Thm. 4.1 is the special case F = Q.

In fact the results of [Sch13] are stronger still. Thm. 4.1 concerns the sin-
gular cohomology Hj(Γ0(N)\Hn,C) with complex coefficients, but we could
also have considered the integral cohomology Hj(Γ0(N)\Hn,Z), a finitely
generated abelian group equipped with the action of Hecke operators Tp,i.
When n = 2, Y0(N) = Γ0(N)\H is a surface; the integral cohomology groups
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of a surface are known to be torsion-free. But for n > 2, the cohomology
Hj(Γ0(N)\Hn,Z) can contain a large torsion subgroup. This torsion sub-
group is also preserved by the Hecke operators, and one may ask whether
the torsion eigenclasses have corresponding torsion Galois representations.
In fact they do:

Theorem 4.2 ([Sch13]). Let ` be prime, and let g be a Hecke eigenclass
in Hj(Γ0(N)\Hn,F`). Then there exists a continuous semisimple Galois
representation

ρg : Gal(Q/Q)→ GLn(F`)

which is associated to g in the sense of Thm. 4.1.

In prior years, Ash and others had developed Serre-type conjectures
which predict that every Galois representation ρ : Gal(Q/Q) → GL3(F`)
has a corresponding Hecke eigenclass g in Hj(Γ0(N), V ) for an appropriate
choice of N , j, and an F`[SL3(Z)]-module V . See for instance [ADP02],
which offers a great deal of numerical evidence in the form of pairs (ρ, g),
where ρ and g appear to be associated in the sense that the characteristic
polynomial of ρ(Frobp) is as in Thm. 4.1 for the first few primes p. Thm. 4.2
shows that there really is a ρ′ attached to each g, and then examination of
sufficiently many small primes is enough to prove that ρ = ρ′. In those cases
one has a reciprocity law for the fixed field K of ker ρ: the splitting behavor
of primes in K is governed by the Hecke eigenvalues of the eigenclass g.

Thm. 4.2 is truly spectacular. It links Galois representations with tor-
sion classes in the cohomology of arithmetic manifolds, which don’t neces-
sarily come from automorphic representations (these had been the starting
point for most generalizations of Thm. 3.3). The method of proof is striking.
The first step, an idea suggested by Clozel, is to show that the arithmetic
manifold Γ0(N)\Hn appears “at the boundary” of a Shimura variety ShN ,
which implies that an eigenclass g as in Thm. 4.2 shows up as an eigenclass
in the cohomology H i(ShN ,F`). The next step is to show that there exists a
cuspidal eigenform on some higher level Shimura variety ShN`m whose mod `
eigenvalues match those of g. This required working with a Shimura variety
ShN`∞ at infinite level.

The space ShN`∞ isn’t an algebraic variety or even a manifold. Rather,
it is a fractal-like entity known as a perfectoid space. Perfectoid spaces were
also devised by Scholze in [Sch12] for completely different ends; in this ap-
plication, Scholze proves a comparison theorem for perfectoid spaces which
links mod ` étale cohomology and coherent cohomology. This comparison
theorem furnishes the required cusp form, and with it the Galois represen-
tation.
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Despite these remarkable advances, there are still major unsolved prob-
lems in our search for reciprocity laws. We conclude with a list of open
questions.

• By Thm. 3.3, modular forms of weight 1 correspond to odd 2-dimensional
Galois representations ρ : Gal(Q/Q) → GL2(C). The general philos-
ophy of Langlands predicts that even 2-dimensional Galois represen-
tations ought to correspond to algebraic Maass forms. A Maass form
is an analytic (not holomorphic) function on Γ0(N)\H which is an
eigenvector for the Laplacian −y−2(∂2/∂x2 + ∂2/∂y2); it is algebraic
if the eigenvalue is 1/4. Nobody has any idea how the correspondence
works in either direction, outside of the “solvable” cases.

• If ρ : Gal(Q/Q) → GLn(Q`) is an irreducible Galois representation,
subject to a suitable condition at `, must it arise from an eigenclass
g as in Thm. 4.1? This is a generalization of the Fontaine-Mazur
conjecture, [FM95], which for n = 2 was proved by Kisin, [Kis09],
save some exceptional cases. This is a question of modularity of Galois
representations, of which there is a large amount of literature. We
remark in passing that a special case of modularity was key to Wiles’
attack on Fermat’s last theorem.

• If ρ : Gal(Q/Q) → GLn(F`) is an irreducible Galois representation,
must it arise from an eigenclass g as in Thm. 4.2? The case of n = 2
and ρ odd is Serre’s conjecture, proved by Khare and Wintenberger,
[KW09].
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1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975). MR
0379379 (52 #284)

[FM95] Jean-Marc Fontaine and Barry Mazur, Geometric Galois repre-
sentations, Elliptic curves, modular forms, & Fermat’s last theo-
rem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cam-
bridge, MA, 1995, pp. 41–78. MR 1363495 (96h:11049)

[Kis09] Mark Kisin, The Fontaine-Mazur conjecture for GL2, J. Amer.
Math. Soc. 22 (2009), no. 3, 641–690. MR 2505297 (2010j:11084)

[KW09] Chandrashekhar Khare and Jean-Pierre Wintenberger, On Serre’s
conjecture for 2-dimensional mod p representations of Gal(Q/Q),
Ann. of Math. (2) 169 (2009), no. 1, 229–253. MR 2480604
(2009m:11077)

[MHT] Richard Taylor Michael Harris, Kai-Wen Lan and Jack Thorne,
On the rigid cohomology of certain Shimura varieties, Preprint.

[Sch12] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études
Sci. 116 (2012), 245–313. MR 3090258

[Sch13] , Torsion in the cohomology of locally symmetric spaces,
Preprint, Bonn, 2013.

[Ser73] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-
Heidelberg, 1973, Translated from the French, Graduate Texts in
Mathematics, No. 7. MR 0344216 (49 #8956)

[Wym72] B. F. Wyman, What is a reciprocity law?, Amer. Math. Monthly
79 (1972), 571–586; correction, ibid. 80 (1973), 281. MR 0308084
(46 #7199)

15EXPLORING THE GALOIS GROUP





THE NONLINEAR SCHRÖDINGER EQUATION ON TORI:

INTEGRATING HARMONIC ANALYSIS, GEOMETRY AND

PROBABILITY

ANDREA R. NAHMOD

Abstract. The field of nonlinear dispersive and wave equations has under-
gone significant progress in the last twenty years thanks to the influx of tools

and ideas from nonlinear Fourier and harmonic analysis, geometry, analytic

number theory and most recently probability, into the existing functional ana-
lytic methods. In these lectures we concentrate on the semilinear Schrödinger

equation defined on tori and discuss the most important developments in the

analysis of these equations. In particular, we will discuss recent work by Bour-
gain and Demeter proving the full range of Strichartz estimates on regular and

irrational tori and thus settling an important earlier conjecture by Bourgain.

1. Introduction

The nonlinear Schrödinger equation plays an ubiquitous role as a model for dis-
persive wave-phenomena in nature. Roughly speaking, dispersion means that when
no boundary is present, waves of different wavelengths travel at different phase
speeds: long wavelength components propagate faster than short ones. This is the
reason why over time dispersive waves spread out in space as they evolve in time,
while conserving some form of energy. This phenomenon is called broadening of
the wave packet. Dispersive wave-phenomena should be contrasted with transport
phenomena where all frequencies move at the same velocity or dissipative phenom-
ena (heat equation) in which frequencies gradually taper to zero, that is they do
not propagate.

The nonlinear Schrödinger equation serves as a mathematical model for the large
class of so-called dispersive partial differential equations [1, 67]. It naturally arises
in connection to a variety of different physical problems on flat space, tori and other
manifolds. One of them is nonlinear optics in a so-called Kerr medium where one
considers electromagnetic waves in a material (eg. glass fiber) whose time evolution
are governed by Maxwell’s equations on R3. The nonlinear Maxwell equations how-
ever have disparate scales and understanding their dynamics is a difficult problem.
As a first attempt one looks for further simplifications: asymptotic methods then
become useful. A natural ansatz is to write the electric field E as a Taylor series
whose leading term is a small amplitude wave packet of the form

(1.1) A(t, x)ei(ξ0·x−ω0t) +A(t, x)e−i(ξ0·x−ω0t)
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of Section 4.
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with the wave vector ξ0 ∈ R3, the frequency ω0 ∈ R and A is a small amplitude
and slowly varying function. After inserting back into the nonlinear Maxwell equa-
tions, formal calculations, transformations and multiple scale analysis yield a cubic
nonlinear Schrödinger equation where time corresponds to the coordinate of the
direction of propagation of the wave along the material for the (transformed) am-
plitude [1, 55]. Essentially the same type of approximations can be made in other
problems such as e.g. water waves. In this context one seeks solutions in which the
interface of the fluid region is to leading order a wave packet of the same form as
(1.1), i.e. with small O(ε) amplitude and slow spatial variation that are balanced.
Lengthy formal calculations then suggest that the envelopes of these wave packets
evolve on O(ε−2) time scales according to a version of a cubic nonlinear Schrödinger
equation [25]. It often turns out that the nonlinear Schrödinger equation (approx-
imately) describes the evolution of envelopes of wave packets on the appropriate
NLS time scales; for a precise description, see [69, 70]. Other examples of cubic
NLS arising from other physical situations can be found in [61].

The nonlinear Schrödinger equations also arise as the equations governing Bose-
Einstein condensates. Bose Einstein condensation phenomena were predicted by
S.N Bose [3] and by A. Einstein [29] (1924-1925); it is a fascinating phenomena
predicted by quantum statistical mechanics. Bose Einstein condensation however
was experimentally achieved only in 1995 by Cornell and Wieman [24] and by W.S.
Ketterle [49] who produced the first gaseous condensate. For this they were awarded
the 2001 Nobel Prize in Physics.

A Bose-Einstein condensate (BEC) is the state of matter of a gas of weakly inter-
acting bosonic atoms confined by an external potential and cooled to temperatures
very near absolute zero (0 Kelvin). In his 2001 Nobel lecture, W. S. Ketterle de-
scribed how profoundly the properties of a gas of bosonic atoms changes when you
cool down the gas. Then the wave nature of matter tells us that the wave packets
which describes an atom, this fuzzy object, becomes larger and larger and when the
wave packet expand to the size that the waves of neighboring atoms overlap then all
atoms start to oscillate in concert and form what you may regard a giant matter
wave. And this is the Bose Einstein condensate. [51]. In other words, all bosons
occupy the same quantum state and can thus be described by a single wave function
u(t, x). The pointwise density of this gas at time t is represented by |u(x, t)|2. The
interactions between the bosons lead to nonlinear contributions to the Schrödinger
equation for this quantum system. Considering only binary collisions between the
bosons, one sees that u satisfies a cubic nonlinear Schrödinger equation, which in
this context is often called the Gross-Pitaevski equation after work by Gross [39]
and by Pitaevskii [58]. Physically, it makes sense to study the problem both in
the periodic and the non-periodic setting. Recently there has been been intense
activity and breakthrough results, particular by L. Erdös, B. Schlein and H.T. Yau
in the (mathematically) rigorous derivation of the defocusing cubic NLS, both on
R3 as well as T3 from the dynamics of many-body quantum systems. We refer the
interested reader to [30, 31, 32, 33, 53, 20, 19, 22, 21, 38, 59] and references therein.

Bose-Einstein condensation is based on the wave nature of particles, which is
at the heart of quantum mechanics. In a simplified picture, bosonic atoms in a
gas may be regarded as quantum-mechanical wave-packets with an extension of
their thermal de Broglie wavelength (the position uncertainty associated with the
thermal momentum distribution). The lower the temperature, the longer is the
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Graphically, we can visualize this as follows [49, 50]:

Figure 1. Gas at high temperature, treated as a system of billiard
balls, with thermal velocity v and density d−3, where d is the
distance between bosonic particles.

Figure 2. Simplified quantum description of gas at low temper-
ature, in which the particles are regarded as wave packets with a
spatial extent of the order of the de Broglie wavelength, λdB .

Figure 3. Gas at the transition temperature for Bose-Einstein
condensation, when λdB becomes comparable to d. The wave pack-
ets overlap and a Bose-Einstein condensate forms.

Figure 4. Pure Bose condensate (giant matter wave), which re-
mains as the temperature approaches absolute zero and the ther-
mal cloud disappears.

de Broglie wavelength. When atoms are cooled to the point where the thermal de
Broglie wavelength is comparable to the interatomic separation, then the atomic
wave-packets overlap and the indistinguishability of particles becomes important.
Bosons undergo a phase transition and form a Bose-Einstein condensate, a dense
and coherent cloud of atoms all occupying the same quantum mechanical state [49].

As mentioned above the nonlinear Schrödinger equation arising from many-body
quantum bosonic atoms makes physical sense for bosons in a three-dimensional cube
with periodic boundary conditions (or from an experimental perspective a rectangu-
lar box). The nonlinear Schrödinger equation however, has very different behavior
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on Td from that on Rd since dispersion is weaker on (periodic) domains. Further-
more, by now we have several examples of nonlinear Schrödinger and wave equations
defined Rd for which it is mathematically proven that dispersion sets in and after a
time long enough solutions settle into a purely linear behavior. This phenomenon is
often referred to as scattering (asymptotic stability). Since linear solutions, energy
at any given frequency does not migrate to higher or lower frequencies, that is there
is no forward or backward cascade. Hence, as a consequence of scattering certain
nonlinear solutions in Rd also will avoid these cascades. The situation is believed
to be quite different for dispersive equations on compact domains. For example
in the periodic case energy cascades and out-of-equilibrium dynamics are expected
[23, 40, 45]. It is then not surprising that understanding the time dynamics of
solutions to the nonlinear Schrödinger on tori one needs to bring to bear tools and
ideas from many different other areas of mathematics, from nonlinear Fourier and
harmonic analysis, geometry, probability, analytic number theory, dynamical sys-
tems, and others. In these notes we will touch upon a few of these connections by
explaining some key results and focus on the spectacular resolution of the `2 de-
coupling conjecture by J. Bourgain and C. Demeter [14, 15]. Their results in turn
(and in particular) solve a 1993 conjecture by Bourgain and yield the predicted full
range of dispersive estimates (known as Strichartz estimates) for solutions to the
Cauchy initial value problem for the nonlinear Schrödinger equation (p-NLS) on
general rectangular d-dimensional tori:

(1.2)

{
iut + ∆u = λ|u|p−1u,
u(0, x) = φ(x), x ∈ Λd(θ),

where φ is the initial profile, λ = ±1, p > 1, u : R × Λd(θ) → C and for β :=
(β1, β2, . . . , βd), βj > 0, j = 1, . . . d we define the d-dimensional tori by:

Λd(β) := (R/β1Z)× (R/β2Z)× · · · × (R/βdZ).

When βj = 1 we have Λd(β) = Td := (R/Z)d, the square d-dimensional torus Td
of 1-periodic functions. If βj ∈ Q for all j = 1, . . . d, we call Λd(β) a rational

torus while if at least one of the ratios
βj
βj′

/∈ Q, j 6= j′ we call Λd(β) an irrational

torus1. The latter comes up naturally experimentally as well as in KAM theory
and Hamiltonian chaos ([10] and references therein).

In the context of nonlinear dispersive equations the general rectangular tori
Λd(β) were first studied by Bourgain [4] where he noted that the methods from
analytic number theory, previously employed in [6] to obtain for the first time some
dispersive estimates for the Schrödinger equation on the square Td could not be
used in the general rectangular case. It is fairly straightforward to see that the dis-
persive estimates known for Td imply those for the rational torus as well. This left
open two questions: 1) obtaining the full range of expected dispersive estimates
on Td and 2) proving dispersive estimates for irrational tori; which was thought
to be a much harder question from the harmonic analysis and analytic number
theory point of view adopted in [4]. These questions were recently answered by
Bourgain and Demeter [14, 15] who rather than analytic number theory rely on
decoupling inequalities (in discrete restriction phenomena) and sophisticated argu-
ments from multilinear harmonic analysis (adapted wave packet decompositions,

1Without any loss of generality we can assume 1
2
< βj < 2, j = 1, . . . d.
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parabolic rescaling, bilinear square function estimates, multilinear Kakeya, multi-
scale bootstrap), and also implicitly on ideas from incidence theory. Their work
is at the core of these notes, and will be the focus of Section 4. In Section 5
we discuss the interplay of deterministic and probabilistic approaches in the well
posedness theory of nonlinear Schrödinger equations. In Section 2 we start with
some preliminaries.

Notation We use A . B to denote an estimate of the form A ≤ CB for some C > 0
which may depend on the underlying dimension as well as on fixed parameters such
as p or s. However we record dependence on variable parameters such as ε using the
notation .ε. The asymptotic notation A & B is defined analogously, and A ∼ B

will mean A . B and B . A. ByHs (resp. Ḣs) we denote the usual inhomogeneous
(resp. homogeneous) Sobolev spaces. Given a function u = u(t, x) depending on
time t and the space variable x, we denote by ‖u‖LqtLrx := ‖ ‖u‖Lrx ‖Lqt the mixed

space-time Lebesgue norm. For a fixed time interval I, the spaces L∞(I; Hs) (resp.
C(I; Hs)) denote the space of functions which are in L∞ in t (resp. continuous
in t) with values in the Banach space Hs.

2. Preliminaries

Whether the underlying space is Rd, a torus or some other manifold, a basic
question when studying the Cauchy initial value problem (1.2) is that of well-
posedness, that is: i) existence, ii) uniqueness and iii) stability of solutions for initial
data in a given Banach space, which in these notes we assume to be the Sobolev
space Hs. To solve this question, the idea is to use a fixed point theorem on a space
of functions whose norm is dictated by strong estimates for v(t, x) := S(t)φ(x), the
solution of the associated linear problem,

(2.1)

{
ivt + ∆v = 0
v(0, x) = φ(x).

One should of course recall that under reasonable regularity assumptions, (1.2) is

equivalent to (2.2) below, thanks to the Duhamel principle. Formally, well posed-
ness is defined as follows:

Definition 2.1. We say that the Cauchy initial value problem (1.2) is locally well
posed in Hs if for any ball B in Hs there exists a time T > 0 and a Banach space of
functions Xs ⊂ L∞([−T, T ];Hs) such that for each initial data φ ∈ B, there exists
a unique solution u ∈ Xs ∩ C([−T, T ]; Hs) of the integral equation

(2.2) u(x, t) = S(t)φ(x) + cλ

∫ t

0

S(t− t′) |u(t′, x)|p−1u(t′, x) dt′.

Moreover, the map φ 7−→ u is continuous from Hs into C([−T, T ]; Hs). If T > 0
can be taken arbitrarily large, then we say that the initial value problem is globally
well posed.

Remark 2.2. Note that the definition above yields uniqueness onXs∩C([−T, T ]; Hs)
but not necessarily on C([−T, T ]; Hs). Proving uniqueness on C([−T, T ]; Hs) re-
quires additional work and when it holds, the local well posedness is said to be
unconditional.
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2.1. A tour onto Rd. In these notes we will primarily focus on the periodic setting
as in (1.2) where the problems associated to p-NLS are harder and less understood
than when the underlying domain2 is Rd. Before doing so however let us recall a
few important ideas about p-NLS on Rd,

(2.3)

{
iut + ∆u = λ|u|p−1u,
u(0, x) = φ(x), x ∈ Rd,

where φ ∈ Hs, λ = ±1, p > 1, u : R×Rd → C. The nonlinear Schrödinger equation
(2.3) enjoys many symmetries (c.f. [67]) among which we highlight:
Time-reversal symmetry:

(2.4) φ(x) 7−→ φ(x), u(t, x) 7−→ u(−t, x)

Scaling symmetry:

(2.5) φ(x) 7−→ µ−
2

(p−1)φ(
x

µ
) =: φµ(x), u(t, x) 7−→ µ−

2
(p−1)u(

t

µ2
,
x

µ
)

for any dilation factor µ > 0. From (2.5) we immediately notice that if the initial

datum is in Ḣsc(Rd), sc := d
2 −

2
p−1 then ‖φµ‖Ḣsc = ‖φ‖Ḣsc and (2.3) is scale

invariant. The Sobolev regularity sc is then called the critical scaling regularity.
Note that the criticality of Hs depends on both the power p and the dimension d.
In fact since we have that

‖φµ‖Ḣs ∼ µ
sc−s‖φ‖Ḣs

we can classify the difficulty of the p-NLS (2.3) above in terms of regularity of its
data. When s > sc note that as µ → ∞, the norm of ‖φµ‖Ḣs gets smaller; the
space Hs is called subcritical in this case. On the other hand if s < sc we have that
as µ→∞ the norm of ‖φµ‖Ḣs gets larger; the space Hs is then called supercritical.

When s = sc, the space Ḣsc is critical since as we noted above, as µ → ∞ the
norm of ‖φµ‖Ḣs does not change. Accordingly, the local well posedness theory for
equation (2.3) is fairly well understood in the subcritical regime- when the equation
can be treated as a perturbation of the linear one- while in the supercritical regime
only nondeterministic results are available. We return to the latter in Section 5.

Remark 2.3. In proving local well posedness for (2.2) in the subcritical regime s > sc
one shows via a fixed point argument that the time of existence T is roughly like
‖φ‖−αHs for some α > 0.

We also note p-NLS conserves both mass and the Hamiltonian; i.e:

(2.6) M(u(t)) :=

∫
|u(t, x)|2 dx =

∫
|φ(x)|2 dx =:M(φ(t))

and the Hamiltonian; ie.

H(u(t)) :=
1

2

∫
|∇u(t, x)|2 dx +

2λ

p+ 1

∫
|u(t, x)|p+1dx(2.7)

=
1

2

∫
|∇φ(x)|2 dx +

2λ

p+ 1

∫
|φ(x)|p+1dx =: H(φ)

2There is by now a substantial body of work on NLS on Rd. The interested reader might want

to consult [18, 67].
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Remark 2.4. If λ = 1 (2.7) and (2.6) give a global in time bound for the H1 norm
of u(t, x); p-NLS is called defocusing in this case. On the other hand, if λ = −1 the
energy could be negative and blow up may occur; p-NLS is then called focusing.

In particular, we have that for those p and d for which the H1 space is subcritical
(e.g. cubic p = 3 in d = 2), Remark 2.3 and (2.7) allow one to obtain global well
posedness by iterating the local theory.

To prove local well posedness for p-NLS one needs to find a suitable Banach
space Xs as in Definition 2.1 on which to prove that the map

Φ : u 7−→ S(t)φ+ cλ

∫ t

0

S(t− t′) |u(t′, x)|p−1u(t′, x) dt′

is a contraction, whence the solution u(t, x) is as in (2.2). Determining a good
choice of Xs is part of the problem. It is dictated by being able to have sufficiently
good estimates for the linear evolution S(t)φ on such space so that then, at least
in the subcritical regime and on short time intervals, one can show that Φ(u) -
hence the solution u- satisfy similar estimates. The most basic and at the same
time important space-time estimates that S(t)φ, the solution to the linear problem
(2.19), satisfy are the so called Strichartz estimates.

2.1.1. The Strichartz Estimates on Rd. The Strichartz estimates are intimately
related to the (Lp, L2) restriction problem for the Fourier transform (to the parab-
oloid in the case of the Schrödinger equation). To understand the connection it is
illustrative to review Strichartz original argument [62, 56]. Let us first briefly recall
the restriction question. Consider 1 ≤ p ≤ 2, f ∈ Lp(Rd) and S a hypersurface on
Rd. The (Lp, L2)-restriction for the Fourier transform asks whether the map

R : f 7−→ f̂
∣∣
S

extends to a bounded operator from Lp(Rd) 7−→ L2(S, dσ); ie. whether

(2.8) ‖f̂
∣∣
S‖L2(dσ) ≤ Cd,p ‖f‖Lp(Rd),

where dσ is a canonical measure3 associated to S. If p = 1, this is always true

by the Riemann Lebesgue lemma. But if p = 2, then f̂
∣∣
S is meaningless since

f̂ ∈ L2(Rd) and the d-dimensional Lebesgue measure of S is zero. Moreover, if S
is a plane, then no p > 1 is allowed, while if S = Sd−1, the unit sphere in Rd, then

P. Tomas and E.M. Stein gave an affirmative answer for 1 ≤ p ≤ 2(d+1)
(d+3) (and can

be shown to fail for any p larger). In general, the answer to this question depends
on the curvature of S. Indeed, if S is a compact hypersurface with non-vanishing
Gaussian curvature, one can show using stationary phase methods that for every
z ∈ Rd,

(2.9) |σ̂S(z)| . (1 + |z|)−
d−1
2 .

By a TT ∗ argument, (2.8) is equivalent to prove that ‖σ̂∗f‖Lp′ (Rd) ≤ Cd,p ‖f‖Lp(Rd),

which follows from (2.9) in conjunction with Littlewood-Paley and (complex) in-
terpolation (or fractional integration in a direction transverse to S and convex
interpolation). See [60, 72, 65, 66, 56] and references therein for this problem and
the more general (Lp, Lq)-restriction conjecture problem.

3e.g. if S = Sd−1, dσ is surface measure. Of interest for PDE is the case when dσ is a measure

supported on S.
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Consider now the linear Schrödinger equation (2.19) and let us assume that the

initial datum φ is a smooth function such that supp φ̂ ⊂ {|ξ| < 1}. By taking the
Fourier transform in space of (2.19) and solving the corresponding ODE we have

that the solution to the linear problem is defined by v̂(t, ξ) := e−i|ξ|
2tφ̂(ξ) whence

we have that

(2.10) v(t, x) =

∫
Rd

ei(x·ξ+h(ξ)t)φ̂(ξ) dξ = F−1
x (φ̂σ)(t, x),

where we have denoted by h(ξ) = −|ξ|2 and σ is the measure in Rd+1 carried by
the paraboloid hypersurface

Σ := {(ξ, τ) ∈ Rd × R : τ = h(ξ)}

defined by ∫
Rd+1

ψ(ξ, τ) dσ(ξ, τ) =

∫
Rd

ψ(ξ, h(ξ)) dξ

for any ψ continuous on Rd+1. In other words, v(t, x) = R∗(φ)(x, t), where R∗
is the adjoint of R(f) = f̂

∣∣
Σ

, the operator that restricts the Fourier transform on

Rd+1 to the the paraboloid Σ. Then by the Tomas-Stein endpoint estimate and
duality we obtain that

‖v(t, x)‖
L

2(d+2)
d (Rd+1)

= ‖F−1
x (φ̂σ)‖

L
2(d+2)
d (Rd+1)

. ‖φ̂‖L2(Rd) = ‖φ‖L2(Rd).

Remark 2.5. Note that since Tomas-Stein endpoint estimate is scale invariant by
rescaling φ(x) and (parabolically) v(t, x) one may remove the assumption made

above that φ̂ is supported in the unit frequency ball.

The full range of Strichartz estimates can be derived via a shorter argument
-essentially due to Ginibre and Velo and to Yajima- thanks to the explicit form of
the linear semigroup (see [18, 67] and references therein). Indeed, from (2.10) we
have that

(2.11) v(t, x) = S(t)φ(x) := eit∆φ(x) = Kt ∗ φ(x) =
c

td/2

∫
Rd

ei
|x−y|2

2t φ(y) dy,

whence we immediately obtain that

(2.12) ‖S(t)φ‖L∞x (Rd) .
1

td/2
‖φ‖L1

x(Rd)

called the dispersive estimate. On the other hand, given the linear semigroup is
unitary and commutes with other Fourier multiplies, we clearly have that for any
s,

(2.13) ‖S(t)φ‖Hsx(Rd) = ‖φ‖Hsx(Rd).

Interpolating (2.12) and (2.13) with s = 0 we have for any 1 ≤ p ≤ 2 the fixed time
estimates:

(2.14) ‖S(t)φ‖
Lp′
x (Rd)

.
1

t
d
p−

d
2

‖φ‖Lp
x(Rd)

where 1
p + 1

p′ = 1. These estimates are not enough since the initial data is usually

only assumed to be in an L2-based Sobolev space; however by combining (2.14)
with duality, TT ∗ arguments, fractional integration in time and interpolation we
obtain the full range of Strichartz estimates (c.f. [62, 60, 18, 67, 56] and references
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therein) which we are now ready to state. For d ≥ 1 we defineA the set of admissible
exponents to be those pairs (q, r) such that 2 ≤ q, r ≤ ∞ and

(2.15)
2

q
=

d

2
− d

r
, (q, r, d) 6= (2,∞, 2)

Theorem 2.6 (Strichartz estimates on Rd). For (q, r) ∈ A we have the homoge-
neous estimate,

‖S(t)φ‖LqtLrx(R×Rd) . ‖φ‖L2
x(Rd),

and for any other admissible pair (q̃, r̃) we also have the inhomogeneous estimate:∥∥∥∥∫ t

0

S(t− t′)N(u)(t′) dt′
∥∥∥∥
LqtL

r
x(R×Rd)

. ‖N(u)‖
Lq̃
′
t L

r̃′
x (R×Rd)

,

where 1
q̃ + 1

q̃′ = 1 = 1
r̃ + 1

r̃′ and N(·) is any Lipschitz continuous function.

Remark 2.7. It can be proved via a standard Knapp example and scaling arguments
that the admissibility of (q, r) is a necessary condition. We also note that these
estimates hold on [−T, T ]× Rd in lieu of R× Rd.
2.2. Back to the periodic setting. We start by rescaling the tori Λd(β) so that
we can use coordinates based on the regular square torus Td and work with Fourier
series based on the standard integer lattice Zd. In this way we incorporate the
geometry of Λd(β) into the Laplace operator, which after such rescaling is defined
by

(2.16) ∆θ := θ1
∂2

∂x2
1

+ θ2
∂2

∂x2
2

+ . . . θd
∂2

∂x2
d

, θj =
1

β2
j

, j = 1, . . . , d.

In other words, for k = (k1, . . . , kd) ∈ Zd,

(2.17) ∆̂f(k) := −(θ1 k
2
1 + · · ·+ θd k

2
d) f̂(n)

where as usual, we have denoted the Fourier transform and Fourier series as:

f̂(k) =

∫
Td
e−2πik·xf(x) dx, (k ∈ Zd) and f(x) =

∑
k∈Zd

e2πik·xf̂(k), (x ∈ Td).

Our problem (1.2) can then be rewritten on Td as follows:

(2.18)

{
iut + ∆θu = λ|u|p−1u,
u(0, x) = φ(x), x ∈ Td,

We note that the solution u(t, x) to the linear Schrödinger equation,

(2.19)

{
iut + ∆θu = 0
u(0, x) = φ(x), x ∈ Td,

is given by

u(t, x) = eit∆θu0 =
∑
k∈Zd

e2πi
(
n·x−t

∑d
j=1θj k

2
j

)
û0(k).(2.20)

Of course, equation (2.18) also conserves mass (2.6) and the Hamiltonian (2.7).

Remark 2.8. The periodic cubic NLS equation,{
iut + ∆u = λ|u|2u,
u(x, 0) = u0(x), x ∈ T3

is the one governing Bose Einstein condensation alluded to in the introduction.
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3. Strichartz Estimates on Tori

In the periodic setting, the tools from harmonic analysis we used to establish
the Strichartz estimates are no longer available. Even in the case of the square
torus, Td, obtaining some Strichartz estimates for S(t)u0(x) is highly nontrivial
and required new ideas. They were introduced by Bourgain in [6] for the square
(rational) torus as a conjecture:

Conjecture 3.1. Assume that Td is a rational torus and for N ≥ 1, let φ ∈ L2(Td)
be a smooth function such that the supp φ̂ ⊂ [−N,N ]d ⊂ Zd. Then for any ε > 0
the following estimates should hold:

‖S(t)φ‖LqtLqx(Td+1) . Cq‖φ‖L2
x(Td) if q <

2(d+ 2)

d

‖S(t)φ‖LqtLqx(Td+1) � N ε‖φ‖L2
x(Td) if q =

2(d+ 2)

d

‖S(t)φ‖LqtLqx(Td+1) . CqN
d
2−

d+2
q ‖φ‖L2

x(Td) if q >
2(d+ 2)

d

In [6] Bourgain in fact partially proved these bounds in the following cases: i)

d = 1, 2 and q > 2(d+2)
d , ii) d = 3 and q > 4 and iii) d ≥ 4 and q > 2(d+4)

d . His
proof relies on Weyl’s sum estimates, the Hardy-Littlewood circle method and the
Tomas-Stein restriction theorem. Partial improvements were obtained in [26, 47].

Remark 3.2. Bourgain also proved in [6] that dispersion is indeed weaker in the
periodic setting by proving that when d = 1 the endpoint L6 estimate which holds
on R with constant independent of N is false in the periodic setting. More precisely,
he showed

‖
∑
|k|≤N

ake
i(kx+k2t)‖L6(T×T) ≥ c(logN)

1
6

(∑
k∈Z
|ak|2

)1/2

.

The failure of the endpoint estimate ‖eit∆φN‖L4(T2×T) . ‖φN‖L2(T2) when d = 2
was established by Takaoka and Tzvetkov [64].

More recently, Bourgain [11] improved his results from [6] by establishing the

above Conjecture 3.1 for d ≥ 4 and q > 2(d+3)
d by relying on the multilinear

harmonic analysis techniques for the restriction and Kakeya problems developed in
[2] and in [16]. These techniques will once again mark the way for the resolution of
the full conjecture by Bourgain and Demeter [14] as we will see below.

3.1. Strichartz Estimates and the Discrete Fourier Restriction. For any
given N ∈ N, let Sd,N be the set{

(k1, · · · , kd) ∈ Zd : |kj | ≤ N, 1 ≤ j ≤ d
}
.

For q > 1, let Aq,d,N represent the best constant satisfying

(3.1)
∑

k∈Sd,N

∣∣∣f̂(k, |k|2)
∣∣∣2 ≤ Aq,d,N‖f‖2q′ ,

where k = (k1, · · · , kd) ∈ Sd,N , |k| =
√
k2

1 + · · ·+ k2
d and f is any Lq

′
-function on

Td+1 and q′ = q/(q − 1).
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As we mentioned above Bourgain [6] obtained (in particular) the following estimate
for the square torus Td:

(3.2) Aq,d,N ≤ CNd− 2(d+2)
q +ε for q >

2(d+ 4)

d
.

By duality, it is straightforward to see that the Strichartz estimates,

(3.3)

∥∥∥∥∥∥
∑

k∈Sd,N

ake
i(k·x+|k|2t)

∥∥∥∥∥∥
Lq(Td+1)

≤
√
Aq,d,N

 ∑
k∈Sd,N

|ak|2
1/2

are in fact equivalent to the discrete Fourier restriction estimates:

(3.4)

 ∑
k∈Sd,N

∣∣∣f̂(k, |k|2)
∣∣∣2
1/2

≤
√
Aq,d,N‖f‖q′

To understand how the rational character of the torus enters in a basic fashion,
let us review Bourgain’s result for the square torus in the case where q = 4 and
d = 2. We would like to show that A4,2,N < Nε, ε > 0. Bourgain [6] reduced
the problem to estimating the number of representations of an integer as a sum of
squares. Let

f(x, t) =
∑
|k|<N

ake
i(k·x+|k|2t) with (x, t) ∈ T2 × T,

and for a given integer j and p ∈ Z2 define,

Cp,j := {k ∈ Z2 : |k| ≤ N and |k|2 + |p− k|2 = j},
and let rp,j = #Cp,j . If we square our function f , we obtain the estimate that

f(x, t)2 =
∑
p

ei(p·x)

[∑
k

akap−ke
i(|k|2+|p−k|2t)

]
=
∑
p,j

 ∑
k∈Cp,j

akap−k

 ei(p·x+jt)

so that if we take the L2 norm, we find that

(3.5) ‖f2‖2L2(T2×T) ≤

 max
|p|≤2N

|j|≤2N2

rk,j


(∑

|ak|2
)2

.

We can rewrite |k|2 + |p− k|2 = j as

(2k1 − p1)2 + (2k2 − p2)2 = 2j − |p|2

so we have that rk,j is bounded by the number of solutions of

X2
1 +X2

2 = R2

where R2 = 2j − |p|2 . N2. Hence the right hand side of (3.5) is bounded by
the number of integer lattice points (X1, X2) that that lie on the circle of radius

R. Since there are at most exp(C logR
log logR ) ∼ Rε such points, we get the desired

estimate.
The case is much more difficult when generalizing to any given p and d. Hu

and Li in [47] presented a variant of the proof of Bourgain’s result (3.4), which
just as Bourgain’s makes use of the Hardy-Littlewood circle method and estimates
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on level sets. Their proof of Bourgain’s level set estimates is however somewhat
simpler. We briefly sketch their proof next. When q is large, the desired estimate
(3.4) follows immediately from the following result (cf. [6, 47]):

Theorem 3.3. For any σ > 0, any d ≥ 1, and any q > 4(d+2)
d , there exists a

constant C, independent of N , such that∑
k∈Zd

e−
σ|k|2

N2

∣∣∣f̂(k, |k|2)
∣∣∣2 ≤ CNd− 2(d+2)

q ‖f‖2q′ ,

for all f ∈ Lq′(Td+1).

The proof of this theorem in turn follows from Hardy-Littlewood circle method, a
tool to count the number of representations of a given integer as an arbitrary sum
of powers. Let us recall some simple aspects about it.

Definition 3.4. Let f(z) be an analytic function that converges in the open unit
disc |z| = 1 , where

f(z)s =
∑
a1∈A

· · ·
∑
as∈A

za1 · · · zas =

∞∑
N=0

rA,s(N)zN .

Here, rA,s(N) is the number of representations of N as the sum of s elements of
A ⊂ Z. In other words, the number of solutions of the equation

N = a1 + a2 + · · · as
with

a1, a2, · · · as ∈ A.

We can now apply Cauchy’s theorem to the summation above by integration:

rA,s(N) =
1

2πi

∫
|z|=ρ

f(z)s

zN+1
dz

for any ρ ∈ (0, 1). This is the original form of the circle method. Note that the
integral above counts the number of ways the number N can be written as a sum
of arbitrary powers of s. The evaluation of such an integral is not a trivial task,
and requires breaking up our circle into major arcs and minor arcs.

Sketch of the proof of Theorem 3.3. For r ∈ N let

Pr := {y ∈ N : 1 ≤ y ≤ r, (y, r) = 1}.
For a ∈ Pr, define the interval Ja/r as

Ja/r =

(
a

r
− 1

Nr
,
a

r
+

1

Nr

)
.

If r ≥ N/10, then we have a minor arc, and we have a major arc if r < N/10. By
Dirichlet principle4, we can then partition the interval (0, 1] into a union of major
and minor arcs as

(0, 1] =
⋃

1≤r≤N,a∈Pr

Ja/r = M1 ∪M2

4Recall Dirichlet Principle states that given any N ∈ N and any x ∈ (0, 1] there exist a, r ∈ N
such that

∣∣x− a
r

∣∣ ≤ 1
Nr

, 1 ≤ r ≤ N, a ∈ Pr.
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whereM1 is the union of all major arcs andM2 the union of all minor ones. If χJ
is the characteristic function on the set Ja/q then set

Ka/r(x, t) := Kσ(x, t)χJa/r (t),

where

(3.6) Kσ(x, t) :=
∑
k∈Zd

e−
σ|k|2

N2 ei|k|
2teik·x.

The point is that now one can show that for 1 ≤ r ≤ N , a ∈ Pr, and q > 2(d+1)
d

‖Ka/r‖Lq ≤ Cr,d,qNd− d+2
q ,

which then leads to the estimate for q > 2(d+2)
d , that

‖Kσ‖Lq ≤ Cq,σNd− d+2
q .

Since ∑
n∈Zd

e−
σ|k|2

N2

∣∣∣f̂(k, |k|2)
∣∣∣ = 〈Kσ ∗ f, f〉,

if we apply Hölder’s inequality and Hausdorff-Young’s inequality, we have that

〈Kσ ∗ f, f〉 ≤ ‖Kσ‖q/2‖f‖2q′ ;

whence since q > 4(d+2)
d we have the desired conclusion. �

The estimate for smaller cases of q, follow from level set estimates [6, 47] of the
form:

Theorem 3.5 ([47]). Let FN be a periodic function on Td+1 such that

FN (x, t) =
∑

k∈Sd,N

ake
ik·xei|k|

2t

where {ak} is a sequence with
∑

k |ak|2 = 1. For any λ > 0, let

Eλ = {(x, t) ∈ Td+1 : |FN (x, t)| > λ}.
Then for any Q > 0 such that Q ≥ N we have that

(3.7) λ2|Eλ|2 ≤ C1Q
d/2|Eλ|2 +

C2N
ε

Q
|Eλ|

holds for all λ and ε > 0. The constants C1 and C2 are independent of N and Q.

Without loss of generality assume Q is a positive integer and consider N ≤ Q ≤
N2. The idea is to suitably decompose the kernel Kσ in (3.6) into the sum of two
kernels K1,Q +K2,Q such that

‖K1,Q‖L∞ ≤ C1Q
d/2

and

‖K̂2,Q‖L∞ ≤
C2N

ε

Q
,

whence the estimates (3.7) follow. To find such decomposition, the key is to choose
an appropriate function supported on [0, 1] so that if we denote by Φ(t) its periodic
extension we define

K1,Q(x, t) =
1

Φ̂(0)
Kσ(x, t)Φ(t) and K2,Q = Kσ −K1,Q.
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The Φ that works is the periodic extension of the function∑
Q≤r<2Q

∑
a∈Pr

ϕ

(
t− a/r

1/r2

)
,

where ϕ is a bump function supported on a small interval -say [2−8, 2−7]. Full
details can be found in [47].

The point is that one can then show as corollaries the following estimates in [6]:

(1) If λ ≥ CNd/4 for some suitable C > 0, then the level set Eλ defined

Theorem 3.5 above satisfies |Eλ| . Nελ−
2(d+2)
d

(2) For each positive ε > 0 we have that
√
Aq,d,N ≤ CεN

d
2−

d+2
q +ε provided

q > 2(d+4)
d ; which in turn immediately yield (3.3) in this case.

3.2. The Strichartz estimates on general tori. As mentioned above, the study
of the NLS on general rectangular tori was first started in the work of Bourgain
[10] where it was shown that certain Strichartz estimates with a loss of derivative
hold. Some other partial results for the NLS on irrational tori were obtained in
[17, 28, 41, 63]. The combined range of estimates proved for irrational tori in these
works are weaker than those proved by Bourgain in [6] due to number-theoretical
difficulties. A completely different approach to the problem was recently taken in
the work of Bourgain and Demeter [14, 15] - see also prior work by C. Demeter
[27]-. Such approach has led to the full range of Strichartz estimates conjectured in
[6] (c.f.[10]) up to ε-loss for irrational tori. This ε loss was removed in subsequent
work by Killip and Vişan [52].

In [14] Bourgain and Demeter actually prove a stronger result than the Strichartz
estimates. Namely they establish the `2-decoupling conjecture (Theorem 4.1
below) whence- in addition to proving the Strichartz estimates on general (rational
or irrational) tori- they also derive perhaps somewhat surprisingly new results in
number theory and in incidence geometry theory.

Our interest in these notes is in understating how Bourgain and Demeter estab-
lish the Strichartz estimates for general (rational or irrational) tori.

Relabeling the notation: From now through the end of Section 4 we follow
the notation in [14] and relabel the dimension d as n− 1. Hence Td+1 will become
Tn. Furthermore, the Lq in Conjecture 3.1 and subsequent presentation above will
become Lp (that is we will use p in lieu of q). This p should not be confused with
the power nonlinearity of NLS.

Theorem 3.6. [Strichartz estimates for general tori]. Let φ ∈ L2(Tn−1) with

supp φ̂ ⊂ [−N,N ]n−1. Then for each ε > 0, p ≥ 2(n+1)
n−1 and each interval I ⊂ R

with |I| & 1 we have,

(3.8) ‖eit∆θφ‖Lp(Rn−1×I) .ε N
n−1
2 −

n+1
p +ε|I|1/p‖φ‖2,

The implicit constant does not depend on I,N or θ := (θ1, . . . , θn−1) as in (2.16).

Remark 3.7. We note that Theorem 3.6 in particular fully establishes Bourgain’s
Conjecture 3.1. Bourgain showed in [6] Proposition 3.113 how to remove5 the ε-

loss for p > 2(n+1)
n−1 in the case of square (rational) tori. Recall that the ε-loss is

5i.e. obtain scale invariant estimates
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necessary when q = 2(n+1)
n−1 as discussed above in Remark 3.2. Recent work by

Killip and Vişan [52] show how to remove the ε-loss for p > 2(n+1)
n−1 in the case of

irrational tori; in fact their argument works for either rational or irrational tori.

Remark 3.8. As a consequence of Theorem 3.6 one can prove in particular that
the p-NLS equation (2.18) on general tori is locally well-posed in Hs(Td) for any
s > d

2 −
2
p−1 .

The proof of Theorem 3.6 follows rather quickly once Theorem 4.1 below is
proven. The idea is to use the discrete version of the `2 decoupling theorem, as was
done in [11], and apply a change of variables to (3.8) which puts us in the perfect
position to apply the discrete estimate. We therefore focus on proving Theorem 4.1
below.

4. `2 decouplings

We provide a brief overview of the proof of the `2 decoupling conjecture by J.
Bourgain and C. Demeter in [14]. We borrow heavily from L. Guth’s notes on the
topic [43]. In what follows and in order to remain faithful to the literature we
relabel the spatial dimension d as n− 1 so that the space-time dimension will now
be n. Hence n = 2 means 1 spatial dimension and so forth.

Throughout this section we take S to be a compact C2 hypersurface in Rn with
positive definite second fundamental form. The typical example we will always refer
to is the truncated elliptic paraboloid,

Pn−1 := {(ξ1, . . . , ξn−1, ξ
2
1 + · · ·+ ξ2

n−1) ∈ Rn : |ξi| ≤ 1/2}.

We assume n ≥ 2, and to fix ideas we will frequently give examples where n = 2.

Figure 5. The setup for the truncated parabola P 1. Each rect-
angular region represents a θ “slab”, and T is the collection of all
such θ.

The main result is the following theorem:

Theorem 4.1 (`2 Decoupling (Theorem 1.1 in [14])). Let S be a compact C2

hypersurface in Rn with positive definite second fundamental form. Let NδS be
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the δ-neighborhood of S and let T be a covering of NδS by blocks θ of dimension

δ1/2 × · · · × δ1/2 × δ. If supp(f̂) ⊆ NδS then for p ≥ 2(n+1)
n−1 and ε > 0,

(4.1) ‖f‖p ≤ Cp,n,ε δ−
n−1
4 +n+1

2p −ε

(∑
θ∈T

‖fθ‖2p

)1/2

.

Note that we will often switch between using δ and R, where δ = R−1.

4.1. Main steps. Let us first note that the subcritical estimate

‖f‖p .ε δ−ε
(∑
θ∈T

‖fθ‖2p

)1/2

where 2 ≤ p ≤ 2(n+ 1)

n− 1
,

will become possible by a localization argument and interpolation between the
trivial p = 2 case and the endpoint p = 2(n+ 1)/(n− 1) from Theorem 4.1, which
we henceforth refer to as s to distinguish it from general p. The endpoint s here
is hinted at in prior discussions of this topic. G. Garrigós and A. Seeger proved in
[37] that, up to the ε term, the exponent −n−1

4 + n+1
2p − ε of δ in Theorem 4.1 is

optimal. Thus the clear breaking point for when this exponent is a constraint is
precisely s. Furthermore, in our argument we will encounter the norm ‖f‖

L
2(n+1)
n

,

and we the algebraic properties of s allow the convenient bound

‖f‖
L

2(n+1)
2
≤ ‖f‖1/2L2 ‖f‖1/2Ls .

via the Hölder inequality.
For brevity, we now focus on the endpoint case exclusively, following closely the

notes [43] by L. Guth. As mentioned above, proving the endpoint case quickly
implies the subcritical estimate as well. The supercritical estimate p > s requires
a different argument, but many of the tools introduced here are used in that proof
also.

4.1.1. Decoupling Norms. We begin by inspecting the right side of the `2 decoupling

inequality (4.1) further. For any f such that supp f̂ ⊆ NδS and Ω ⊆ Rn any domain
we fix a covering T of NδS and define

‖f‖Lp,δ(Ω) :=

(∑
θ∈T

‖fθ‖2Lp(Ω)

)1/2

=
∥∥‖fθ‖Lp(Ω)

∥∥
`2(T )

.

This turns out to be a norm with some similar properties to the Lp norms, in
particular it satisfies the Hölder-type inequality

(4.2) ‖f‖Lq,δ(Ω) ≤ ‖f‖1−αLq1,δ(Ω)
‖f‖αLq2,δ(Ω)

for 1 ≤ q, q1, q2 ≤ ∞, 0 < α < 1, and 1
q = (1− α) 1

q1
+ α 1

q2
.

It is useful to establish the following superadditive property, which is proven
using the Minkowski inequality for the `p/2 norm.

Lemma 4.2. If Ω is a disjoint union of Ωj and p ≥ 2, then for any δ and any f

with supp f̂ ⊆ NδS, we have∑
j

‖f‖p
Lp,δ(Ωj)

≤ ‖f‖p
Lp,δ(Ω)
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The benefit of this lemma is that it allows us to break Ω into disjoint pieces, and
any decoupling norm which holds on each piece then holds on their union. This is
what L. Guth calls parallel decoupling (see[43], page 2).

Lemma 4.3 (Parallel decoupling). Suppose that Ω is a disjoint union of Ωj,

supp f̂ ⊆ NδS, and p ≥ 2. Suppose that for each j we have the inequality

‖f‖Lp(Ωj)≤M‖f‖Lp,δ(Ωj).
Then we also have the inequality

‖f‖Lp(Ω)≤M‖f‖Lp,δ(Ω).

4.1.2. Decoupling Constant. We define the decoupling constant Dp(R) as

Dp(R) := inf‖f‖Lp(BR)/‖f‖Lp,1/R(BR),

where the infimum is taken over all f with supp f̂ ⊂ N1/RS. We note that Dp(R)
also depends on S, but we will ignore this point for now. The claim is that, at the
endpoint s,

Dp(R) . Rε.

4.1.3. Multiple Scales. We consider the problem at multiple scales in Fourier space.
Instead of breaking N1/RS into pieces at the scale of θ one asks what happens if
one starts with a function supported in τ ⊆ N1/RS and then breaks τ into θ caps.
The result is the following proposition.

Proposition 4.4. If τ ⊆ N1/RS is a r−1/2 cap for some r ≤ R, supp f̂ ⊆ τ , and

θ ⊆ N1/RS are R−1/2 caps as before, then

‖f‖Lp(Ω) . Dp(R/r)

∑
θ⊆τ

‖fθ‖2Lp(BR)

1/2

.

The proof of this proposition is based on parabolic rescaling, in which we apply a
linear transformation so that the region τ has diameter 1 and then use our parallel
decoupling Lemma 4.3 from earlier. As a corollary of Proposition 4.4 we get the
following estimate:

Corollary 4.5. For any radii R1, R2 ≥ 1, we have

Dp(R1R2) . Dp(R1)Dp(R2).

As a result, we see that there is a unique γ = γ(n, p) such that for all R, ε we
have

Rγ−ε . Dp(R) . Rγ+ε.

We want to prove that γ = 0 at the endpoint p = 2(n+1)
n−1 .

4.1.4. Multilinear versus Linear decoupling. Perhaps inspired by the tractability
of multilinear Kakeya and restriction over their linear counterparts, which we will
discuss in Section 4.2, we now consider a multilinear version of the problem. We
first define the notion of transversality.

Definition 4.6. A collection of Sj ⊂ Rn hypersurfaces are transverse if for any
point ω ∈ Sj , the normal vector NSj (ω) obeys

Angle(NSj (ω), jth coordinate axis) ≤ (10n)−1.
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Definition 4.7. We say that functions f1, . . . , fn on Rn obey the multilinear de-
coupling setup (MDS)6 if

• For i = 1, . . . , n, supp f̂i ⊆ N1/RSi
• Si ⊆ Rn are compact positively curved C2 hypersurfaces.
• The surfaces Sj are transverse.

We define D̃n,p(R) to be the smallest constant so that whenever fi obey (MDS),∥∥∥∥∥
n∏
i=1

|fi|1/n
∥∥∥∥∥
Lp(BR)

≤ D̃n,p(R)

n∏
i=1

‖fi‖1/nLp,1/R(BR)
.

Bourgain and Demeter go on to prove the following relationship between linear
decoupling and multilinear decoupling:

Theorem 4.8. Suppose that in dimension n−1, the decoupling constant Dn−1,p(R) .
Rε for any ε > 0. Then for any ε > 0,

Dn,p(R) . RεD̃n,p(R).

The idea of the proof is choose small enough K−1 caps τ such that |fτ | is morally
constant on cubes of side length K in BR. Then we cover BR with cubes QK
and classify them as broad or narrow depending on which τ make a significant
contribution to f |QK . The broad cubes can be controlled simply by the multillinear
decoupling inequality, and the narrow ones are controlled by parallel decoupling and
parabolic rescaling.

Note that we always have D̃n,p(R) ≤ Dn,p(R) for any n, p,R. Then, using
induction on the dimension n, if the decoupling theorem holds in dimension n− 1
for the endpoint s, then we have shown that

D̃n,p(R) ∼ Dn,p(R) ∼ Rγ .
In other words, the linear decoupling problem is equivalent to the multilinear de-
coupling problem. This is quite surprising, as other problems such as linear Kakeya
currently seem harder to prove than multilinear Kakeya. Thus, for decoupling, we
can attack the problem using multilinear methods, which we will now leverage to
our advantage.

4.2. Multilinear Kakeya. This section is a description of the argument in [42],
in which as Guth succintly states, ‘the multilinear Kakeya inequality is a geometric
estimate about the overlap pattern of cylindrical tubes in Rn pointing in different
directions’. We will use it to prove the multilinear restriction estimate which will
then allow us to prove the `2 decoupling conjecture.

Theorem 4.9 (Multilinear Kakeya). Suppose that {`j,a} is a finite collection of
lines in Rn, where j ∈ {1, . . . , n} and a ∈ {1, . . . , Nj} such that each line `j,a makes
an angle of at most (10n)−1 with the xj-axis. Let Tj,a be the characteristic function
of the 1−neighborhood of `j,a, and let QS denote any cube of side length S. Then
for any ε > 0 and any S ≥ 1, the following integral inequality holds:

(4.3)

∫
QS

n∏
j=1

 Nj∑
a=1

Tj,a

 1
n−1

.ε S
ε
n∏
j=1

N
1

n−1

j

6Here we are directly quoting Guth’s notes [43], page 5.
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Figure 6. An example of the setup for Multilinear Kakeya.

Figure 7. Zooming in on the square QS .

Figure 9 is an example of a setup for Multilinear Kakeya. The area being con-
sidered is simply that within the square QS . In addition, considering the values

in the inequality (4.3) we note that
∑Nj
a=1 Tj,a represents the color density of our

overlayed transparencies (see Figure 7).

In the darker red portion,
∑2
a=1 T1,a = 2, whereas for the lighter red portion

this value will be 1, and for areas with no red the value is 0. Since there is only one
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line close to the x2-axis in our example,
∑1
a=1 T2,a = T2,1 = 1 for the blue areas in

Figure 7 and 0 otherwise. Since there is a product on the left side of (4.3), the only
portion which is being counted at all is the purple region where the 1-neighborhood
of `2,1 intersects the 1-neighborhood of `1,1 or `1,2.

4.2.1. Nearly axis parallel. The method of proving the Multilinear Kakeya inequal-
ity (Theorem 4.9) which was established by Bennett, Carbery, and Tao in [2] and
is also followed by Guth in [42], is to first reduce to nearly axis parallel tubes:

Theorem 4.10. For every ε > 0 there is some δ > 0 so that the following holds.
Suppose that `j,a are lines in Rn, and that each line `j,a makes an angle of at

most δ with the xj-axis. Then for any S ≥ 1 and any cube QS of side length S, we
have:

∫
QS

n∏
j=1

 Nj∑
a=1

Tj,a

 1
n−1

.ε S
ε
n∏
j=1

N
1

n−1

j

The claim is that Theorem 4.10 implies Theorem 4.9. Suppose Theorem 4.10 is
true, then if δ ≥ (10n)−1 (for a given ε) then we are easily done. If δ < (10n)−1

however, we would like to stretch along an axis whose lines are not within δ, bringing
the lines closer to the axis. The only problem with this idea is that doing so also
inevitably pulls other lines away from their axes. Clearly if one axis has lines which
make too much of an angle, and the other axes are well within δ, we may be able
to stretch the space so that all the lines are within delta.

One problem with this idea, however, is that the amount we stretch relies on
knowing information about the lines which we don’t have. Obviously the other
issue is that this does not help us if more than one set of lines makes an angle of
more than δ. The technique to handle both problems will be to split up over all
possible contributions from various possible directions of lines and scale them each
independently.

Assume that for ε > 0 the corresponding δ > 0 from Theorem 4.10 is less than
(10n)−1. Then we split the spherical cap Sj of radius (10n)−1 into caps Sj,β of
radius δ/10, and then apply a linear change of coordinates to each cap centering it
on the standard unit vector ej .

In this case, the specific angle each `j,a makes is not important, as we know it is
bounded by (10n)−1, and so as we center each Sj,β this linear change of coordinates
has a controlled effect on lengths and areas and we can bound the overall integral
by a sum of all combinations of contributions from these transformed systems, each
of which is controlled by Theorem 4.10.

4.2.2. Axis parallel (Loomis-Whitney). The idea of the rest of the argument will
be to further simplify matters by zooming in sufficiently close so that nearly axis
parallel tubes look almost like axis parallel tubes. In this case we can get the bound
we want using the Loomis-Whitney inequality, proven in [54], which states

Theorem 4.11 (Loomis-Whitney). Suppose that fj : Rn−1 → R are measurable
functions, and let πj : Rn → Rn−1 be the linear map that forgets the jth coordinate:

πj(x1, . . . , xn) = (x1, . . . , xj−1, xj+1, . . . xn).
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Figure 8. How to reduce Multilinear Kakeya to the Nearly Axis
Parallel case: We split Sj into pieces, each of which has smaller
radius than δ, and then sum over all contributions where the di-
rection of `j,a is in Sj,β (one from each Sj). Our angles here are
not to scale.

Then the following inequality holds:∫
Rn

n∏
j=1

fj(πj(x))
1

n−1 ≤
n∏
j=1

‖fj‖
1

n−1

L1(Rn−1).

The connection between this theorem and the axis-parallel case is that a line
parallel to the xj-axis can be written as πj(x) = ya for some ya ∈ Rn−1. Then,
as noted in [42] by Guth,

∑
a Tj,a(x) =

∑
α χB(ya,1)(πj(x)), and applying Loomis-

Whitney with fj =
∑
a χB(ya,1) we have

∫
Rn

∏
j=1

 Nj∑
a=1

Tj,a

 1
n−1

=

∫
Rn

∏
j=1

(fj(πj(x)))
1

n−1 ≤
n∏
j=1

‖fj‖
1

n−1

L1(Rn−1) ≤ ωn−1Nj

where ωn−1 is the volume of the n − 1 dimensional unit ball. Therefore the axis
parallel case does follow quickly from Loomis-Whitney, so we proceed to describe
loosely the “zooming in” part of the argument.

Given a cube QS , we begin by splitting it up into small enough Q such that each

tube Tj,a which intersects a small Q can be covered by T̃j,a,R, an axis-parallel tube

with slightly larger radius R.7 Note that, since the T̃j,a,R actually cover the Tj,a
within Q, we have∫

Q

n∏
j=1

(∑
a

Tj,a

) 1
n−1

≤
∫
Q

n∏
j=1

(∑
a

T̃j,a,R

) 1
n−1

. Rn
n∏
j=1

Nj(Q)
1

n−1

where the last inequality follows from using Loomis-Whitney, and Nj(Q) indicates
the number of tubes Tj,a intersecting Q. In fact, choosing Q small enough, we can
make it so that if the tube Tj,a intersects Q, the tube Tj,a,δ−1 of radius δ−1 around

7Exact details for what constitutes sufficiently small and slightly larger are contained in [42].
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Figure 9. Zooming in

`j,a is identically 1 on Q. Therefore

Rn
n∏
j=1

Nj(Q)
1

n−1 .
Rn

|Q|

∫
Q

n∏
j=1

(∑
a

Tj,a,δ−1

) 1
n−1

.

As Guth shows in [42], with the appropriate choice of |Q| and R, we can make
Rn/|Q| . δn. Since we can then sum over all Q, this proves the following lemma:

Lemma 4.12. Suppose that `j,a are lines with angle at most δ from the xj axis.
Then if S ≥ δ−1 and if QS is any cube of sidelength S, then∫

QS

n∏
j=1

(∑
a

Tj,a

) 1
n−1

. δn
∫
QS

n∏
j=1

(∑
a

Tj,a,δ−1

) 1
n−1

.

We have essentially traded off making the tubes larger for the δn factor. This
can be seen as an exploit of the fact that a naive bound for the integrand is to

assume that all tubes are identically 1 on QS , which yields
∏n
j=1N

1
n−1

j , and so we
lose nothing in the trade.

Without loss of generality, assume QS is centered at the origin. Now if S ≥ δ−M
we begin induction on the scales δ−1, δ−2, . . . , δ−M :∫

QS

n∏
j=1

(∑
a

Tj,a(x)

) 1
n−1

dx ≤ Cnδn
∫
QS

n∏
j=1

(∑
a

Tj,a,δ−1(x)

) 1
n−1

dx(4.4)

= Cn

∫
δQS

n∏
j=1

(∑
a

Tj,a,δ−1(δ−1x)

) 1
n−1

dx(4.5)

where (4.5) follows by a change of variables. In the new coordinates, Tj,a,δ−1(δ−1x)

are just unit tubes again, and δQS is a cube with side lengths ≥ δ−(M−1), so we
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repeat the argument. After M repetitions we arrive at∫
QS

n∏
j=1

(∑
a

Tj,a(x)

) 1
n−1

dx ≤ CMn
∫
δMQS

n∏
j=1

(∑
a

Tj,a,δ−M (δ−Mx)

) 1
n−1

dx,

and we can now use our naive bound to find∫
QS

n∏
j=1

(∑
a

Tj,a(x)

) 1
n−1

dx ≤ CMn (δMS)n
n∏
j=1

N
1

n−1

j .

If we had been working on a cube QS such that S = δ−M , at this point we would
only need that CMn ≤ Sε to be done. To accomplish this, we solve S = δ−M for
M = − logS/ log δ, thus we have

CMn = S−
logCn
log δ .

Therefore given ε > 0, we choose δ > 0 such that − logCn
log δ < ε. Now we have

proven the following lemma.

Lemma 4.13. Given ε > 0, there exists δ > 0 such that if `j,a are lines in Rn
which make an angle of at most δ with the xj-axis then, for every cube QS such
that S = δ−M for some integer M ,∫

QS

n∏
j=1

(∑
a

Tj,a

) 1
n−1

≤ Sε
n∏
j=1

N
1

n−1

j .

This is enough to prove Theorem 4.10, since given ε > 0 we take δ as in the above
lemma. Then for any S we take M to be the largest integer such that S ≥ δ−M , and
then we cover S by at most C cubes of sidelength δ−M where, apriori, C depends
on both S and δ. By proving Lemma 4.13 for all integers M , however, we have
been able to remove the dependence on S, since we can simply cover the cube QS
with one of side length δ−(M+1), and then figure out how many cubes of side length
δ−M are needed to cover this cube. Consequently the dependence of C is only on
δ, which itself depends only on ε. Summing over these cubes yields

∫
QS

n∏
j=1

(∑
a

Tj,a

) 1
n−1

.ε S
ε
n∏
j=1

N
1

n−1

j .

4.3. Multilinear Restriction. At this point we use the multilinear Kakeya in-
equality to prove multilinear restriction. One way to do this is to use the method
of induction on scales, similar to the argument in [16], and similar to the argument
described above for multilinear Kakeya, which itself was an argument by induction
on scales. We first mention the following definition.

Definition 4.14. The L2
avg(Ω) norm of a function f is defined as

‖f‖L2
avg(Ω) :=

(
1

m(Ω)

∫
|f |2 dm

)1/2

A key principle to apply induction on scales is to have some way for bounding a
desired quantity of one scale by another. In multilinear Kakeya, this was Lemma
4.12. For multilinear restriction, it will be the following.
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Lemma 4.15. If supp fi ⊆ N1/RSi and Si are smooth compact transverse hyper-

surfaces, and if 2 ≤ p ≤ 2n
n−1 , then

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖p/nL2
avg(B

R1/2 ) . R
ε
n∏
i=1

‖fi‖p/nL2
avg(BR),

where the average on the left is taken over a finite covering of BR by balls of radius
R1/2.

By applying Bernstein’s inequality at a sufficiently small scale r and then induc-
tively working our way up using Lemma 4.15 we move through scales r2m until we
reach R. This yields a decoupling estimate for 2 ≤ p ≤ 2n

n−1 , as appeared in [11].

4.4. Using curvature. In the above argument we used transversality, but we did
not use curvature at all. The introduction of curvature allows a more subtle esti-
mate.

Lemma 4.16. If supp fi ⊆ N1/RSi, and Si are compact positively curved transverse

hypersurfaces, and s = 2(n+1)
n−1 and δ = R−1, then

AvgB
R1/2⊂BR

n∏
i=1

‖fi‖
s
n

L2
avg(B

R1/2 ) . R
ε
n∏
i=1

‖fi‖
1
2 ·
s
n

L2
avg(BR)

n∏
i=1

‖fi‖
1
2 ·
s
n

Ls,δavg(BR)
,

where the average on the left is taken over a finite covering of BR by balls of radius
R1/2.

Again, note that this estimate is perfectly suited to an induction on scales type
argument. In order to prove this lemma, Bourgain and Demeter show that we can
reverse the previous Hölder inequality (4.2) if the function can be broken into a small
number of “balanced” pieces, where each piece obeys a reverse Hölder inequality,
i.e. if 1 ≤ q, q1, q2 ≤ ∞ and 1

q = (1− α) 1
q1

+ α 1
q2

, then

(4.6) ‖f‖1−α
Lq1,δ(Ω)

‖f‖αLq2,δ(Ω) . ‖f‖Lq,δ(Ω).

The proof of this fact relies on a wave packet decomposition of f , and essentially
interpolation with the Lp,δ norms, which in turn facilitates the proof of Lemma
4.16. Finally, using an induction on scales argument based on Lemma 4.16 as well
as parabolic rescaling (discussed in Section 4.1.3) Bourgain and Demeter are able
to prove `2 decoupling for the endpoint s. Some slight adjustments are needed
to prove the p > s range for Theorem 4.1 to be complete. In addition, relaxing
certain simplifying assumptions we have made, requires weights to be brought into
the equations, and a certain amount of care is needed to deal with them also.

5. The Nonlinear Schrödinger Equations: probabilistic methods

As we have seen in previous sections the local well posedness on tori in the
subcritical regime8 is in place once the Strichartz estimates (fully stated in Theorem
3.6) are available. However, in certain critical and more generally in all supercritical
regimes there is no known deterministic local well posedness theory. However, what

8This was defined on Rd from the scaling symmetry of the equation. Of course on tori such
scaling doesn’t make sense. It is however still indicative of what to expect in terms of well

posedness and so we transfer the the same terminology into the periodic setting.



THE NONLINEAR SCHRÖDINGER EQUATION ON TORI 25

is within reach is to study the local well posedness of p-NLS (2.18) on the square
(rational) torus Td from a probabilistic point of view; that is almost surely in the
sense of probability. Such approach was first used by Bourgain [7] in the mid
90’s to prove that the (Wick ordered) cubic nonlinear Schrödinger equation on T2

was almost sure locally well-posed in H−ε(T2). The latter was the first result in a
supercritical regime, since L2(T2) is critical for this equation (see also [8, 9]). Recent
work by A. Nahmod and G. Staffilani [57] established almost sure locally well-posed
in H1−α(T3) ( some α > 0, small) for the quintic nonlinear Schrödinger equation
on T3. This result is also in the supercritical regime since H1(T3) is critical for this
equation.

It is worth noting that while for the quintic NLS on T3, (deterministic) large
data well-posedness at the critical H1(T3) regularity is known ([46] for local and
[48] for global), to date, there is no known (deterministic) large data well posedness
results available for the cubic NLS equation on T2 at critical L2(T2) regularity.

We explain some of the ideas behind this probabilistic approach below.

5.1. Random data: a nondeterministic approach. We start by giving an
informal definition of almost sure well posedness. Given µ a probability measure
on the space of initial data X (eg. X = Hs) we say that the Cauchy initial
value problem (IVP) is almost sure locally well-posed if there exists Y ⊂ X, with
µ(Y ) = 1 and such that for any φ ∈ Y there exist T > 0 and a unique solution u
to the IVP with data φ which is in C([0, T ], X) with data φ that is also stable in
the appropriate topology.

The general idea is to consider the Cauchy initial data problem for rough but
randomized initial data. To understand why randomization (of the initial data)
helps let us recall the following classical result going back to Rademacher, Kol-
mogorov, Paley and Zygmund proving that random series on the torus enjoy better
Lp bounds than deterministic ones9. For example, consider Rademacher Series :

f(τ) :=

∞∑
m=0

bm rm(τ), τ ∈ [0, 1), bm ∈ C

where

rm(τ) := sign sin(2m+1π τ)

Note that if bm ∈ `2 the sum f(τ) converges a.e. The following is a classical result
which can be found in Zygmund’s book.

Theorem 5.1. If bm ∈ `2 then the sum f(τ) belongs to Lp([0, 1)) for all p ≥ 2.
More precisely,

(

∫ 1

0

|f |p dτ )1/p ∼ ‖ bm ‖`2

The key point is that although randomized initial data live in the same (rough)
space as the original (un-randomized) data, their linear flow enjoy almost surely
improved Lp bounds. These bounds in turn yield improved nonlinear estimates
almost surely in the analysis of the solution to the difference equation (obtained
after subtracting from u the linear evolution of randomized data). More precisely,

9Akin to the Kintchine inequalities used to prove the Littlewood-Paley inequalities.



26 ANDREA R. NAHMOD

the general scheme is as follows. Consider the Cauchy initial value problem,

(5.1)

{
iut + ∆u = N(u) x ∈ Td, t > 0
u(0, x) = φ(x),

and assume that φ ∈ Xs. Then if we denote by ak := φ̂(k), to solve (5.1) we
proceed as follows:

(1) Randomize φ: that is consider φω :=
∑
k∈Zd ak gk(ω) eix·k where {gk(ω)}k

are i.i.d. standard (complex/real) centered (Gaussian) random variables on
a probability space (Ω,F , P ).

(2) Let vω be the linear evolution with initial datum φω.
(3) Prove that vω satisfies ‘better estimates’ than φ almost surely.
(4) Show that w := u − vω solves a difference equation and obtain for w a

deterministic local well-posedness theory in C([0, T ];Xs′), s′ > s. That is,
prove that almost surely in ω the nonlinear part w is smoother than the
linear part vω.

Remark 5.2. The difference equation that w solves is not an equation at the subcrit-
ical/smoother level but rather it is a hybrid equation with a nonlinearity containing
a mixture of supercritical but random terms plus deterministic (smoother) ones.

Remark 5.3. For φ ∈ Hs, φω(x) defines almost surely in ω a function in Hs but not

in Hs′ for any s′ > s. A representative example arises by considering ak =
1

|k|α
then φ̂ω(k) = gk(ω)

|k|α gives rise almost surely in ω to a function in Hα− d2−ε but not

in Hα− d2 .

Randomization does not improve regularity in terms of derivatives. The improve-
ment is with respect to Lp spaces almost surely. Another way to rephrase this and
the classical Theorem 5.1 above is as follows: Let {gm(ω)} be a sequence of complex
i.i.d. zero mean Gaussian random variables on a probability space (Ω, A,P) and
(cm) ∈ `2. Define

F (ω) :=
∑
m

cmgm(ω).

Then, there exists C > 0 such that for every λ > 0 we have

P({ω : |F (ω)| > λ }) ≤ exp

(
−C λ2

‖F‖2L2(Ω)

)
.

As a consequence there exists C > 0 such that for every q ≥ 2 and every (cm)m ∈ `2,∥∥∥∥∥∑
m

cmgm(ω)

∥∥∥∥∥
Lq(Ω)

≤ C√q

(∑
m

c2m

) 1
2

.

More generally one uses the following where k would represent the number of
random terms in the multilinear estimate at hand.

Proposition 5.4 (Large Deviation-type). Let d ≥ 1 and c(m1, . . . ,mk) ∈ C. Let
{gm}1≤m≤d ∈ NC(0, 1) be complex centered L2 normalized independent Gaussians.
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For k ≥ 1 denote by A(k, d) := {(m1, . . . ,mk) ∈ {1, . . . , d}k, m1 ≤ · · · ≤ mk} and

Fk(ω) =
∑
A(k,d)

c(m1, . . . ,mk)gm1
(ω) . . . gmk(ω).

Then for p ≥ 2

‖Fk‖Lp(Ω) .
√
k + 1(p− 1)

k
2 ‖Fk‖L2(Ω).

As a consequence from Chebyshev’s inequality for every λ > 0,

P({ω : |Fk(ω)| > λ }) ≤ exp

 −C λ 2
k

‖F‖
2
k

L2(Ω)

.
This result follows from the hyper-contractivity property of the Ornstein-Uhlenbeck

semigroup by writing Gn = Hn+ iLn where {H1, . . . ,Hd, L1, . . . Ld} ∈ NR(0, 1) are
real centered independent Gaussian random variables with the same variance. (c.f.
[71, 68])

The key observation is that for given δ, r > 0, the large deviation result above
with -say -

λ = δ−
3
2 r‖Fk‖L2(Ω)

will allow us to replace |Fk(ω)|2 by ‖Fk‖2L2(Ω) on a set Ωδ ⊂ Ω with P(Ωcδ) < e−
1
δr .

Thus we use the independence and normalization of the random variables to reduce
matters to geometric considerations and integer lattice counting.

5.2. Almost sure local well posedness results for the periodic NLS. Bour-
gain’s almost sure local well posedness result for the (Wick ordered) cubic NLS on
the square/rational torus T2 reads as follows:

Theorem 5.5 (Bourgain [7]).{
iut + ∆u = |u|2u − (

∫
|u|2dx)u

u(0, x) = φ(x), x ∈ T2,

is almost sure locally well-posed below L2, that is for supercritical data φ ∈ H−ε(T2).

Remark 5.6. The typical data considered is φ(x) =
∑
k∈Z2

1
|k|e

ix·k ∈ H−ε(T2)

and φω(x) =
∑ gk(ω)

|k| eix·k ∈ H−ε(T2) defining almost surely in ω a function in

H−ε(T2).

In [57] we considered the energy-critical quintic nonlinear Schrödinger equation
on the squared/rational torus T3:

(5.2)

{
iut + ∆u = λu|u|4 x ∈ T3

u(0, x) = φ(x) ∈ Hγ(T3),

and established an almost sure local well posedness for random data in Hγ(T3), γ <
1; that is in the supercritical regime relative to scaling. The problem we considered
is the analogue of Bourgain’s Theorem 5.5 mentioned above. In our problem we
consider data φ ∈ H1−α−ε(T3) for any ε > 0 of the form

φ(x) =
∑
k∈Z3

1

〈k〉 52−α
eik·x
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whose randomization is

(5.3) φω(x) =
∑
k∈Z3

gk(ω)

〈k〉 52−α
eik·x

where (gk(ω))k is a sequence of complex i.i.d centered Gaussian random variables
on a probability space (Ω, A,P).

5.2.1. The difference equation. Heart of the matter. Assume u solves our IVP, then
we define w := u−S(t)φω, where S(t)φω is the linear evolution of the initial profile
φω. We study the IVP for w which solves a difference equation with nonlinearity,

Ñ(w) := |w + S(t)φω|4(w + S(t)φω),

and prove that w belongs to Hs for some s > 1. The heart of the matter is to prove
multilinear estimates for Ñ(w) to then be able to set up a contraction method to
obtain well-posedness. The randomness coming from (gk(ω)) will allow us to say
that in a certain space the nonlinearity increases its regularity so that it can hold
a bit more than one derivative.

For the quintic NLS equation (5.2) however, multilinear estimates for Ñ(w)
can be obtained only after having removed certain resonant terms involved in the
nonlinear part of the equation. In Bourgain’s case [7] the nonlinearity is cubic in 2D
and a Wick ordering of the Hamiltonian takes care of bad resonant terms. In our
case the nonlinearity is quintic in 3D and Wick ordering is not sufficient to remove
the bad resonant terms. Instead, a suitable gauge transformation is required [57].
Another difficulty relative to Bourgain’s case is that the arithmetic aspects of the
problem (integer lattice counting lemmata) in a 3D integer lattice are much less
favorable than for the 2D one.

Let us denote by X s([0, δ)) the solution space for the nonlinear part of the
solution. Our result reads as follows:

Theorem 5.7 (Nahmod-Staffilani [57]). Let 0 < α < 1
12 , s = s(α) > 1 and φω as

in (5.3) Then there exists 0 < δ0 � 1 and r = r(s, α) > 0 s.t. for any δ < δ0, there
exists Ωδ ∈ A with

P(Ωcδ) < e−
1
δr ,

and for each ω ∈ Ωδ there exists a unique solution u of the quintic NLS (5.2) in
the space

S(t)φω + X s([0, δ)),
with initial condition φω.

The results in [7] and [57] are for the square/rational torus Td. Despite the
fact that we now know the Strichartz estimates on irrational tori by the work of
Bourgain and Demeter, these were proved by very different techniques than those
in [6]. It is yet not clear how to use Bourgain and Demeter techniques to shed light
into, or in lieu of, the necessary integer lattice counting estimates in the irrational
setting. For the rational tori these estimates were obtained via analytic number
theory results as part of the proof of the (rational) Strichartz estimates established
in [6], and these themselves (beyond the Strichartz estimates per se) are a crucial
ingredient in proving the necessary estimates in Theorems 5.5 and 5.7. The good
news is that as proved by Bourgain and Demeter in [14] the Decoupling Theorem
seems amenable to counting solutions of Diophantine inequalities (e.g. Theorems
2.18 and 2.19 in [14]).
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String Theory and Math: Why This Marriage May Last

Mathematics and Dualities of Quantum Physics

Mina Aganagic

The relationship between mathematics and physics has a long history. Tradition-
ally, mathematics provides the language physicists use to describe Nature, while
physics brings mathematics to life: To discover the laws of mechanics, Newton
needed to develop calculus. The very idea of a precise physical law, and mathe-
matics to describe it were born together. To unify gravity and special relativity,
Einstein needed the language of Riemannian geometry. He used known mathemat-
ics to discover new physics. General relativity has been inspiring developments
in differential geometry ever since. Quantum physics impacted many branches of
mathematics, from geometry and topology to representation theory and analysis,
extending the pattern of beautiful and deep interactions between physics and math-
ematics throughout centuries.

String theory brings something new to the table: the phenomenon of duality.
Duality is the equivalence between two descriptions of the same quantum physics in
different classical terms. Ordinarily, we start with a classical system and quantize it,
treating quantum fluctuations as small. However, nature is intrinsically quantum.
One can obtain the same quantum system from two distinct classical starting points.
For every precise question in one description of the theory, there is a corresponding
question in the dual description. Duality is similar to a change of charts on a
manifold, except it also has the power to map large fluctuations in one description
to small fluctuations in the dual, and relate very hard mathematical problems in one
are of mathematics to more manageable ones in another. Dualities are pervasive in
string theory.

Understanding dualities requires extracting their mathematical predictions and
proving the huge set of mathematical conjectures that follow. The best under-
stood duality is mirror symmetry. But, mirror symmetry is but one example –
many striking dualities have been discovered in quantum field theory (QFT) and
many more in string theory over the last 20 years. Duality gives quantum physics,
and especially string theory, the power to unify disparate areas of mathematics in
surprising ways and provides a basis for a long lasting and profound relationship
between the physics and mathematics.

1. Knot theory and Physics

To illustrate these ideas, I will pick one particular area of mathematics, knot
theory. The central question of knot theory is: When are two knots (or links)
distinct? A knot is an oriented closed loop in R

3. A link consists of several disjoint,
possibly tangled knots. Two knots are considered equivalent, if they are homotopic
to each other. One approaches the question by constructing knot or link invariants,
which depend on the knot up to homotopy.

Knot theory was born out of 19th century physics. Gauss’ study of electromag-
netism resulted in the first link invariant: the Gauss linking number, which is an
invariant of a link with two knot components, K1 and K2. One picks a projection

1



2

of the link onto a plane and defines (twice) the linking number as the number of
crossings, counted with signs:

Figure 1. To define the sign of a crossing, we approach a crossing
along the bottom strand, and assign +1 if the top strand passes
from left to right, and −1 otherwise. In the figure, there are 6
crossings, each contributing +1, and so m = 3.

m(K1,K2) =
1

2

∑
crossings(K1,K2)

sign(crossing).(1)

Gauss discovered the linking number, and gave a beautiful integral formula for it:

m(K1,K2) =
1

2π

∮
K1

∮
K2

�x1 − �x2

|�x1 − �x2|3
· (d�x1 × d�x2).(2)

Maxwell discovered it independently, some time later, and noted that it is not a very
good link invariant – it is easy to find links that are non-trivial, yet the invariant
vanishes. Note that, while the first formula (1) for the linking number relies on a
choice of a projection, the second one (2) makes it manifest one is studying a link
in three dimensional space.

Strikingly, quantum physics enters knot theory. In ′84, Vaughan Jones found
a very good polynomial invariant of knots and links, by far the best at the time,
depending on one variable q. The Jones polynomial is a Laurent polynomial in q

1
2 ;

it can be computed in a simple way by describing how it changes as we reconnect
the strands and change the knot. One picks a planar projection of the knot, and
a neighborhood of a crossing. and defines the value of the Jones polynomial the

Figure 2. Skein relation for the Jones polynomial

skein relation it satisfies:

q−1JK+
− qJK− = (q

1
2 − q−

1
2 )JK0

.

together with specifying its value for the unknot. While there are examples of
distinct knots with the same JK(q), there is no known examples of non-trivial
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knots with JK(q) the same as for the unknot. Despite the ease of construction, the
Jones polynomial seems mysterious. Since one has to pick a projection to a plane
to define it, it is not obvious at the outset that one obtains an invariant of knots in
three dimensional space, rather this is something one must prove. Secondly, what
is the meaning of q?

Witten discovered that the Jones polynomial has its origin in quantum field the-
ory: Chern-Simons (CS) gauge theory in three dimensions. Like Yang-Mills theory,
Chern-Simons theory on a three-manifold M is written in terms of a connection

A = Aidx
i

associated with a gauge group G. The theory is topological from the outset – its
classical action is given in terms of Chern-Simons form on M ,

SCS =
1

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧A ∧A).

and hence it is independent of the choice of metric on M . The path integral of the
theory

Z(M) =

∫
DA exp

(
ikSCS

)
,

where one integrates over spaces of all connections on M and divides by the gauge
group is a topological invariant of M . We can introduce a knot K in the theory by
inserting a line observable along K,

OK(R) = TrR Pexp
(
i

∮
K

Aidx
i
)

in some representation R of the gauge group (P denotes path ordering of the ex-
ponential). This preserves topological invariance, so

Z(M ;K,R) =

∫
DA exp(ikSCS) OK(R)

is a topological invariant of the knot K in the three manifold M , which depends
only on G, R and k. (More precisely, Chern-Simons theory produces an invariant of
a framed three-manifold M , with framed knots. Framing is a choice of a homotopy
class of trivialization of the tangent bundle of M and K. The need to fix the
framing reflects an ambiguity in the phase the partition function [1].) The constant
k is required to be an integer, for the integrand to be invariant under ”large” gauge
transformations, those corresponding to non-trivial elements of π3(G).

Witten made use of the topological invariance of the theory to solve Chern-
Simons theory exactly on an arbitrary three manifold M with collection of knots,
by cutting the three manifold into pieces, solving the theory on pieces and gluing
back together. He showed that, taking M to be an S3, G = SU(2), and R, the
defining two dimensional representation of SU(2)

M = S3, G = SU(2), R = �,

a suitably normalized Chern-Simons partition function

〈OK〉 = Z(M ;K)/Z(M ;©)

equals the Jones polynomial
〈OK〉 = JK(q).

The normalization we chose corresponds to setting J©(q) = 1. Chern-Simons
theory gave a manifestly three dimensional formulation of the Jones polynomial.
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It leads immediately to a vast generalization of Jones’ knot invariant, by varying
the gauge group G, the representations, and considering knots in an arbitrary three
manifold M . Finally, the relation to Chern-Simons theory showed that the Jones
polynomial is a quantum invariant: it is a Laurent polynomial in

q = exp(iλ),

where λ = 2π/(k + 2) plays the role of �, the Planck constant, in Chern-Simons
theory.

Let me pause for a moment to sketch what one means by saying the theory is
solvable [1]. It is known that every three manifold M can be related to S2 × S1

by a repeated application of surgery. A surgery to produce from M a new three
manifold proceeds as follows. One picks an imaginary knot in M , cuts out its solid
torus neighborhood, and glues it back in up to an U ∈ SL(2, Z) transformation of
the boundary. If U is not identity one obtains a new manifold M ′. Quantum field
theory is a functor that associates to a closed three manifold M a complex number
Z(M), the value of the path integral on M , and to a manifold with a boundary
B a state in the vector space HB, the Hilbert space of the theory based on B.
Vector spaces associated to the same B, with opposite orientation, are canonically
dual. Gluing two manifolds over a common boundary B is the inner product of
the corresponding states. So surgery on three manifolds translates to a following
statement in QFT:

Z(M ′) = 〈0|M ′/K〉 = 〈0|U |M/K〉
Here 〈0| is the state corresponding to solid torus with no insertions, and |M ′/K〉
the state corresponding to M ′ with a neighborhood of the knot K cut out. An
arbitrary state in HT 2 can be obtained from a solid torus with a line observable
colored by a representation R running through it. If we denote the resulting state
〈R|, we can write

〈0|U =
∑
R

〈R|U0R.

The sum runs over a finite set of representations of G, depending on k. (The Hilbert
space HB of Chern-Simons theory with gauge group G at level k is the same as the
space of conformal blocks of Gk WZW model; the latter is finite dimensional for
any B.) This implies

Z(M ′) =
∑
R

〈R|M/K〉 U0R =
∑
R

Z(M ′,K,R) U0R

where Z(M ′,K,R) corresponds to the partition function on M ′ with an actual
knot K colored by representation R running through it. In this way, by repeated
surgeries, we can reduce any three manifold invariant to that of S2 × S1 with a
braid running along the S1. In turn, the later can be computed by

Z(S2 × S1, L,Ri) = TrHS2,Ri
BL,

which comes about by first cutting the S2 × S1 open into S2 × R, straightening
the braid out, and then recovering the original braid by finding a collection BL of
time-ordered diffeomeorphisms of a sphere S2 with marked points, which re-braid
the braid. Gluing the ends together corresponds to taking the trace of BL, acting
on the Hilbert space HS2,Ri

of the theory on S2 with marked points colored by
representations Ri determined by the braid.
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To solve the theory one needs only a finite set of data. The SL(2,Z) transfor-
mations of the torus are generated by a pair of matrices, S and T satisfying

S4 = 1, (ST )3 = S2,

representing the action of SL(2,Z) on HT 2 . Similarly, the brading matrix BL from
is obtained from a finite set of data, the braiding matrix B and fusion matrix F
on a four punctured sphere [2]. For Chern-Simons theory based on gauge group G,
at level k, the S, T , B and F are finite dimensional matrices acting on conformal
blocks Gk WZW 2d CFT. Reshetikhin and Turaev formalized this in terms of
modular tensor categories [2]. Thus, one can reduce finding knot and three manifold
invariants for arbitrary G and k and representations R to matrix multiplication, of
a small set of matrices.

2. Gromov-Witten Theory

Quantum physics enters modern mathematics in other places as well. Gromov-
Witten theory is an example. There, one studies quantum intersection theory of a
projective variety X (see [3] for a review, and [4] for a quick overview). Classical
intersection corresponds to picking classes

γ1, . . . , γn ∈ H∗(X)

with degrees
∑

i deg(γ
∨
i ) = 2d, where d = dimC(X) and computing their intersec-

tion numbers, counted with signs:

(3) 〈γ1, . . . , γn〉0,0 =

∫
X

γ∨
1 ∧ · · · ∧ γ∨

n ,

where γ∨
i ∈ H∗(X) denotes the Poincare dual of γi. Enumerative geometry turns

this into a deeper geometric question by counting intersections over algebraic curves,
insead over points: one would like to know how many algebraic curves of a give
degree β ∈ H2(X) and genus g meet γ1, . . . , γn at points. The corresponding
invariant

〈γ1, . . . , γn〉g,β .
can be defined by picking a curve Σ of genus g, with n marked points p1, . . . pn,
and considering intersection theory on the moduli space Mg,n(X, β) of holomorphic
maps

φ : Σ → X

of degree d. More precisely, as explained by Kontsevich, one needs consider moduli
space of stable maps Mg,n(X). This is a compactification ofMg,n(X, β) by allowing
the domain curve Σ to have ”ears”, which are additional S2 that bubble off, and
considering stable maps, which he defined. Imposing the incidence condition that
φ(pi) ⊂ γi is implemented by pulling back the Poincare dual class γ∨

i via the
evaluation map evi. The evaluation map maps a point in the moduli space of maps
to φ(pi):

(4) 〈γ1, . . . , γn〉g,d =

∫
[Mg,n(X,β)]

ev∗1(γ
∨
1 ) · · · ev∗n(γ∨

n ),

where the brackets [..] denote the (virtual) fundamental class. For genus zero,
degree zero curves, the definition agrees with the classical intersection numbers in
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(3). At genus zero, it is natural to combine the classical answer (3) and the higher
degree data into a generating function of quantum intersection numbers of X,

(5) 〈γ1, . . . , γn〉0,Q =
∑

β∈H2(X)

〈γ1, . . . , γn〉0,β Qβ .

For a map of degree β to X, Qβ is the exponent the area of the target curve,
Qβ = exp(−

∫
Σ
φ∗ω), where ω is the Kahler form on X. The leading term in the

series is the classical intersection, and the subleading terms are quantum corrections
to it.

2.1. Gromov-Witten Theory and Topological String Theory. Gromov-
Witten theory originates from string theory. It computes the amplitudes of a topo-
logical variant of superstring theory, called the A-model topological string.

In quantum field theory, to describe a particle propagating on a manifold X one
sums over all maps from graphs Γ to X, satisfying certain conditions, where one al-
lows moduli of graph to vary. In string theory, we replace point particles by strings,
the maps from graphs Γ by maps from Riemann surfaces Σ to X. In superstring
theory, one formulates this in terms of a path integral of a supersymmetric 2d QFT
on Σ, describing a string propagating on X. To get topological string theory one
modifies the supersymmetry generator Q to square to zero, Q2 = 0 on arbitrary Σ.
This turns the 2d QFT into a topological quantum field theory on Σ of cohomolog-
ical type, with differential Q. The world sheet path integral receives contributions
only from configurations that are annihilated by Q. If X is a Calabi-Yau manifold,
there are are two inequivalent ways to obtain a TQFT, leading to topological A-
and the B-model string theories. They correspond to two distinct generators QA

and QB , each satisfying Q2
A,B = 0. Topological A-type string exists for any Kahler

manifold X. Restricting to configurations annihilated by QA turns out to restrict
one to studying holomorphic maps to X only, leading to Gromov-Witten theory.
In the B-model, the maps annihilated by QB are the constant maps, resulting in a
simpler theory, depending on complex structure of X only.

Topological string theory was introduced by Witten in [6, 7], and developed by
many (see for e.g. [8, 9] and [3] for a review). The mathematical formulation of

Figure 3. In string theory one sums over all possible paths of a
string, leading to sum over surfaces.

Gromov-Witten theory is due to Kontsevich, Manin, Fukaya and many others [3].
The development of Gromov-Witten theory is an example of new mathematics that
is inspired by questions in physics.
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3. Duality

A quantum system is described by a collection of observables Oi, corresponding
to physical quantities in the theory, and expectation values of these observables,

(6) 〈O1 . . .On〉,

which physicists call amplitudes, or correlation functions. In Chern-Simons theory,
the observables ended up associated to knots in a three manifold M , colored by
representations R of the gauge group; in Gromov-Witten theory, the observables
were related to homology classes γi in X.

To find the correlation functions, one starts with a classical limit of the system,
and a quantization procedure. In Gromov-Witten theory of X, one would start
with a two dimensional topological theory on a genus g Riemann surface Σ, based
on maps to X [3]. The description we are giving assumes quantum fluctuations are
small. This opens up a possibility for the same physical system to have different
descriptions, with different starting classical points, yet which result in the same
set of quantum amplitudes. This expresses the fact that physics is intrinsically
quantum – only our descriptions of it rely on classical limits; and, the classical
limits need not be unique. The map between the two descriptions of the single
physical system, is called a duality.

3.1. Mirror symmetry. Perhaps the best known example of a duality is mirror
symmetry. Mirror symmetry relates topological A-model string on a Calabi-Yau X,
to topological B-type string theory on the mirror Calabi-Yau Y (The phenomenon
was discovered in [10], for a review see [3]). The underlying Calabi-Yau manifolds
are different, even topologically, as mirror symmetry reflects the hodge diamond:

hp,q(X) = hd−p,q(Y ),

yet, the A-model on X and the B-model on Y are the same quantum theory. Here
d is the complex dimension of X and Y . The amplitudes of the A-type topological
string are computed by Gromov-Witten theory. The B-type topological string is
reduces to a quantum field theory on Y which quantizes the variations of complex
structures; this is related to the fact that QB vanishes on constant maps. In
particular, the g = 0 amplitudes can be read off from classical geometry. The most
interesting case is d = 3, otherwise many amplitudes vanish on dimension grounds.
This can be seen from the formula for the (virtual) dimension of the moduli space of
stable maps in Gromov-Witten theory: dimCMg,n(X, β) = −β ·c1(TX)+(1−g)(d−
3) + n. In the Calabi-Yau case, per definition, c1(TX) vanishes in cohomology; for
d = 3, the moduli space has positive dimension for any g, d and n.

The first prediction of mirror symmetry is that the genus zero amplitudes on
X and Y agree. On X, computing this leads to quantum intersection numbers:
choosing γi, γj , γk to be three divisors in X, γ∨

i,j,k ∈ H2(X), one computes

〈γi, γj , γj〉0,Q =
∑

β∈H2(X)

〈γi, γj , γk〉0,β Qβ .

The β = 0 term in the sum is the classical intersection number of the three divisor
classes, and subsequent terms involve intersection theory on moduli space of stable
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maps, as we described above. In the mirror B-model on Y , the entire sum is
captured [11] by classical geometry of Y :

〈γi, γj , γj〉0,Q =

∫
Y

Ω ∧ ∂

∂ti

∂

∂tj

∂

∂tk
Ω.

This leads to a striking simplification. Here, Ω ∈ H(3,0)(Y ) is the unique holomor-
phic volume form on Y , whose existence is guaranteed by the Calabi-Yau condition.
The parameters ti are suitably chosen moduli of complex structures on Y .

The higher genus amplitudes in the B-model quantize the variations of complex
structure on Y . In complex dimension 3, the theory one gets is ”Kodaira-Spencer
theory of gravity”, formulated in [9]. The study of B-model in other dimensions
was initiated in [12].

3.2. Large N duality. A duality, discovered by Gopakumar and Vafa [14], relates
G = U(N) Chern-Simons theory at level k, on

M = S3,

with A-model topological string on

XP1 = O(−1)⊕O(−1) → P
1.

To complete the statement of the duality conjecture, we need to explain the map
of parameters, and the correspondence of observables. In defining Chern-Simons
theory on the S3, we get to chose two parameters, the integers N and k. The
Gromov-Witten theory on XP1 depends on the size of the P1:

t =

∫
P1

ω

and λ, the genus counting parameter. The latter enters if, instead of fixing the
genus of the Riemann surface g, as we did previously, we want to form a generating
function, by summing over g. The duality maps the parameters of Chern-Simons
theory to parameters of Gromov-Witten as follows

t =
2πN

k +N
, λ =

2π

k +N
.

The first prediction of the duality is the equivalence of partition functions before
we introduce knots in S3:

(7) ZCS = ZGW .

The Chern-Simons partition function on the S3 can be computed as the matrix
element of the S matrix (acting on SU(N)k WZW model on T 2)

ZCS(S
3) = 〈0|S|0〉 = S00.

This is an example of obtaining a three manifold, in this case M ′ = S3, from
M = S2 × S1 by surgery. We start by excising a neighborhood of an unknot in
S2 × S1 running around the S1 and at a point on S2, which splits M into two
solid tori. To recover S2 × S1 we simply glue the the solid tori back together, with
trivial identification U = 1; to obtain an S3 instead, we gluing them with an S
transformation of the T 2 boundary.
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Gromov-Witten partition function ZGW is defined as the generating function of
all maps to XP1 with no insertions:

ZGW (XP1) = exp(
∑
g=0

〈1〉g,Qλ2g−2) = exp(
∑

g=0,β∈H2(W )

〈1〉β,g Qβλ2g−2)

where

〈1〉β,g =

∫
[Mg,0(X,β)]

1.

Qβ = exp(−βt). In this case the degree of the curve is captured by a single
number, since XP1 has a single non-trivial 2-cycle class corresponding to the P1

itself. The Gromov-Witten partition function of X1
P
was computed by Faber and

Pandharipande in [15], by computing 〈1〉g,Q for every g. The Chern-Simons par-
tition function is known, since the S matrix is known explicitly. Gopakumar and
Vafa [14] showed that ZCS(S

3) equals ZGW (XP1), by explicit computation. It is
striking that the one sums up infinitely many Gromov-Witten invariants in a single
matrix element S00 in Chern-Simons theory.

The observables of Chern-Simons theory correspond to line operators associated
to knots K colored by irreducible representations R of G. Introducing a knots
on S3 corresponds on XP1 to allowing maps to have boundaries on a Lagrangian
submanifold LK in XP1 , where LK gets associated to a knot K in a precise way [16].
If we have several knots on S3, one will introduce a corresponding Lagrangian for
each knot. To explain how these Lagrangians are constructed [17], we must first
explain the origin of the duality.

3.2.1. Chern-Simons Theory as a String Theory. SU(N) Chern-Simons theory on
a three manifold M turns out to compute open topological A-model amplitudes on

XM = T ∗M,

the total space of the cotangent bundle on M . One takes the A-model topological
string on XM , but considers maps with boundaries on M :

φ : Σ → XM , ∂Σ → M

Allowing boundaries corresponds to considering open topological A-model. More
precisely, we formally need to take N copies of M in XM , and keep track of which
copy of M a given component of the boundary of Σ falls onto. As in the closed case,
only the holomorphic maps end up contributing to amplitudes. In fact, as there are
no finite holomorphic curves of any kind in XM = T ∗M , only degenerate maps con-
tribute – those where the image curves degenerate to graphs on M . Witten showed
that the graph expansion that results is the Feynman graph expansion of SU(N)
Chern-Simons theory. This means that Chern-Simons theory on M computes open
topological string amplitudes in this background, in the same way Gromov-Witten
theory onX computes closed A-model topological string amplitudes onX. A math-
ematical consequence of this is that G = SU(N) Chern-Simons partition function
on M must have the following expansion:

(8) ZCS(M) = exp(
∑
g,h=0

FCS
g,h N

hλ2g−2+h),

where FCS
g,h are numbers independent of N, k, which capture contributions of maps

from surfaces Σ that have genus g and h boundary components. For every boundary
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we have a choice of which copy of M it falls on, hence the power Nh, and λ
keeps track of the Euler characteristic of such as surface which equals 2 − 2g − h.
The numbers Fg,h (the perturbative Chern-Simons invariants) play a role in knot
theory [18, 19] – they are related to Vasilliev invariants and to the Kontsevich
integral.

Observables in Chern-Simons theory onM are associated to knots. Introducing a
knot K in U(N) Chern-Simons theory on M corresponds to, in topological A model
on XM , to introducing a Lagrangian LK which is a total space of the conormal
bundle to the knot K in T ∗M [16]. For every point P on the knot K in M , one
takes the tangent vector to the knot, and defines a rank two sub bundle of the
cotangent bundle, by taking all cotangent vectors that vanish on it. The conormal
condition implies that LK is Lagrangian; this in turn guarantees that the adding
boundaries preserves topological invariance of the A-model. Instead of fixing the
representation R coloring the knot, it is better to sum over representations, and
consider a formal combination of observables

(9) OK(U) =
∑
R

OK(R) TrRU

where U is an arbitrary unitary matrix of rank m, and the sum runs over arbi-
trary irreducible representations of U(N). The choice of rank m is the number of
copies of LK we take (similarly to the way we took N copies of M to get SU(N)
Chern-Simons theory). This observable probes representations R whose Young di-
agram has no more than m rows, since otherwise TrRU vanishes. Computing the
Chern-Simons partition function in presence of knot K with this observable in-
serted corresponds to studying A-model on XS3 where one allows boundaries on
LK . The eigenvalues (u1, . . . , um) of U keep track of which of the m copies of LK

the boundary component lands on: a single boundary on the i-th copy of LK gets
weighted by ui. The resulting partition function is a symmetric polynomial of the
u’s (using relation between Sm symmetric polynomials and characters of U(m) in
various representations) reflecting the Sm permutation symmetry of m copies of
LK . The open topological A-model is expected to have the same relation to open
Gromov-Witten theory, as the closed A-model has to closed Gromov-Witten theory
– where ”closed” refers to absence of boundaries of the domain curves Σ. Unlike the
closed Gromov-Witten theory, the foundations of the open Gromov-Witten theory
are not entirely in place yet, although progress is being made [20].

3.2.2. Large N Duality is a Geometric Transition. Gopakumar and Vafa conjec-
tured that large N duality has a geometric interpretation, as a transition that
shrinks the S3 and grows the P1 :

XS3 → X∗ → XP1 .

In the geometric transition, the S3 disappears and with it the boundaries of maps.
If the conjecture is true, it leads to a extraordinary insight: the transition changes
topology of the manifolds classically, becomes a change of description – the theories
on XS3 (in presence of boundaries on N copies of the S3) and on XP1 are the same.
The passage from one description to the other is perfectly smooth, like a change of
charts on a single manifold.
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When, N becomes large, it is natural to sum over h in (8): while λ still keeps
track of the Euler characteristic of the underlying Riemann surface, the explicit N
dependence disappears. This reflects the fact that both the boundaries and the S3

disapear in the large N dual description. The large N duality implies that

(10)
∑
h

FCS
g,h t

h = FGW
g (t), t = Nλ

which is what Gopakumar and Vafa proved in [14] by showing ZCS = ZGW . We
defined FGW

g (t) by

ZGW (XP1) = exp(
∑
g

FGW
g λ2g−2).

Figure 4. Large N duality is a geometric transition that shrinks
the S3 and grows an S2 of size t = Nλ.

The quantum knot invariants of K are computed by studying open topological A
model on XS3 where one allows boundaries on the Lagrangian LK . The geometric
interpretation of the large N duality as a transition between XS3 and XP1 helps us
identify what this corresponds on the dual side. The asymptotic geometry of XS3

and XP1 are the same – they both approach cones over S3 × S2 – they are just
filled in differently in the interior. If we first lift LK off the S3, it can go through
the geometric transition smoothly, to become a Lagrangian on XP1 , which we will
denote LK again. In particular, the topology of the Lagrangian is the same, R2×S1,
both before and after the transition. The construction was made precise in [17].
This leads to a generalization of the basic relation (10) as follows: one considers

Figure 5. The Lagrangian LK conormal to a knot K in S3 gets
pushed through the transition.

the partition function of Chern-Simons theory, with observable (9) inserted:

(11) ZCS(S
3,K, U) = 〈OK(U)〉
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This has expansion

(12)

ZCS(S
3,K, U) = exp(

∑
p

∑
g,h,k1,...kp=0

FCS
g,h,k1,...kp

Nhλ2g−2+h+p TrUk1 . . .TrUkp).

The large N duality conjecture states that one can sum over h to get

(13)

ZGW (XP1 , LK , U) = exp(
∑
p

∑
g,k1,...kp=0

FGW
g,k1,...kp

(t)λ2g−2+p TrUk1 . . .TrUkp),

in other words, that

(14)
∑
h

FCS
g,h,k1,...kp

th = FGW
g,k1,...kp

(t).

For simple knots and links – the unknot and the Hopf-link – one is able to formulate
a computation of the open topological A-model amplitude on X1

P
directly in open

Gromov-Witten theory [21, 22], and verify the conjecture. For more complicated
knots, one needs substantial progress in formulating the open Gromov-Witten side
to be able to test the predictions.

The large N duality relating SU(N) Chern-Simons theory to a closed string
theory is a part of a family of dualities, whose existence was conjectured by ’t
Hooft in ’70’s [23]. He showed that SU(N) gauge theories on general grounds
always have Feynman graph expansion of the form (8), with coefficients Fg,h that
depend on the theory, but not on N or λ. As a consequence, whenever N becomes
large, it is natural to re-sum the perturbative series. The result has a form of a
closed string Feynman graph expansion; the main question is to identify the dual
closed string theory. For Chern-Simons theory on S3, the closed string theory is
Gromov-Witten theory on XP1 . Whenever it exists, the closed string description
gets better and better the larger N is, hence the name.

3.3. Gromov-Witten/Donaldson-Thomas Correspondence. One is used to
studying Gromov-Witten theory by fixing the genus of the Riemann surface Σ.
However, Chern-Simons theory and largeN duality suggest it is far more economical
to consider all genera at once: Chern-Simons amplitudes are the simplest when
written in terms of q = exp(iλ), rather than λ. More generally, the fact that one
can sum up perturbation series in the gauge theory and solve the theory exactly (at
least in principle), is the one of the main reasons why large N duality plays such
an important role in physics: the gauge theory allows one to circumvent the usual,
genus by genus, formulation of closed string theory.

For Gromov-Witten theory on toric Calabi-Yau three-folds, the theory was in-
deed solved in this way. Using ideas that originated from large N dualities and
Chern-Simons theory, [24] conjectured a solution of Gromov-Witten theory on any
toric Calabi-Yau threefold by cutting up the Calabi-Yau into C

3 pieces, solving the
theory on C3 exactly, and giving a prescription for how to glue the solution on
pieces to a solution of the theory on X. The result is the topological vertex for-
malism for Gromov-Witten theory of toric Calabi-Yau manifolds, which expresses
the partition function, for a fixed degree β ∈ H2(X) in terms of rational functions
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of q [24]. The topological vertex conjecture was proven by Maulik, Oblomkov, Ok-
ounkov and Pandharipande in [22], who also generalized it away from Calabi-Yau
manifolds, to arbitrary toric three-folds.

The resulting invariants of toric three folds turn out to be directly captured by
a precise mathematical theory, Donaldson-Thomas theory of X. The theory was
introduced in [25], and Okounkov, Maulik, Pandharipande and others provided
its foundations [26, 27]. The fact that they are also related to Gromov-Witten
invariants of X, is the content of Gromov-Witten/Donaldson-Thomas Correspon-
dence [26,27]. Mathematically, Donaldson-Thomas theory also deals with counting
Riemann surfaces in X – but it does so in a very different way than Gromov-Witten
theory. Instead of describing parameterized curves in X in terms of holomorphic
maps φ : Σ → X, as one does in Gromov-Witten theory, in DT theory one de-
scribes curves by algebraic equations (see [4] for a review). Let X be a projective
variety, X ⊂ P

r for some r, and let zi be the homogenous coordinates of Pr. We
can describe the curve C in X as the locus of a set of homogenous polynomials

f(z) = 0

which vanish on C. The set of all such functions form an ideal I(C) inside C[z0, . . . zr].
We fix the class β ∈ H2(X), and χ, the holomorphic Euler characteristic of C
(χ = 1− g, were g is the arithmetic genus of C); and denote the moduli space of C
by I(X, β, χ). The moduli space is isomorphic to the Hilbert scheme of curves in X.
X being a threefold is special in this case too: the resulting simplifications allow
one to construct a (virtual) fundamental cycle in I(X, β, χ), denoted by [I(X, β, χ)].
The analogue of (4) is

(15) 〈γ1, . . . , γn〉β,χ =

∫
[I(X;β,χ)]

c2(γ1) · · · c2(γn)

To construct c2(γ) takes a special sheaf, the universal ideal sheaf J , J ∈ I(X)×X
which has the property that c2(J) is the locus in I(X) × X corresponding to the
set (ideal I, point of curve determined by I). c2(γ) is the locus of curves meeting
γ – this is the coefficient of γ∨ in the decomposition of c2(J) ∈ H2(I(X)×X). Let

ZDT (γ, q)β =
∑
χ

〈γ1, . . . , γn〉DT
β,χ qχ

The conjecture equates this, up to normalization, with

ZGW (γ, λ)β =
∑
χ

〈γ1, . . . , γn〉GW
β,g λ2g−2

(In this section we allow disconnected curves domain curves, as this is the natural
thing to do if we want to glue the theory on X from pieces. This is also why we do
not exponentiate the right hand sides.) More precisely,

(−λ)−vdimZ ′
GW (γ;λ)β = (−q)−vdim/2Z ′

DT (γ; q)β

where q = exp(iλ), and ′ denotes dividing by contributions of degree zero curves,
which we do on both sides. The Donaldson-Thomas partition function has a beauti-
ful statistical mechanics interpretation in terms of counting boxes stacked up in the
toric base of X. One sums over a set of box configurations obeying certain natural
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conditions and weighs the sum with q#boxes. Remarkably, the box-counting prob-
lem has a saddle point as q → 1, and λ → 0. In this limit, the cost of adding a box
is small and a limiting shape develops, that dominates the partition function ZDT

in the limit. Strikingly, the limiting shape encodes the geometry of the Calabi-Yau
Y mirror to X [28, 29].

The duality relating Gromov-Witten theory and Donaldson-Thomas theory has a
physical interpretation in M-theory, a quantum theory that underlies and unifies all
string theories [30]. Despite the simple appearance – relating counting curves in two
different ways – the duality that underlies the Gromov-Witten/Donaldson-Thomas
correspondence is far from trivial. In particular, Donaldson-Thomas theory leads
to many generalizations that go beyond Gromov-Witten theory. In particular,
Donaldson-Thomas theory explains the mysterious integrality of Gromov-Witten
invariants which was noticed very early on: while one can express Gromov-Witten
invariants in terms of a set of integers, this is not manifest from the definition of
the theory – Gromov-Witten theory naturally leads to counts of curves which are
rational numbers, not integers, since the underlying moduli spaces are not smooth.
One expects that relation of Donaldson-Thomas and Gromov-Witten theories is
much like the diagram in Fig.7 – there is a large parameter space of DT theory, the
tips of which have Gromov-Witten interpretation.

4. Combining dualities and knot theory

Duality is like a change of charts on a manifold; in particular, we can combine
dualities, and get even more mileage from them. For example, one can combine large
N duality and mirror symmetry. It turns out that this can shed fundamentally new
light on knot theory, but to explain this we need to back up to explain the origin
of mirror symmetry first.

4.1. Homological Mirror Symmetry and the SYZ Conjectures. We have
seen that Gromov-Witten theory computes quantum corrections to the classical
geometry of a Calabi-Yau X. Mirror symmetry sums up these corrections, in terms
of the geometry of the mirror Calabi-Yau Y . One can make this precise, and give a
(conjectural) description for how the classical geometry of Y emerges from quantum
geometry of X.

There are two mathematical conjectures that capture aspects of mirror symme-
try. Homological mirror symmetry conjecture of Kontsevich [31] relates categories
of allowed boundary conditions of topological A-model on X and topological B
model on Y . The former is captured by the Fukaya category DF (X) of (X,ω)
whose objects are Lagrangian submanifolds L ⊂ X equipped with a unitary flat
connection A:

ω|L = 0, F = 0,

where F = dA is the curvature of the flat connection A. Holomorphic maps φ :
σ → X are allowed to have boundaries on L ∈ X; the connection on L couples to
the boundaries. We have seen examples of this, when X = T ∗M , where we took
L = M or LK , the Lagrangian associated to the knot. The A connection on M
is the Chern-Simons connection. The morphisms in the category are associated to
strings with endpoints on pairs of Lagrangians. Kontsevich conjectured that on the
mirror Y there is an equivalent category, the bounded derived category of coherent
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sheaves, Db(Y ). Homological mirror symmetry conjecture was recently proven for
a famous example of the quintic Calabi-Yau manifold X and its mirror [32].

Among the objects in Db(Y ), a privileged role is played by the structure sheaf
Op, for p a point in Y . The moduli space of Op is Y itself. Mirror symmetry implies
that there must be an object in the Fukaya category of X with the same moduli
space. Strominger, Yau and Zaslow [33] showed that this fact alone implies that
the mirror pair of manifolds (X,Y ) must both be T 3 fibrations over a common base
B, with fibers that are (special) Lagrangian tori. Let X be a T 3 fibration,

T 3 → X → B

over a base B, and Lp be a T 3 fiber of X above a point in p ∈ B. The moduli space
of Lp is the base B itself. The full moduli space is a fibration over this, by moduli
of a flat U(1) bundle on T 3. The moduli of a U(1) bundle on T 3 is the dual torus

T̂ 3. More precisely, the resulting moduli can get corrected by ”disk instantons” –
maps from the disk to X with boundaries on L, and taking this into account results
in the mirror manifold:

T̂ 3 → Y → B.

This is the SYZ mirror symmetry conjecture. This gives a simple geometric picture
of mirror symmetry, explicitly constructing the mirror Y from the quantum moduli
space of objects on X. The duality that relates string theory on a circle S1 of radius
R to a string theory on a dual circle Ŝ1 of radius 1/R (or a product of circles), is a
very basic example of a duality in string theory, called T -duality. Here, we see that
mirror symmetry is simply T -duality, applied fiber-wise, over each point in B. For
a review of SYZ conjecture, see [34].

Figure 6. SYZ Mirror Symmetry

One can extend the SYZ conjecture away from compact Calabi-Yau manifolds.
WhenX is a toric Calabi-Yau manifold, it is non-compact, and then the T 3 fibration
is replaced by an T 2 ×R fibration over B = R3. The geometry of the toric Calabi-
Yau is, from this perspective, encoded in the geometry of a trivalent graph Γ in B
over which the T 2 fiber degenerates to S1. The role of Lp = T 3 in the compact
case is replaced by Lp = S1 ×R

2: the generic T 2 ×R fiber degenerates, over Γ to a
union of two copies of Lp, and we take one of them. The classical moduli space of
Lp is the graph Γ; the moduli of the flat connection on Lp is a circle fibered over
this, and one still has to take into account disk instanton corrections. The quantum
moduli space is a Riemann surface

(16) HΓ(x, p) = 0, x, p ∈ C
∗

The mirror Calabi-Yau is a hypersurface

(17) Y : uv −HΓ(x, p) = 0, u, v ∈ C
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Mirror to Lp is no longer a structure sheaf on Y , but instead a sheaf supported on
a curve, corresponding to choosing a point on the mirror Riemannn surface (16)
and picking either u = 0 or v = 0, depending on which component of the reducible
T 2 × R fiber we took.

Now, let us describe what this has to do with knot theory.

4.2. Large N Duality, SYZ Mirror Symmetry and Knot Theory. Large
N duality relates SU(N) Chern-Simons theory on S3 to Gromov-Witten theory
(or A-model topological string) on XP1 ; this is a non-compact, toric Calabi-Yau
manifold. We can obtain its mirror by application of SYZ mirror symmetry, by
finding the quantum moduli space of a Lagrangian in XP1 of topology of R2 × S1.

In fact, we get one such Lagrangian for every knot K in S3, and with it a distinct
mirror YK [35]. To construct a Lagrangian LK in XP1 of topology of R2 × S1

corresponding to a knot K in S3, one starts with a Lagrangian in XS3 = T ∗S3,
which is a total space of the conormal bundle to the knot K in the S3 base, lifts
it off the zero section (so that it does not intersect the singular locus when the S3

shrinks), and then pushes it through the transition that relates XS3 and XP1 . The
mirror depends only on the homotopy type of the knot:

(18) YK : uv −HK(x, p) = 0.

The quantum moduli space of LK in XP1 is the Riemann surface

(19) HK(x, p) = 0.

The pair x and p = pK(x) that lie on (19) are determined by summing holomorphic
disks with boundaries on LK . Large N duality (14) in turn relates this to a limit
of corresponding Chern-Simons amplitude:

log pK(x) = x
d

dx
limλ→0 λ 〈OK(x)〉

where one takes takes U = x to be a rank one matrix, and Q = exp(−t). For
example, taking the knot K to be the unknot, one gets the ”conventional” mirror
of XP1 , where

H©(x, p) = 1− x− p+Qxp.

But, taking K to be a trefoil knot instead, as an example, we get a different answer:

HK(x, p) = 1−Qp+ (p3 − p4 + 2p5 −Qp6 +Q2p7)x− (p9 − p10)x2.

Thus, the combination of two string dualities, large N duality and mirror sym-
metry, gives rise to a new knot invariant, the mirror Calabi-Yau manifold YK .
Chern-Simons theory produces an infinite list of knot invariants, differing by the
representations coloring the knot. To tell knots apart, it is necessary, though maybe
not sufficient, to compare the entries of this list. String duality suggests that one
can replace the entire list with a single invariant, the mirror Calabi-Yau manifold
YK , plus presumably a finite set of data needed to define the quantization in this
setting. Once the quantization procedure is defined, topological B-model string
is a functor, that associates to YK quantum invariants. Moreover, unlike knots,
Calabi-Yau manifolds are easy to tell apart, simply by comparing the polynomials
HK(x, p). Thus, instead of quantum physics playing the central role in constructing
good knot invariants, classical geometry of YK becomes the key.
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The Riemann surface HK(x, p) = 0 turns out to have an alternative mathemat-
ical formulation, as the augmentation variety of the knot [36]. This is one of the
knot invariants that arise from knot contact homology. Knot contact homology
is the open version, developed by Lenhard Ng [37], of the symplectic field theory
approach to counting holomorphic curves, pioneered by Eliashberg and Givental.
This provides a relation between two distinct approaches to counting holomorphic
curves, one coming from Gromov-Witten theory, and the other from symplectic
field theory.

5. M-theory and Homological knot invariants

There is a mysterious aspect of Chern-Simons knot invariants. From the def-
inition of the Jones polynomial JK(q), one can see that it is always a Laurent
polynomial in q1/2 with integer coefficients. Coefficients of the knot polynomials
are always integers, as if they are counting something. What are they counting?
Since q = eiλ, where λ is either the Chern-Simons or the topological string coupling
constant, the answer to this question cannot come from Chern-Simons theory or
topological string.

Khovanov made this structure manifest in a remarkable way. He constructed a
bi-graded homology theory, in such a way that the Jones polynomial arises as the
Euler characteristic

JK(q) =
∑
i,j

(−1)j qi/2 dimHi,j(K),

counting dimensions of knot homology groups,

Hi,j(K),

with signs. The Poincare polynomial of knot homology

PK(q, t) =
∑
i,j

tjqi/2dimHi,j(K)

has strictly more information about the knot, it is a better knot invariant. One ex-
pects that this should have generalizations to all Chern-Simons (Witten-Reshetikhin-
Turaev) knot and three manifold invariants, however knot homology theories are
extremely complicated. A unified approach to categorification of quantum group
invariants was very recently put forward in [39, 40]. As far as we are aware, a
fully combinatorial construction of knot homologies is available only for the Jones
polynomial itself.

Knot homologies have a physical interpretation within M-theory [41,42], due to
Gukov, Vafa and Schwarz, and later Witten. Knot homologies are Hilbert spaces of
states which preserve some supersymmetry in M-theory realization of Chern-Simons
theory. To obtain Chern-Simons theory from M-theory, one uses a similar geometry
as in topological string. Witten was able to reduce the M-theory construction to
computing cohomologies of spaces of solutions to a certain equation, the Kapustin-
Witten equation [42, 43], with boundary conditions depending on the knot type,
but math and physics are still comparably complex. It was shown in [44] that
the approach of [42] leads to the Jones polynomial, once one computes the Euler
characteristic. However, this is yet to lead to an explicit construction of knot
homologies and PK(q, t), even in examples.
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Physics does provide a powerful insight, if one restricts to three-manifolds and
knots respecting a certain circle symmetry. In the presence of the extra symmetry,
one can formulate, using M-theory, a three dimensional topological theory, the re-
fined Chern-Simons theory [45]. The partition function of the refined Chern-Simons
theory (conjecturally) computes a two-variable polynomial IK(q, t), a close cousin of
Poincare polynomial of homology theory categorifying Chern-Simons theory. For
three manifolds and knots admitting a (semi-free) circle action, knot homologies
corresponding to arbitrary ADE gauge groups and their representations, should
admit an additional grade:

Hi,j(K) = ⊕kHi,j,k(K).

This leads to an index, more refined than the Euler characteristic:

IK(q, t) =
∑
i,j,k

(−1)kqi/2tj+kdimHi,j,k(K),

akin to the Hirzebruch χy genus. Setting t = −1, both PK(q, t) and IK(q, t) reduce
to Chern-Simons invariants.

The refined Chern-Simons theory, which computes IK , is solvable explicitly. As
in Witten’s solution of the ”ordinary” Chern-Simons theory – by cutting the three-
manifold into pieces, solving the theory on pieces and gluing – one reduces the
problem of computing the knot and three manifold invariants to matrix multipli-
cation. In fact, since refined Chern-Simons theory exists for a restricted set of
three-manifolds and knots (those admitting a circle symmetry), a smaller set of in-
gredients enter – all one needs are the S and the T matrix providing a representation
of SL(2, Z) on the Hilbert space HT 2 . The S and T matrices now depend on both q
and t (they are given in Macdonald polynomials of the corresponding ADE group,
evaluated at a special point, generalizing the Schur polynomials in Chern-Simons
case.) This is immeasurably simpler than constructions of homologies themselves.
Even better, for simple representations of SU(N), at large N (corresponding to
categorification of the HOMFLY polynomial), the index IK and the Poincare poly-
nomial PK of knot homology theory agree. This gives strong evidence that refined
Chern-Simons theory indeed computes a new genus on knot homologies, and also
evidence that M-theory is indeed behind knot homologies.

It is striking that, even though the refined Chern-Simons theory has been for-
mulated only recently, many connections have already been made. It is known that
refined Chern-Simons invariants are related to q-deformation of conformal blocks of
W -algebras [46]; they have deep connections to the K-theory of the Hilbert scheme
of points on C2 [47–49]. The knot invariants arising from refined Chern-Simons
theory have a direct connection to representation theory of Double Affine Hecke
Algebras (DAHA) [49]. There is evidence that the invariants are also related to
Donaldson-Thomas invariants of toric three-folds constructed recently in [50].

6. Outlook

Despite the successes of string theory in solving difficult problems in mathemat-
ics, this is no doubt just a tip of the iceberg. All string theories are unified in a
single theory, M-theory. Genus by genus expansion, on which topological string
and superstring theories are based, exists only at the corners of M-theory param-
eter space. Dualities fill in the rest of the diagram. M-theory has already made
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an appearance in knot theory context, and in relating Gromov-Witten theory to
Donaldson-Thomas theory.

Figure 7. M-theory is believed to be the unique quantum theory
underlying all string theories. Different descriptions of it, which
emerge at the corners of the diagram, are related by dualities.

Mathematical consequences of dualities in M-theory are largely unexplored. Two
topological string theories, the A- and the B-model, with their many mathemat-
ical uses, capture supersymmetric M-theory partition functions in a very specific
background [51,52]. The plethora of mathematical predictions extracted from topo-
logical string and its dualities, such as mirror symmetry and large N duality we
described provide just a glimpse of the mathematical content of M-theory. Super-
symmetric partition functions of M-theory are generalizations of topological string,
yet only their exploration has only just begun, see [50].

To be sure, dualities do not require string theory. There are examples of duali-
ties in quantum gauge theories which can be stated without invoking string theory.
Even so, string theory often plays the crucial role in discovering the dualities, and
in studying them. Symplectic duality [56], which plays an important role in knot
theory and other areas of mathematics, is a duality of quantum gauge theories in
three dimensions. Even though today one can phrase it purely in gauge theory lan-
guage, the duality was discovered using string theory, in [53,54], and string theory
helps one understand the it better [55]. Seiberg-Witten (SW) theory, the celebrated
4d QFT with an important role for 4-manifold invariants [57,58], turns out to have
many dual descriptions [59]. In fact most of the theories in this class turn out not
have a conventional description, but need M-theory for their definition. To define
them, one considers the 6-dimensional the ”theory X” that arises as a part of M-
theory, compactified on a Riemann surface C. Only in certain corners of the moduli
of C the usual gauge theory description emerges. This observation leads to a pre-
cise mathematical prediction: the partition functions of this class of Seiberg-Witten
theories are the conformal blocks on C of a class of 2d conformal field theories with
W -algebra symmetry [60]. This unifies problems in QFT, geometry and represen-
tation theory. Some aspects of this correspondence were recently proven by [61].
The S-duality of 4d N = 4 Yang-Mills theory, related to electric-magnetic duality,
is believed to be the duality underlying the geometric Langlands program [62–65].
The Langlands program has, for the last 50 years, been one of the key unifying
themes in mathematics [66]. Once again, even though one can phrase S duality in
terms of gauge theory alone, much of our understanding of it comes from string
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theory: the 4d N = 4 Yang-Mills theory arises by compactifying the 6d theory X
on a torus, and S-duality simply comes from SL(2, Z) symmetry of the torus!

The interacting between the two fields has only really begun in ernest. It is
fairly certain that dualities in string theory and quantum field theory hold poten-
tial for many new breakthroughs in mathematics, by extracting their mathematical
predictions, and proving them. It should also lead to a deeper and sharper under-
standing of quantum physics. There is a good chance that eventually, our view of
mathematics, and quantum physics will have changed profoundly.
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FROM RATIONAL BILLIARDS TO DYNAMICS ON MODULI

SPACES

ALEX WRIGHT

Abstract. Consider a billiard ball bouncing around in a polygon. This sim-

ple system demonstrates remarkable complexity. For example, it is an open
problem to prove that there is a periodic billiard trajectory in every polygon.
However, if the angles are all rational multiples of π, a great deal is known.
This is because such a polygon can be “unfolded” to give a surface with extra
structure, and there is an SL(2,R) action on the space of all such surfaces.
We will explain the relevance of this action, and state a recent result of Eskin,
Mirzakhani, and Mohammadi, which gives that the closure of every SL(2,R)
orbit is a manifold. Applications and connections to other areas of mathemat-
ics will be mentioned.

1. Rational billiards

Consider a point bouncing around in a polygon. Away from the edges, the point
moves at unit speed. At the edges, the point bounces according to the usual rule
that angle of incidence equals angle of reflection. If the point hits a vertex, it stops
moving. The path of the point is called a billiard trajectory.

The study of billiard trajectories is a basic problem in dynamical systems and
arises naturally in physics. For example, consider two points of different masses
moving on a interval, making elastic collisions with each other and with the end-
points. This system is modeled by billiard trajectories in a right angled triangle
[MT02].

A rational polygon is a polygon all of whose angles are rational multiples of π.
Many mathematicians are especially interested in billiards in rational polygons for
the following three reasons.

First, without the rationality assumption, few tools are available, and not much
is known. For example, it is not even known if every triangle has a periodic billiard
trajectory. With the rationality assumption, quite a lot can be proven.

Second, even with the rationality assumption a wide range of interesting behavior
is possible, depending on the choice of polygon.

Third, the rationality assumption leads to surprising and beautiful connections
to algebraic geometry, Teichmüller theory, ergodic theory on homogenous spaces,
and other areas of mathematics.

The assumption of rationality first arose from the following simple thought ex-
periment. What if, instead of letting a billiard trajectory bounce off an edge of
a polygon, we instead allowed the trajectory to continue straight, into a reflected
copy of the polygon?

This leads us to define the “unfolding” of a polygon P as follows: Let G be the
subgroup of O(2) (linear isometries of R2) generated by the derivatives of reflections
in the sides of P . The group G is finite if and only the polygon P is rational (in
which case G is a dihedral group). For each g ∈ G, consider the polygon gP . These
polygons gP can be translated so that they are all disjoint in the plane. We identify

1
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Figure 1.1. A billiard trajectory in a polygon P . Instead of al-
lowing the trajectory to bounce off the edge of P , we may allow it
to consider straight into a reflected copy of P . A key observation
is that the trajectory that continues into the reflected copy of P is
in fact the reflection of the trajectory in P that bounces off of the
edge.

the edges in pairs in the following way. Suppose r is the derivative of the reflection
in one of the edges of hP . Then this edge of hP is identified with the corresponding
edge of rhP .

The unfolding construction is most easily understood through examples: see
Figures 1.2 and 1.3.

2. Translation surfaces

Unfoldings of rational polygons are special examples of translation surfaces.
There are several equivalent definitions of translation surface, the most elemen-
tary of which is a finite union of polygons in in the plane with edge identifications,
obeying certain rules, up to a certain equivalence relation. The rules are:

(1) The interiors of the polygons must be disjoint, and if two edges overlap
then they must coincide and be identified.

(2) Each edge is identified with exactly one other edge, which must be a trans-
lation of the first. The identification is via this translation.

(3) When an edge of one polygon is identified with an edge of a different poly-
gon, the polygons must be on “different sides” of the edge. For example, if
a pair of vertical edges are identified, one must be on the left of one of the
polygons, and the other must be on the right of the other polygon.

Two such families of polygons are considered to be equivalent if they can be related
via a string of the following “cut and paste” moves.

(1) A polygon can be translated.
(2) A polygon can be cut in two along a straight line, to give two adjacent

polygons.
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Figure 1.2. Left: The unit square unfolds to four squares, with
opposite edges identified (a flat torus). (By “opposite edges” in
these pictures, we mean pairs of boundary edges that are per-
pendicularly across from each other, so for example the top left
and top right vertical edges on the unfolding of the square are
opposite.) When two polygons are drawn with an adjacent edge,
by convention this means these two adjacent edges are identified.
Here each square has been decorated by the letter F, to illustrate
which squares are reflections of other squares. Right: Unfolding
the right angled triangle with smallest angle π/8 gives the regular
octagon with opposite sides identified.

Figure 1.3. A billiard trajectory on a rational polygon unfolds to
a straight line on the unfolding of the polygon. In this illustration,
we have unfolded a billiard trajectory on square (bottom left) to
a straight line on a flat torus. The square and its unfolding are
superimposed, the billiard trajectory is drawn with a solid line,
and the unfolded straight line is drawn with a dotted line.

(3) Two adjacent polygons that share an edge can be glued to form a single
polygon.

It is difficult to decide if two collections of polygons as above are equivalent (de-
scribe the same translation surface), because each collection of polygons is equiva-
lent to infinitely many others.
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Figure 2.1. In all five translation surfaces above, opposite edges
are identified. In the leftmost four, each adjacent pair of translation
surfaces differs by one of the above three moves, so all four of these
pictures give the same translation surface. The rightmost rotated
surface is not equal to the other four, since rotation is not one of
the three allowed moves.

The requirements above ensure that the union of polygons, modulo edge identifi-
cations, gives a closed surface. This surface has flat metric, given by the flat metric
on the plane, away from a finite number of singularities. The singularities arise
from the corners of the polygons. For example, in the regular 8-gon with opposite
sides identified (Figure 1.2, right), the edge identifications imply that the 8 corners
of the octagon are in fact all identified, and give a single point on the translation
surface. Around this point there is 6π total angle, since at each of the 8 corners of
the polygon there is 3

4π interior angle.
The singularities of the flat metric on a translation surface are always of a very

similar conical form, and the total angle around a singularity on a translation
surface is always an integral multiple of 2π. Note that, although the flat metric is
singular at these points, the underlying topological surface is not singular at any
point. (That is, at every single point, including the singularities of the flat metric,
the surface is locally homeomorphic to R2.)

Most translation surfaces do not arise from unfoldings of rational polygons. This
is because unfoldings of polygons are exceptionally symmetric, in that they are tiled
by isometric copies of the polygon.

Figure 2.2. Consider the translation surface described by the
above polygon, with opposite edges identified. This surface has
two singularities, each with total angle 4π. One singularity has
been labelled with a dot, and the other with an x. An Euler char-
acteristic calculation (V −E+F = 2−2g) show that it has genus 2.
The regular octagon with opposite sides identified also has genus
2, but it has only a single singularity, with total angle 6π.
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Translation surfaces satisfy a Gauss-Bonnet type theorem. If a translation sur-
face has s singularities with cone angles

(1 + k1)2π, (1 + k2)2π, . . . , (1 + ks)2π,

then the genus g is given by the formula 2g−2 =
∑

ki. (So, in a formal comparison
to the usual Gauss-Bonnet formula, one might say that each extra 2π of angle on
a translation surface counts for 1 unit of negative curvature.)

Consider now the question of how a given translation surface can be deformed
to give other translation surfaces. The polygons, up to translation, can be recorded
by their edge vectors in C (plus some finite amount of combinatorial data, for
example the cyclic order of edges around the polygons). Not all edge vectors need
be recorded, since some are determined by the rest. Changing the edge vectors
(subject to conditions like identified edges should remain parallel and of the same
length) gives a deformation of the translation surface.

Figure 2.3. Any octagon whose opposite edges are parallel can
be described by the 4-tuple of its edges vectors (v1, v2, v3, v4) ∈ C4.
(Not all choices of vi give valid octagons.) The coordinates
(v1, v2, v3, v4) are local coordinates for space of deformations of
the regular octagon translation surface. These coordinates are not
canonical: other equally good coordinates can be obtained by cut-
ting up the octagon and keeping track of different edge vectors.

To formalize this observation, we define moduli spaces of translation surfaces.
Given an unordered collection k1, . . . , ks of positive integers whose sum is 2g − 2,
the stratum H(k1, . . . , ks) is defined to be the set of all translation surfaces with
s singularities, of cone angles (1 + ki)2π, i = 1, . . . , s. The genus of these surfaces
must be g by the Gauss-Bonnet formula above. We have

Lemma 2.1. Each stratum is a complex orbifold of dimension n = 2g + s − 1.
Each stratum has a finite cover that is a manifold and has an atlas of charts to Cn

with transition functions in GL(n,Z).

The coordinate charts are called period coordinates. They consist of complex
edge vectors of polygons. That strata are orbifolds instead of manifolds is a technical
point that should be ignored by non-experts.

Strata are not always connected, but their connected components have been clas-
sified by Kontsevich and Zorich [ZK75]. There are always at most three connected
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Figure 2.4. These two polygons (with opposite sides identified)
both describe the same translation surface. Keeping track of the
edge vectors in either polygon gives equally good local coordinates
for the space of nearby translation surfaces. The two local co-
ordinates thus obtained are related by the linear transformation
(v1, v2) �→ (v1, v1 + v2).

components. The topology and birational geometry of strata is currently not well
understood. Kontsevich has conjectured that strata are K(π, 1) spaces.

3. GL(2,R) action and renormalization

There is a GL(2,R) action on each stratum, obtained by acting linearly on
polygons and keeping the same identification.

Figure 3.1. An example of the GL(2,R) action. In both pictures,
opposite edges are identified.

Note that if two edges or polygons differ by translation by a vector v, then their
images under the linear map g ∈ GL(2,R) must differ by translation by gv.

Example 3.1. The stabilizer of the standard flat torus (a unit square with opposite
sides identified) is GL(2,Z). For example, Figure 2.1 (near the beginning of the

previous section) proves that

(
1 1
0 1

)
is in the stabilizer. This example illustrates

the complexity of the GL(2,R) action: applying a large matrix (say of determinant
1) will yield a collection of very long and thin polygons, but it is hard to know
when this collection of polygons is equivalent to a more reasonable one.

Translation surfaces have a well defined area, given by the sum of the areas of the
polygons. The action of SL(2, R) of determinant 1 matrices in GL(2,R) preserves
the locus of unit area translation surfaces. This locus is not compact, because
the polygons can have edges of length going to 0, even while the total area stays
constant.
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Define

gt =

(
et 0
0 e−t

)
∈ SL(2,R).

Suppose one has a vertical line segment of length L on a translation surface S. For
example, if S is the unfolding of a rational polygon, the vertical line might be the
unfolding of a billiard trajectory. If one is interested in a line that is not vertical,
one can rotate the whole picture (giving a different translation surface) so that it
becomes vertical.

This setup is given by a picture: a collection of polygons describing S, with many
vertical line segments that match up under the edge identifications and hence give
one line segment on the translation surface. Applying gt to this picture results in a
translation surface gt(S) with a vertical segment of length e−tL. We are interested
in doing this when L is very large, and t = log(L) is chosen so the new vertical
segment will have length 1. Indeed the point is to do this over and over as L gets
longer, giving a family of surfaces gt(S).

This idea of taking longer and longer trajectories (here a vertical line on the
translation surface) and replacing them with a bounded trajectories on new objects
is called renormalization, and is a powerful and frequently used tool in the study
of dynamical systems. The typical strategy is to transfer some understanding of
the sequence of renormalized objects into results on the behavior of the original
system. In this case, showing the the geometry of gt(S) does not degenerate allows
good understanding of vertical lines on S.

Theorem 3.2 (Masur’s criterion [Mas92]). Suppose {gt(S) : t ≥ 0} does not
diverge to infinity in the stratum. Then every infinite vertical line on S is equidis-
tributed on S.

“Equidistributed” is a technical term that indicates that the vertical lines be-
comes dense in S without favoring one part of S over another. Using this, Kerckhoff-
Masur-Smillie [KMS86] were able to show

Theorem 3.3. In every translation surface, for almost every slope, every infinite
line of this slope is equidistributed.

There are some surfaces where much more is true. For example, on the unit
square with opposite sides identified, any line of rational slope is periodic, and every
line of irrational slope is equidistributed. Genus one translation surfaces are quite
special, because GL(2,R) acts transitively on the space of genus one translation
surfaces. In particular, the GL(2,R) orbit of any genus one translation surface is
closed, in a trivial way, since the orbit is the entire moduli space.

Theorem 3.4 (Veech Dichotomy). If S is a translation surface with closed GL(2,R)
orbit, then for all but countably many slopes, every line with that slope is equidis-
tributed. Moreover every line with slope contained in the countable set is periodic.

Veech also showed that the regular 2n-gon with opposite sides identified has
closed orbit. However, the property of having a closed orbit is extremely special.

Theorem 3.5 (Masur [Mas82], Veech [Vee82]). The GL(2,R) orbit of almost
every translation surface is dense in a connected component of a stratum.
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Figure 3.2. An example of a periodic line on the regular octagon
with opposite sides identified.

For the experts, we remark that in fact Masur and Veech showed the stronger
statement that the gt action on the loci of unit area surfaces in a connected compo-
nent of a stratum is ergodic, with respect to a Lebesgue class probability measure
called the Masur-Veech measure.

This result of Masur and Veech is not satisfactory from the point of view of
billiards in rational polygons, since the set of translation surfaces that are unfoldings
of polygons is measure 0.

4. Eskin-Mirzakhani-Mohammadi’s breakthrough

In light of the idea of renormalization, it is important to understand the SL(2,R)
orbit closures of all translation surfaces. It is equivalent to understand the GL(2,R)
orbit closures, since the difference is just scaling of the area.

In fact it would also be helpful to know more specific information, such as the
gt orbit closures. However, gt orbit closures may be fractal objects. While this
behavior might at first seem pathological, it is in fact quite typical in dynamical
systems. Generally speaking, given a group action it is hugely unrealistic to ask
for any understanding of every single orbit, since these may typically be arbitrarily
complicated. Thus the following result is quite amazing.

Theorem 4.1 (Eskin-Mirzakhani-Mohammadi [EM, EMM]). The
GL(2,R) orbit closure of a translation surface is always a manifold. Moreover, the
manifolds that occur are locally defined by linear equations in period coordinates.
These linear equations have real coefficients and zero constant term.

Note that although the local period coordinates are not canonical, if a manifold
is cut out by linear equations in one choice of period coordinates, it must also be
in any other overlapping choice of period coordinates, because the transition map
between these two coordinates is a matrix in GL(n,Z).

Previously orbit closures had been classified in genus 2 by McMullen. (One
open problem remains in genus two, which is the classification of SL(2,Z) or-
bits of square-tiled surfaces in H(1, 1).) The techniques of Eskin-Mirzakhani-
Mohammadi’s, unlike those of McMullen, are rather abstract, and have surpris-
ingly little to do with translations surfaces. Thus the work of Eskin-Mirzakhani-
Mohammadi does not give any information about how many or what sort of sub-
manifolds arise as orbit closures, except for what is given in the theorem statement.
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5. Applications of Eskin-Mirzakhani-Mohammadi’s Theorem

There are many applications of Theorem 4.1 to translation surfaces, rational
billiards, and other related dynamics systems, for example interval exchange trans-
formations. Here we list just a few of the most easily understood applications.

Generalized diagonals in rational polygons. Let P be a rational polygon. A
generalized diagonal is a billiard trajectory that begins and ends at a corner of P .
If P is a square, an example is the diagonal of P . Let NP (L) be the number of
generalized diagonals in P of length at most L. It is a folklore conjecture that

lim
L→∞

NP (L)

L2

exists for every P and is non-zero. Previously, Masur had shown that the limsup
and liminf are non-zero and finite. Eskin-Mirzakhani-Mohammadi give the best
result to date: with some additional Cesaro type averaging, the conjecture is true,
and furthermore only countably many real numbers may occur as such a limit.

The illumination problem. Given a polygon P and two points x and y, say
that y is illuminated by x if there is a billiard trajectory going from y to x. This
terminology is motivated by thinking of P as a polygonal room whose walls are
mirrors, and thinking of a candle placed at x. The light rays travel along billiard
trajectories. We emphasize that the polygon need not be convex.

Lelièver, Monteil and Weiss have shown that if P is a rational polygon, for every
x there are at most finitely many y not illuminated by x [LMW].

The Wind Tree Model. This model arose from physics, and is sometimes called
the Ehrenfest model. Consider the plane with periodically shaped rectangular bar-
riers (“trees”). Consider a particle (of “wind”) which moves at unit speed and
collides elastically with the barriers.

Delecroix-Hubert-Lelièvre have determined the divergence rate of the particle for
all choices of size of the rectangular barriers [DHL]. Without Eskin-Mirzakhani-
Mohammadi (and work of Eskin-Chaika [EC]), the best that could proven was the
existence of a unspecified full measure set of choices of sizes for which such a result
holds.

There are many other examples along these lines, where previously results were
known to hold for almost all examples without being known to hold in any particular
example, and now with Eskin-Mirzakhani-Mohammadi can be upgraded to hold in
all cases.

Applications of Eskin-Mirzakhani’s proof. The ideas that Eskin-Mirzakhani
developed have applications beyond moduli spaces of translation surfaces. They are
currently being used by Rodriguez-Hertz and Brown to study random diffeomor-
phisms on surfaces [BRH] and the Zimmer program (lattice actions on manifolds),
and are also expected to have applications in ergodic theory on homogeneous spaces.

6. Context from Homogeneous spaces

The primary motivation for Theorem 4.1 is the following theorem.

Theorem 6.1 (Ratner’s Theorem). Let G be a Lie group, and let Γ ⊂ G be a lattice.
Let H ⊂ G be a subgroup generated by unipotent one parameter groups. Then every
H orbit closure in G/Γ is a manifold, and moreover is a sub-homogeneous space.
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Figure 5.1. An example of a trajectory in the Wind Tree Model.
Figure courtesy of Vincent Delecroix.

For example, the theorem applies if G = SL(3,R), Γ = SL(3,Z), and H = {ht :
t ∈ R}, where

ht =

⎛
⎝ 1 t 0

0 1 0
0 0 1

⎞
⎠ or ht =

⎛
⎝ 1 t t2/2

0 1 t
0 0 1

⎞
⎠ .

Ratner’s work confirmed conjectures of Raghunathan. Parts of these conjectures
had previously been verified in some special cases by Dani and Margulis, for example
for the second choice of ht above [DM90].

The basic idea behind such proofs is the strategy of additional invariance. Given
a closed H-invariant set, one starts with two points x and y very close together,
and applies ht until the points drift apart. The direction of drift is controlled by
another one parameter subgroup, and one tries to show that the closed H set is in
fact invariant under the one parameter group that gives the direction of drift. One
continues this argument inductively, each time producing another one parameter
group the set is invariant under, until one shows that the closed H invariant set is
in fact invariant under a larger group L, and is contained in (and hence equal to)
a single L orbit. This gives the set in question is homogenous, and in particular a
manifold.

Of course, this is in fact very difficult, and complete proofs of Ratner’s Theorem
are very long and technical. For one thing, as is the case in the work of Eskin-
Mirzakhani, it is in fact too difficult to work directly with closed invariant sets, as
we have just suggested. Rather, one first must classify invariant measures. Thus
the argument takes place in the realm of ergodic theory, which exactly studies group
actions on spaces with invariant measures. See [Mor05,Ein06] for an introduction.

The fundamental requirement of the proof is that orbits of nearby points drift
apart slowly and in a controlled way. This is intimately tied to the fact that
unipotent one parameter groups are polynomial, as can be seen in the ht above.
Contrast this to the one parameter group

(
et 0
0 e−t

)
,

whose orbit closures may be fractal sets.
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One might hope to study GL(2,R) orbit closures of translation surfaces using
the action of

ut =

(
1 t
0 1

)

on strata, in analogy to the proof of Ratner’s Theorem. Unfortunately, the dy-
namics of the ut action on strata is currently much too poorly understood for this.
The best known result on the ut action on strata is the crude, but still very useful,
quantitative recurrence result of Minsky-Weiss [MW02]. In particular, this result
says that ut orbits do not diverge.

7. The structure of the proof

The proof of Theorem 4.1 builds on many ideas in homogeneous space dynamics,
including the work of Benoist-Quint [BQ09], and the high and low entropy methods
of Einsiedler-Lindenstrauss-Katok [EKL06] (see also the beautiful introduction for
a general audience by Venkatesh [Ven08]). Lindenstrauss won the Fields medal
in 2010 partially for the development of the low entropy method, and Benoist and
Quint won the Clay prize for their work.

Entropy measures the unpredictability of a system that evolves over time.
Define P to be the upper triangular subgroup of SL(2,R). The proof of Theorem

4.1 proceeds in two main stages.
In the first, Eskin-Mirzakhani show that any ergodic P invariant measure is in

fact a Lebesgue class measure on a manifold cut out by linear equations, and must
be SL(2,R) invariant. (An ergodic measure is an invariant measure which is not
the average of two other invariant measures in a nontrivial way. Thus the ergodic
measures are the building blocks for all other invariant measures.)

In the second stage, Eskin-Mirzakhani-Mohammadi use this to prove Theorem
4.1, by constructing a P -invariant measure on every P -orbit closure. By contrast, it
is not possible to directly construct an SL(2,R) invariant measure on each SL(2,R)
orbit closure, and this is why the use of P is crucial. The algebraic structure of P
makes it possible to average over larger and larger subsets of P and thus produce P
invariant measures, whereas the more complicated algebraic structure of SL(2,R)
does not allow this. (The relevant property is that P is amenable, while SL(2,R)
is not.)

In the paper of Eskin-Mirzakhani, which caries out the first stage, the most
difficult part is in fact to show P -invariant measures are SL(2,R) invariant. To
do this, extensive entropy arguments are used, partially inspired by the Margulis-
Tomanov proof of Ratner’s Theorem [MT94] and to a lesser extent the high and low
entropy methods. This part is the technical heart of the argument, and takes almost
100 pages of delicate arguments. One of the morals is that entropy arguments are
surprisingly effective in this context, and can be made to work without the use of
an ergodic theorem.

Once Eskin-Mirzakhani show P -invariant measures are SL(2,R) invariant, they
build upon ideas of Benoist-Quint to conclude the invariant measure result.

All together, the proof is remarkably abstract. The only facts used about trans-
lation surfaces are formulas for Lyapunov exponents due to Forni [For02]. (The
Lyapunov exponents of a smooth dynamical system, in this case the action of gt
on a stratum, measure the rates of expansion and contraction in different direc-
tions.) Forni was awarded the Brin prize partially for these formulas, which are
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of a remarkably analytic nature and arose from an insight of Kontsevich. Eskin-
Mirzakhani also make use of a result of Filip [Filb] to handle a certain volume
normalization issue at the end of the proof.

Results which classify invariant measures are rare gems. The arguments are
abstract, and their purpose is to rule out nonexistent objects, and thus they cannot
be guided by examples. To obtain a truly new measure classification result, one
must find truly new ideas from among the sea of ideas which don’t quite work,
and the devil is in the details. This is very much the case in the paper of Eskin-
Mirzakhani.

8. Relation to Teichmüller theory and algebraic geometry

Every translation surface has, in particular, the structure of a Riemann surface
X. The extra structure is determined by additionally specifying an Abelian differ-
ential (a.k.a. holomorphic one form, or global section of the canonical bundle of X).
The holomorphic one form is dz on the polygons, where z is the usual coordinate
on the plane C � R

2. It has zeros at the singularities of the flat metric.
Every translation surface can be given as a pair (X,ω). For example, the trans-

lation surface given by a square with unit area and opposite edges identified is
(C/Z[i], dz).

There is a projection map (X,ω) �→ X from a stratum of translation surfaces of
genus g to the moduli space Mg of Riemann surfaces of genus g. Under this map, gt
orbits of translation surfaces project to geodesics for the Teichmüller metric. But it
is important to note that there is no GL(2,R) or gt action on Mg itself, only on (the
strata) of the bundle of Abelian differentials over Mg. This is somewhat analogous
to the fact that, given a Riemannian manifold, the geodesic flow is defined on the
tangent bundle, and there is no naturally related flow on the manifold itself.

The map (X,ω) �→ X has fibers of real dimension two (given by multiplying ω
by any complex number), and thus the projection of a four dimensional GL(2,R)
orbit to Mg is a two real dimensional object. It turns out that this object is an
isometrically immersed copy of the upper half plane in C with its hyperbolic metric:
such objects are called complex geodesics or Teichmüller disks. Note that Royden
showed that the Teichmüller metric is equal to the Kobayashi metric on Mg.

McMullen showed that every GL(2,R) orbit closure in genus 2 is either a closed
orbit, or an eigenform locus, or a stratum [McM03]. In particular, every GL(2,R)
orbit closure of genus 2 translation surfaces is a quasi-projective variety. The cor-
responding statement for M2 is that every complex geodesic is either closed, or
dense in a Hilbert modular surface, or dense in M2.

The appearance of algebraic geometry in the study of orbit closures was unex-
pected, and arose in very different ways from work of McMullen and Kontsevich.
A recent success in this direction is the following, which builds upon Theorem 4.1
and work of Möller [Möl06b,Möl06a].

Theorem 8.1 (Filip [Fila]). In every genus, every GL(2,R) orbit closure is an
algebraic variety that parameterizes pairs (X,ω) with special algebro-geometric prop-
erties, such as Jac(X) having real multiplication.

Despite this theorem and Theorem 4.1, it is at present a major problem to classify
GL(2,R) orbit closures. Progress is ongoing, see for example [Wrib,Wria,NW,
ANW].
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9. What to read next

We recommend the two page “What is . . . measure rigidity” article by Einseidler
[Ein09], as well as the eight page note “The mathematical work of Maryam Mirza-
khani” by McMullen [McM]. There are a large number of surveys on translation
surfaces, for example [MT02,Zor06] and the author’s recent introduction [Wric].
Alex Eskin has a short mini-course on his paper with Mirzakhani, and notes are
available on his website [Esk].

Acknowledgements. We are very grateful to Yiwei She, Max Engelstein, Weston
Ungemach, Aaron Pollack, and Amir Mohammadi for making helpful comments
and suggestions, which lead to significant improvements in this note.
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