COHOMOLOGY AND THE CLASSIFICATION OF LIFTINGS

JAMES C. BECKER

1. **Introduction.** In this paper we will be concerned with the problem of homotopy classification of liftings of a map. Suppose that $\beta = (E, B, p)$ is a locally trivial fibre space with fibre F. Then, for $f: X \to B$, there is the set $L(X, f, \beta)$ of homotopy classes of liftings of f. Assuming that $L(X, f, \beta)$ is not empty and that X is (2n-1)-coconnected and F is (n-1)-connected, we will construct, for $\alpha \in L(X, f, \beta)$, an abelian group structure on $L(X, f, \beta)$ such that α is the zero element. Denote the group by $(L(X, f, \beta), \alpha)$ and the sum of two elements γ_1 and γ_2 by $\gamma_1 +_{\alpha} \gamma_2$.

Given α_0 , $\alpha_1 \in L(X, f, \beta)$, the different group structures on $L(X, f, \beta)$ determined by α_0 and α_1 are isomorphic in the best possible way. The translation $(L(X, f, \beta), \alpha_1) \rightarrow (L(X, f, \beta), \alpha_0)$ which sends γ to $\gamma + \alpha_1 \alpha_0$ is an isomorphism.

A weak form of the classification problem is then to determine the structure of the group $(L(X, f, \beta), \alpha)$.

In §2 we define a *B*-cohomology theory where *B* is a fixed space. These are generalizations of cohomology with local coefficients, and if *B* is a point, they are generalized cohomology theories as in [9]. For each CW-pair (X, A) and integer n, $h^n(X, A)$ is a local system of abelian groups over the mapping space $\mathcal{M}(X, B)$. The group assigned to $f \in \mathcal{M}(X, B)$ is denoted by $h^n(X, A, f)$.

In §4 we construct the spectral sequence for a fibre map $\pi: Y \to X$. This is analogous to Dold's generalization of the Serre spectral sequence [2].

In §§5 and 6 we define a *B*-spectrum and show how to construct a *B*-cohomology theory from a *B*-spectrum. We then associate to a fibre space $\beta = (E, B, p)$ a *B*-spectrum $\mathcal{S}(\beta)$ in a natural way and define, for $\alpha \in L(X, f, \beta)$, a correspondence

$$\psi_{\alpha}: L(X, f, \beta) \to h^{0}(X, f, \mathcal{S}(\beta)),$$

which, in the stable range, i.e., when X is (2n-1)-coconnected and F is (n-1)-connected, is one-one and onto. The group structure on $L(X, f, \beta)$ having α as zero element is obtained by pulling back the group structure on $h^0(X, f, \mathcal{S}(\beta))$ via ψ_{α} . Then (using the terminology of §7) we show that $L(X, f, \beta)$ has a natural affine group structure.

Suppose that G is a finite group which acts on X and Y and is free on X. Let E(X, Y) denote the set of homotopy classes of equivariant maps from X to Y. Using a construction of Heller [3] and our previous results, we define an affine

group structure on E(X, Y), provided E(X, Y) is not empty, X/G is (2n-1)-coconnected and Y is (n-1)-connected. Our main result on the structure of $(E(X, Y), \alpha)$ is Theorem (8.13).

In §§9 and 10 we make use of recent results of Hirsch and Haefliger [4], [5] which reduce the problem of classifying immersions (embeddings) of a closed n-dimensional C^{∞} -manifold M in euclidean space E^{n+k} to a problem of classifying equivariant maps. These allow us to define a natural affine group structure on the set $IM^{n+k}(M)(EM^{n+k}(M))$ of regular homotopy classes of immersions (isotopy classes of embeddings) of M in E^{n+k} provided the set is not empty and 2k > n+1 (2k > n+3). Using Theorem (8.13) we compute the rank and p-primary component, p-odd, of these groups.

In §11 we study a question raised by Lashof and Smale [7] as to what classes in $H^k(M)$ are realizable as normal classes of an immersion of M into E^{n+k} .

2. Cohomology theories. Given a space X, let \overline{X} denote the category whose objects are points of X and such that the set of maps $M(x_0, x_1)$, $x_0, x_1 \in X$, consists of equivalence classes of paths from x_1 to x_0 , the equivalence relation being homotopy relative to the end points. A continuous map $f: X_1 \to X_2$ defines a covariant functor $\overline{f}: \overline{X}_1 \to \overline{X}_2$ in the obvious way.

Let \mathscr{A} denote the category of abelian groups. A *local system* of abelian groups over X is a covariant functor $L: \overline{X} \to \mathscr{A}$. We will denote $L([\sigma])$ by $\sigma_{\#}$ where $[\sigma]$ is an equivalence class of paths.

Suppose that local systems $L_1: \overline{X}_1 \to \mathscr{A}$ and $L_2: \overline{X}_2 \to \mathscr{A}$ and a map $f: X_1 \to X_2$ are given. A homomorphism ψ over f from L_1 to L_2 is a natural transformation $\psi: L_1 \to L_2 \overline{f}$.

Let \mathcal{L} denote the category whose objects are pairs (X, L) where L is a local system over X and whose maps are pairs $(f, \psi): (X_1, L_1) \to (X_2, L_2)$, where $f: X_1 \to X_2$ and ψ is a homomorphism over f from L_1 to L_2 .

Let \mathscr{P}^2 denote the category of CW-pairs. Fix a space B. For any space X let $\mathscr{M}(X, B)$ denote the space with the compact-open topology of maps $f: X \to B$. For $g: X_1 \to X_2$ define $\mathscr{M}(g): \mathscr{M}(X_2, B) \to \mathscr{M}(X_1, B)$ by $\mathscr{M}(g)(f) = fg$.

A B-cohomology theory on \mathcal{P}^2 consists of the following.

- (A). For $(X, A) \in \mathcal{P}^2$, $f \in \mathcal{M}(X, B)$ and each integer n, an abelian group $h^n(X, A, f)$.
- (B). For $(X, A) \in \mathcal{P}^2$ and $F: I \to \mathcal{M}(X, B)$, with $F(0) = f_0$, $F(1) = f_1$, a homomorphism

$$F_{\#}: h^{n}(X, A, f_{1}) \to h^{n}(X, A, f_{0}).$$

(C). For $g:(X_1, A_1) \to (X_2, A_2)$ and $f \in \mathcal{M}(X_2, B)$, a homomorphism

$$g^*: h^n(X_2, A_2, f) \to h^n(X_1, A_1, fg).$$

(D). For $(X, A) \in \mathcal{P}^2$ and $f \in \mathcal{M}(X, B)$ a homomorphism

$$d: h^n(A, f|_A) \to h^{n+1}(X, A, f).$$

These are to have the following properties.

I. For $(X, A) \in \mathcal{P}^2$, the collection $\{h^n(X, A, f), F_\#\}$, $f \in \mathcal{M}(X, B)$, $F \in \mathcal{M}(X, B)^I$, is a local system over $\mathcal{M}(X, B)$ which will be denoted by $h^n(X, A)$.

II. For $g: (X_1, A_1) \to (X_2, A_2)$ the collection $\{g^*: h^n(X_2, A_2, f) \to h^n(X_1, A_1, fg)\}$, $f \in \mathcal{M}(X_2, B)$ is a homomorphism of local systems over $\mathcal{M}(g)$.

Then, for $(X, A) \in \mathcal{P}^2$, the collection $\{h^n(A, f|_A), F|_{A\#}\}, f \in \mathcal{M}(X, B), F \in \mathcal{M}(X, B)^T$ is a local system over $\mathcal{M}(X, B)$. Here $F|_A: I \to \mathcal{M}(A, B)$ is defined by $F|_A(t)(a) = F(t)(a), a \in A$.

III. For $(X, A) \in \mathcal{P}^2$, the collection $\{d: h^n(A, f|_A) \to h^{n+1}(X, A, f)\}, f \in \mathcal{M}(X, B)$ is a homomorphism of local systems over the identity map $\mathcal{M}(X, B) \to \mathcal{M}(X, B)$.

IV. The function $\mathcal{H}^n: \mathcal{P}^2 \to \mathcal{L}$ defined by $\mathcal{H}^n(X, A) = (\mathcal{M}(X, B), h^n(X, A))$ and $\mathcal{H}^n(g) = (\mathcal{M}(g), g^*)$ is a contravariant functor.

V. For $g:(X_1, A_1) \rightarrow (X_2, A_2)$ and $f \in \mathcal{M}(X_2, B)$, the diagram

$$h^{n}(A_{2}, f|_{A_{2}}) \xrightarrow{d} h^{n+1}(X_{2}, A_{2}, f)$$

$$\downarrow (g|_{A_{1}})^{*} \qquad \qquad \downarrow g^{*}$$

$$h^{n}(A_{1}, f|_{A_{2}}g|_{A_{1}}) \xrightarrow{d} h^{n+1}(X_{1}, A_{1}, fg)$$

is commutative.

VI. For $G: (X_1, A_1) \times I \rightarrow (X_2, A_2)$ a homotopy from g_0 to g_1 , the diagram

$$h^{n}(X_{2}, A_{2}, f)$$
 g_{0}^{*}
 $h^{n}(X_{1}, A_{1}, fg_{1})$
 $(fG)_{\#}$
 $h^{n}(X_{1}, A_{1}, fg_{0})$

is commutative.

VII. For $(X, A) \in \mathcal{P}^2$ and $f \in \mathcal{M}(X, B)$, the sequence

$$\cdots \xrightarrow{i^*} h^n(A, f|_A) \xrightarrow{d} h^{n+1}(X, A, f) \xrightarrow{j^*} h^{n+1}(X, f) \xrightarrow{i^*} \cdots$$

is exact. Here $j: X \to (X, A)$ and $i: A \to X$ are inclusions.

VIII. If $X=A_1 \cup A_2$ and $(A_1, A_1 \cap A_2)$ and (X, A_2) are in \mathscr{P}^2 , then, for $f \in \mathcal{M}(X, B)$,

$$i^*: h^n(X, A_2, f) \to h^n(A_1, A_1 \cap A_2, f|_{A_1})$$

is an isomorphism. Here $i: (A_1, A_1 \cap A_2) \rightarrow (X, A_2)$ is inclusion.

EXAMPLE 1. Take B to be a point. Then any generalized cohomology theory (such as in [9]) may be regarded as a B-cohomology theory on \mathcal{P}^2 .

For the next example, if L is a local system of abelian groups over X, let $H^n(X, A; L)$ denote the *n*th singular cohomology group of (X, A) with coefficients in L

Example 2. Fix a space B and a local system L over B. For $(X, A) \in \mathcal{P}^2$ and

 $f \in \mathcal{M}(X, B)$, the composition $L\vec{f} \colon \overline{X} \to \mathcal{A}$ is a local system over X. We then have $H^n(X, A; L\vec{f})$.

For $F: I \to \mathcal{M}(X, B)$ with $F(0) = f_0$, $F(1) = f_1$, and $x \in X$, define $\sigma_x: I \to B$ by $\sigma_x(t) = F(x, t)$, $0 \le t \le 1$. Then let $F_\# = \sigma_{x\#}: L(f_1(x)) \to L(f_0(x))$. There results a coefficient homomorphism

$$F_{\#}: H^n(X, A, L\overline{f}_1) \rightarrow H^n(X, A, L\overline{f}_0).$$

With the homomorphism induced by a continuous mapping of pairs and the boundary operator defined in the usual way, it is easy to see that we have a B-cohomology theory on \mathcal{P}^2 .

- 3. Description of $F_{\#}$. Assume that a cohomology theory over B is given. Axioms IV and VI imply.
- (3.1) LEMMA. If $g: (X_1, A_1) \to (X_2, A_2)$ is a homotopy equivalence, then for $f \in \mathcal{M}(X_2, B)$,

$$g^*: h^n(X_2, A_2, f) \to h^n(X_1, A_1, fg)$$

is an isomorphism.

A subspace $A \subseteq X$ is a weak deformation retract of X if the inclusion $i: A \to X$ is a homotopy equivalence. By the exact cohomology sequence for (X, A) and the above lemma, we have

(3.2) LEMMA. If A is a weak deformation retract of X, then for $f \in \mathcal{M}(X, B)$, $h^n(X, A, f) = 0$.

Now let $f_0, f_1 \in \mathcal{M}(X, B)$ and let $F: X \times I \to B$ be a homotopy from f_0 to f_1 . Let $I = \{0, 1\}$. We then have a boundary operator

(3.3)
$$d_j: h^n(X \times \overline{I} \cup A \times I, X \times \{j\} \cup A \times I, F) \rightarrow h^{n+1}(X \times I, X \times \overline{I} \cup A \times I, F),$$

$$j = 0, 1.$$

(3.4) LEMMA. For $j=0, 1, d_j$ is an isomorphism.

Proof. By exactness, it is sufficient to show that $h^n(X \times I, X \times \{j\} \cup A \times I, F) = 0$. This follows from the preceding lemma.

Let $\varepsilon(j)=0$ if j=1 and $\varepsilon(j)=1$ if j=0. Define $i_j:(X,A)\to (X\times I\cup A\times I,X\times \{\varepsilon(j)\}\cup A\times I)$ by $i_j(x)=(x,j),j=0,1$. By Axiom VIII,

$$(3.5) i_j^*: h^n(X \times \dot{I} \cup A \times I, X \times \{e(j)\} \cup A \times I, F) \to (X, A, f_j)$$

is an isomorphism. Hence we have a suspension isomorphism

$$(3.6) s_j: h^{n+1}(X \times I, X \times I \cup A \times I, F) \to h^n(X, A, f_{\varepsilon(j)}), \quad j = 0, 1,$$

by $s_i = i_{\varepsilon(i)}^* d_i^{-1}$.

Let $\pi: X \times I \to X$ be the projection.

1968]

(3.7) LEMMA. For $f \in \mathcal{M}(X, B)$, the composition

$$h^n(X, A, f) \xrightarrow{S_1^{-1}} h^{n+1}(X \times I, X \times I \cup A \times I, f\pi) \xrightarrow{S_0} h^n(X, A, f)$$

is minus the identity.

The proof is the same as for ordinary cohomology.

The next theorem characterizes $F_{\#}$ in terms of suspension.

(3.8) THEOREM. Let $f_0, f_1 \in \mathcal{M}(X, B)$ and let $F: X \times I \to B$ be a homotopy from f_0 to f_1 . Commutativity holds in the diagram

$$h^{n+1}(X \times I, X \times I \cup A \times I, F)$$

$$\downarrow S_1 \qquad h^n(X, A, f_1)$$

$$\downarrow h^n(X, A, f_0)$$

Proof. Define $M: (X \times I) \times I \to X \times I$ by $M(x, t)(\lambda) = (x, t\lambda)$. Then $FM_0 = f_0 \pi$ and $FM_1 = F$. We have by Axioms II and III a commutative diagram

$$(3.9) \quad h^{n}(X, A, f_{1}) \xrightarrow{(\mathcal{M}(i_{1})FM)_{\#}} h^{n}(X, A, f_{0})$$

$$\downarrow s_{0} \qquad \uparrow s_{0}$$

$$\downarrow s_{0} \qquad \uparrow s_{0}$$

$$\downarrow s_{1} \qquad \downarrow s_{1}$$

$$\downarrow h^{n}(X, A, f_{0}) \xrightarrow{(\mathcal{M}(i_{0})FM)_{\#}} h^{n+1}(X \times I, X \times I \cup A \times I, F)$$

By the previous lemma $s_1s_0^{-1}$ on the right is minus the identity. Next, we have $\mathcal{M}(i_1)FM = F$ in $\mathcal{M}(X, B)^I$ and $\mathcal{M}(i_0)FM$ in $\mathcal{M}(X, B)^I$ is the constant path on f_0 . Therefore $(\mathcal{M}(i_1)FM)_{\#} = F_{\#}$ and $(\mathcal{M}(i_0)FM)_{\#}$ is the identity. It follows that $s_1s_0^{-1}$ on the left is $-F_{\#}$.

Let $\tau_p = \langle v_0 \cdots v_p \rangle$ be an euclidean p-simplex and $\dot{\tau}_p$ its boundary. Let $\tau_{p,i} = \langle v_0 \cdots v_{i-1}, v_{i+1} \cdots v_p \rangle$ and let $J_i(\tau_p)$ be the closure of $\dot{\tau}_p - \tau_{p,i}$, $0 \le i \le p$. For $F \in \mathcal{M}(X \times \tau_p, B)$, define

$$(3.10) s_i: h^n(X \times \tau_n, X \times \dot{\tau}_n, F) \to h^{n-1}(X \times \tau_{n,i}, X \times \dot{\tau}_{n,i}, F),$$

 $0 \le i \le p$, to be the composition

$$h^{n}(X \times \tau_{p}, X \times \dot{\tau}_{p}, F) \xrightarrow{d^{-1}} h^{n-1}(X \times \dot{\tau}_{p}, X \times J_{i}(\tau_{p}), F)$$
$$\xrightarrow{i^{*}} h^{n-1}(X \times \tau_{p,i}, X \times \dot{\tau}_{p,i}, F).$$

Applying s_0 p-times, we obtain

$$(3.11) s_0^p: h^n(X \times \dot{\tau}_p, X \times \dot{\tau}_p, F) \to h^{n-p}(X \times \{v_p\}, F).$$

Define $\lambda_k: X \to X \times \tau_p$ by $\lambda_k(x) = (x, v_k)$, k = p - 1, p, and let $\pi: X \times \tau_p \to X$ be the projection.

(3.12) LEMMA. For $f \in \mathcal{M}(X, B)$, the diagram

$$h^{n}(X \times \tau_{p}, X \times \dot{\tau}_{p}, f_{\pi}) \xrightarrow{S_{i}} h^{n}(X \times \tau_{p,i}, X \times \dot{\tau}_{p,i}, f_{\pi})$$

$$\downarrow \lambda_{p}^{*} s_{0}^{p} \qquad \qquad \downarrow \lambda_{p}^{*} s_{0}^{p-1}$$

$$h^{n-p}(X, f) \xrightarrow{(-1)^{i}} h^{n-p}(X, f)$$

is commutative, where k=p if $0 \le i \le p$, and k=p-1 if i=p.

The proof is the same as for ordinary cohomology. Now for $F \in \mathcal{M}(X \times \tau_p, B)$ consider the diagrams

(3.13)
$$h^{n}(X \times \tau_{p}, X \times \dot{\tau}_{p}, F) \xrightarrow{S_{i}} h^{n}(X \times \tau_{p,i}, X \times \dot{\tau}_{p,i}, F)$$

$$\downarrow \lambda_{p}^{*} S_{0}^{p} \qquad \qquad \downarrow \lambda_{p}^{*} S_{0}^{p-1}$$

$$h^{n}(X, F\lambda_{p}) \xrightarrow{(-1)^{i}} h^{n}(X, F\lambda_{p}), \qquad 0 \leq i \leq p$$

(3.14)
$$h^{n}(X \times \tau_{p}, X \times \dot{\tau}_{p}, F) \xrightarrow{S_{p}} h^{n}(X \times \tau_{p,p}, X \times \dot{\tau}_{p,p}, F)$$

$$\downarrow \lambda_{p}^{*} S_{0}^{p} \qquad \qquad \downarrow \lambda_{p-1}^{*} S_{0}^{p-1}$$

$$\downarrow h^{n}(X, F\lambda_{p}) \xrightarrow{(-1)^{p} T_{\#}} h^{n}(X, F\lambda_{p-1})$$

where $T: X \times I \to B$ is defined by $T(x, t) = F(x, tv_{p-1} + (1-t)v_p), 0 \le t \le 1$.

(3.15) LEMMA. The diagrams (3.13) and (3.14) are commutative.

The proof is similar to the proof of Theorem (3.8). Here we use the preceding lemma, the homotopy $M: (X \times \tau_p) \times I \to X \times \tau_p$ by $M(x, z)(\lambda) = \lambda z + (1 - \lambda)v_p$, $0 \le \lambda \le 1$, and a diagram similar to (3.9).

4. The spectral sequence. Assume that a space B and a B-cohomology theory on \mathcal{P}^2 is given. In this section we construct the spectral sequence associated with a fibre map $\pi: Y \to X$. This is a generalization of the Serre-Dold spectral sequence [2].

We assume that $\pi: Y \mapsto X$ is locally trivial, X is a polyhedron and for each pair (K, L) of subcomplexes of X, we have $(\pi^{-1}(K), \pi^{-1}(L)) \in \mathscr{P}^2$.

Let $f \in \mathcal{M}(X, B)$ be given. Let $F(x) = \pi^{-1}(x)$, $x \in X$. We now describe the way in which the collection of groups $h^n(F(x), f\pi)$, $x \in X$, is a local system over X. Let $\sigma: I \to X$ be a path from x_0 to x_1 . By the covering homotopy property, there is $S(\sigma): F(x_0) \times I \to X$ such that $S(\sigma)$ covers σ and $S(\sigma)_0: F(x_0) \to F(x_0)$ is the identity. We then have $S(\sigma)_1: F(x_0) \to F(x_1)$.

Next, for $x \in X$, we have $T(x, \sigma): I \to \mathcal{M}(F(x), B)$ by $T(x, \sigma)(t)(y) = f\sigma(t)$, $0 \le t \le 1$, $y \in F(x)$. Note that $T(x_0, \sigma)(1) = f\pi S(\sigma)_1$. Let

(4.1)
$$\sigma_{\#}: h^n(F(x_1), f_{\pi}) \to h^n(F(x_0), f_{\pi})$$

be the composition

$$h^n(F(x_1), f\pi) \xrightarrow{S(\sigma)_1^*} h^n(F(x_0), f\pi S(\sigma)_1) \xrightarrow{T(x_0, \sigma)_\#} h^n(F(x_0), f\pi).$$

(4.2) LEMMA. The assignment of $h^n(F(x), f\pi)$ to $x \in X$ and of $\sigma_\#$ to $\sigma \in X^I$ is a local system on X.

Proof. Let σ be a path from x_0 to x_1 and τ a path from x_1 to x_2 . We will show that $(\sigma \tau)_{\#} = \sigma_{\#} \tau_{\#}$ and leave the other properties to the reader. Consider the diagram

The left hand triangle is commutative, since we may take $S(\sigma\tau)_1$ to be the composition $S(\tau)_1S(\sigma)_1$. The lower triangle is commutative by Axiom I. The square is commutative by Axiom II. Thus $(\sigma\tau)_{\#} = \sigma_{\#}\tau_{\#}$.

We will denote the local system described above by $[h^n(F)]$.

Let X_p be the p-skeleton of X and let $Y_p = \pi^{-1}(X_p)$. We have an exact sequence

$$\cdots \xrightarrow{d} h^n(Y, Y_p, f\pi) \xrightarrow{i^*} h^n(Y, Y_{p-1}, f\pi) \xrightarrow{j^*} h^n(Y_p, Y_{p-1}, f\pi) \xrightarrow{d} \cdots$$

Piecing these together leads to an exact couple with

$$(4.3) E_1^{p,q} = h^{p+q}(Y_p, Y_{p-1}, f\pi), D_1^{p,q} = h^{p+q}(Y, Y_{p-1}, f\pi).$$

Fix a total ordering of the vertices of X. For $\tau_p = \langle v_0 \cdots v_p \rangle$, define

$$(4.4) \tilde{s}_i: h^{p+q}(\pi^{-1}(\tau_p), \pi^{-1}(\dot{\tau}_p), f\pi) \to h^{p+q-1}(\pi^{-1}(\tau_{p,i}), \pi^{-1}(\dot{\tau}_{p,i}), f\pi)$$

to be i^*d^{-1} , where d is from the cohomology sequence of the triple $(\pi^{-1}(\tau_p), \pi^{-1}(\tau_{p,i}), \pi^{-1}(J_i(\tau_p)))$ and $i: (\pi^{-1}(\tau_{p,i}), \pi^{-1}(\tau_{p,i})) \to (\pi^{-1}(\tau_p), \pi^{-1}(J_i(\tau_p)))$ is the inclusion.

Applying \tilde{s}_0 p-times leads to an isomorphism

(4.5)
$$\tilde{s}_0^p: h^{p+q}(\pi^{-1}(\tau_p), \pi^{-1}(\dot{\tau}_p), f\pi \to h^q(F(v_p), f\pi).$$

Consider the diagrams

$$(4.6) \qquad h^{p+q}(\pi^{-1}(\tau_{p}), \pi^{-1}(\dot{\tau}_{p}), f\pi) \xrightarrow{\tilde{S}_{i}} h^{p+q-1}(\pi^{-1}(\tau_{p,i}), \pi^{-1}(\dot{\tau}_{p,i}), f\pi)$$

$$\downarrow \tilde{S}_{0}^{p} \qquad \downarrow \tilde{S}_{0}^{p-1}$$

$$h^{q}(F(v_{p}), f\pi) \xrightarrow{(-1)^{i}} h^{q}(F(v_{p}), f\pi), \quad 0 \leq i < p,$$

$$h^{p+q}(\pi^{-1}(\tau_{p}), \pi^{-1}(\dot{\tau}_{p}), f\pi) \xrightarrow{\tilde{S}_{p}} h^{p+q-1}(\pi^{-1}(\tau_{p,p}), \pi^{-1}(\dot{\tau}_{p,p}), f\pi)$$

$$\downarrow \tilde{S}_{0}^{p} \qquad \downarrow \tilde{S}_{0}^{p-1}$$

$$h^{q}(F(v_{p}), f\pi) \xrightarrow{(-1)^{p}\sigma_{\#}} h^{q}(F(v_{p-1}), f\pi)$$

where $\sigma: I \to X$ is defined by $\sigma(t) = tv_p + (1-t)v_{p-1}$, $0 \le t \le 1$.

(4.8) LEMMA. The diagrams (4.6) and (4.7) are commutative.

Proof. We will show that (4.7) is commutative. Choose $S: F(v_{p-1}) \times \tau_p \to \pi^{-1}(\tau_p)$ to cover the inclusion $\tau_p \subset X$ and such that $S\lambda_{p-1}: F(v_{p-1}) \to F(v_{p-1})$ is the identity. We have a commutative diagram

$$h^{q}(F(v_{p-1}), f\pi S\lambda_{p}) \xleftarrow{(S\lambda_{p})^{*}} h^{q}(F(v_{p}), f\pi)$$

$$\uparrow \lambda_{p}^{*} S_{0}^{p} \qquad \qquad \uparrow \tilde{S}_{0}^{p}$$

$$h^{p+q}(F(v_{p-1}) \times \tau_{p}, F(v_{p-1}) \times \dot{\tau}_{p}, f\pi S) \xleftarrow{S^{*}} h^{p+q}(\pi^{-1}(\tau_{p}), \pi^{-1}(\dot{\tau}_{p}), f\pi)$$

$$\downarrow \lambda_{p-1}^{*} S_{0}^{p-1} S_{p} \qquad \qquad \downarrow \tilde{S}_{0}^{p-1} \tilde{S}_{p}$$

$$h^{q}(F(v_{p-1}), f\pi S\lambda_{p-1}) \xleftarrow{(S\lambda_{p-1})^{*}} h^{q}(F(v_{p-1}), f\pi)$$

Now use this, the commutativity of (3.14) and the fact that $S\lambda_{p-1}$ is the identity to deduce that

$$\tilde{s}_{0}^{p-1}\tilde{s}_{n}=(-1)^{p}T_{\#}(S\lambda_{n})^{*}\tilde{s}_{0}^{p}$$

Next, note that $T = T(v_{p-1}, \sigma)$. Therefore $T_{\#}(S\lambda_p)^* = \sigma_{\#}$. The proof that (4.6) is commutative is similar.

For $\tau_p \subset X$, let $i(\tau_p) : \pi^{-1}(\tau_p) \to Y_p$ be the inclusion. We have

(4.9)
$$i(\tau_p)^* : h^{p+q}(Y_p, Y_{p-1}, f\pi) \to h^{p+q}(\pi^{-1}(\tau_p), \pi^{-1}(\dot{\tau}_p), f\pi).$$

Let $C^*(X; [h^q(F)])$ denote the simplicial cochain complex of X with coefficients in $[h^q(F)]$. Define

(4.10)
$$\psi \colon h^{p+q}(Y_p, Y_{p-1}, f_{\pi}) \to C^p(X; [h^q(F)])$$

by $\psi(u)(\tau_p) = \tilde{s}_0^p i(\tau_p)^*(u)$, $u \in h^{p+q}(Y_p, Y_{p-1}, f\pi)$. Then ψ is an isomorphism and, by Lemma (4.8), commutes with the boundary operator. Therefore we have an identification

$$\psi \colon E_2^{p,q} \to H^p(X; [h^q(F)]).$$

We have a filtration

$$(4.12) hn(Y, f_{\pi}) = J0,n \supset \cdots \supset Jp,n-p \supset \cdots,$$

where

$$J^{p,n-p} = \operatorname{Image}(h^n(Y, Y_{p-1}, f\pi) \to h^n(Y, f\pi)).$$

As usual, let $E_{\infty}^{p,n-p} = J^{p,n-p}/J^{p+1,n-p-1}$. We will discuss now the convergence of $\{E_r, d_r\}$ to E_{∞} .

DEFINITION. A pair (X, A) is k-coconnected if for every local system L of abelian groups over X, we have $H^q(X, A; L) = 0$, $q \ge k$.

(4.13) LEMMA. If Y is k-coconnected and F(x), $x \in X$, is l-coconnected, then $D_r^{p,q} = 0$, $r > \max(k+2-p, l+1)$.

Proof. By inspecting the singular cohomology spectral sequence of π : $Y_s \to Y_s$, we see that Y_s is (s+l)-coconnected. Therefore (Y, Y_{p-1}) is s-coconnected if $s > \max(k, p-1+l)$. Now take $r > \max(k+2-p, l+1)$. Then $p+r-2 > \max(k, p-1+l)$ so that by obstruction theory, there is $M: Y \times I \to Y$ such that M_0 is the identity, $M_1(Y) \subset Y_{p+r-2}$, and M_t restricted to Y_{p-1} is the identity, $0 \le t \le 1$. We have a commutative diagram

$$h^{p+q}(Y, Y_{p-1}, f\pi) \xrightarrow{i^*} h^{p+q}(Y_{p+r-2}, Y_{p-1}, f\pi) \xrightarrow{M_1^*} h^{p+q}(Y, Y_{p-1}, f\pi M_1)$$

$$\downarrow (f\pi M)_{\#}$$

$$h^{p+q}(Y, Y_{p-1}, f\pi)$$

which implies that i^* is injective. By exactness,

$$D_r^{p,q} = \text{Image } (h^{p+q}(Y, Y_{p+r-2}, f\pi) \to h^{p+q}(Y, Y_{p-1}, f\pi)) = 0.$$

- (4.14) THEOREM. Suppose that either (a) X is finitely coconnected or (b) Y and F(x), $x \in X$, are finitely coconnected. Then
 - (1) For each pair (p, q), there is an integer r(p, q) such that $E_{r(p,q)}^{p,q} \simeq E_{\infty}^{p,q}$.
 - (2) The filtration (4.12) is finite.

This follows by a standard spectral sequence argument. For case (b), the preceding lemma is needed.

5. Liftings. Suppose that we have a pair (β, Δ) where $\beta = (E, B, p)$ is a Serre fibre space and $\Delta: B \to E$ is a cross-section $(p\Delta = \text{identity})$. For $(X, A) \in \mathcal{P}^2$, let

(5.1)
$$\mathscr{L}(X, A, \beta, \Delta) = \{g \colon X \to E \mid g_{|A} = \Delta p g_{|A}\}$$

and define

(5.2)
$$\omega: \mathcal{L}(X, A, \beta, \Delta) \to \mathcal{M}(X, B)$$

by $\omega(g) = pg$.

(5.3) LEMMA. The map ω is a Serre fibre map.

This follows easily from the exponential law and the fact that p is a Serre fibre map.

Note that ω has a cross-section

(5.4)
$$\delta: \mathcal{M}(X, B) \to \mathcal{L}(X, A, \beta, \Delta)$$

defined by $\delta(f) = \Delta f$.

The fibre above $f \in \mathcal{M}(X, B)$ will be denoted by $\mathcal{L}(X, A, f, \beta, \Delta)$. When we speak of the homotopy groups of $\mathcal{L}(X, A, f, \beta, \Delta)$, it will be understood that the basepoint is Δf .

Let $F: I \to \mathcal{M}(X, B)$ be a path from f_0 to f_1 . Then δF is a path in $\mathcal{L}(X, A, \beta, \Delta)$ from Δf_0 to Δf_1 . We have

$$(5.5) \qquad (\delta F)_{\#} : \pi_n(\mathcal{L}(X, A, \beta, \Delta); \Delta f_1) \to \pi_n(\mathcal{L}(X, A, \beta, \Delta); \Delta f_0).$$

Now define

$$(5.6) F_{\#}: \pi_n(\mathscr{L}(X, A, f_1, \beta, \Delta)) \to \pi_n(\mathscr{L}(X, A, f_0, \beta, \Delta))$$

so that the diagram

$$\pi_{n}(\mathscr{L}(X, A, f_{1}, \beta, \Delta)) \xrightarrow{F_{\#}} \pi_{n}(\mathscr{L}(X, A, f_{0}, \beta, \Delta))$$

$$\downarrow i_{\#} \qquad \qquad \downarrow i_{\#}$$

$$\pi_{n}(\mathscr{L}(X, A, \beta, \Delta); \Delta f_{1}) \xrightarrow{(\delta F)_{\#}} \pi_{n}(\mathscr{L}(X, A, \beta, \Delta); \Delta f_{0})$$

is commutative. (This is possible because of the cross-section δ .) Then, as in [1], we have

(5.7) LEMMA. The correspondence $f \to \pi_n(\mathcal{L}(X, A, f, \beta, \Delta))$ and $F \to F_\#$ is a local system on $\mathcal{M}(X, B)$.

We consider the effect of a change of variable. For $g:(X_1, A_1) \to (X_2, A_2)$, we have a commutative diagram

(5.8)
$$\mathcal{L}(X_2, A_2, \beta, \Delta) \xrightarrow{\mathcal{L}(g)} \mathcal{L}(X_1, A_1, \beta, \Delta)$$

$$\downarrow^{\omega} \qquad \qquad \downarrow^{\omega}$$

$$\mathcal{M}(X_2, B) \xrightarrow{\mathcal{M}(g)} \mathcal{M}(X_1, B)$$

where $\mathcal{L}(g)(h) = hg$. Therefore the collection

$$(5.9) \mathcal{L}(g)_{\#} : \pi_n(\mathcal{L}(X_2, A_2, f, \beta, \Delta)) \to \pi_n(\mathcal{L}(X_1, A_1, fg, \beta, \Delta)),$$

 $f \in \mathcal{M}(X_2, B)$, is a homomorphism of local systems.

Now let (β_1, Δ_1) and (β_2, Δ_2) be given where $\beta_i = (E_i, B, p_i)$, i = 1, 2. By a map

$$(5.10) (k, K): (\beta_1, \Delta_1) \rightarrow (\beta_2, \Delta_2)$$

we mean $k: E_1 \to E_2$ such that $p_2k = p_1$ and $K: B \times I \to E_2$ such that $K_0 = \Delta_2$, $K_1 = k\Delta_1$, and $p_2K_t = \text{identity}$, $0 \le t \le 1$. Thus, up to the homotopy K, k is cross-section preserving. We have a commutative diagram

(5.11)
$$\mathcal{L}(X, A, \beta_1, \Delta_1) \xrightarrow{\mathcal{L}(K)} \mathcal{L}(X, A, \beta_2, \Delta_2)$$

$$\mathcal{M}(X, B)$$

where $\mathcal{L}(k)(h) = kh$. Note that for $f \in \mathcal{M}(X, B)$, the composition $I \xrightarrow{K} \mathcal{M}(B, E_2)$ $\xrightarrow{\mathcal{M}(f)} \mathcal{M}(X, E_2)$ is a path in $\mathcal{L}(X, A, \beta_2, \Delta_2)$ from $\Delta_2 f$ to $k\Delta_1 f$. Define

$$(5.12) (k, K)_{\#} : \pi_n(\mathcal{L}(X, A, f, \beta_1, \Delta_1)) \to \pi_n(\mathcal{L}(X, A, f, \beta_2, \Delta_2)),$$

 $f \in \mathcal{M}(X, B)$, to be the composition

$$\pi_{n}(\mathcal{L}(X, A, f, \beta_{1}, \Delta_{1})) \xrightarrow{\mathcal{L}(K)_{\#}} \pi_{n}(\mathcal{L}(X, A, f, \beta_{2}, \Delta_{2}); k\Delta_{1}f)$$

$$\downarrow (\mathcal{M}(f)K)_{\#}$$

$$\pi_{n}(\mathcal{L}(X, A, f, \beta_{2}, \Delta_{2})).$$

It is easy to show that $(k, K)_{\#}$ is a homomorphism of local systems.

6. **B-spectra.** Given (β, Δ) as in the previous section, let

(6.1)
$$\Omega(E; \Delta) = \{\sigma: I \to E \mid \sigma(I) \subseteq p^{-1}(b), \text{ some } b \in B, \text{ and } \sigma(0) = \sigma(1) = \Delta(b)\}$$
 and define

(6.2)
$$\Omega(p): \Omega(E; \Delta) \to B$$

by $\Omega(p)(\sigma) = b$, where $\sigma(I) \subseteq p^{-1}(b)$. Using the exponential law we see that $\Omega(\beta; \Delta) = (\Omega(E; \Delta), B, \Omega(p))$ is a Serre fibre space. Define a cross-section

(6.3)
$$\Omega(\Delta): B \to \Omega(E; \Delta)$$

by $\Omega(\Delta)(b)(t) = \Delta(b)$, $0 \le t \le 1$.

The pair $(\Omega(\beta; \Delta), \Omega(\Delta))$ will be called the *loop space* of (β, Δ) .

For $(X, A) \in \mathcal{P}^2$ and $f \in \mathcal{M}(X, B)$, the exponential law gives an identification

(6.4)
$$\mathscr{L}(X, A, f, \Omega(\beta; \Delta), \Omega(\Delta)) \to \Omega(\mathscr{L}(X, A, f, \beta, \Delta)).$$

This in turn leads to an identification

(6.5)
$$\pi_r(\mathcal{L}(X, A, f, \Omega(\beta; \Delta), \Omega(\Delta)) \to \pi_{r+1}(\mathcal{L}(X, A, f, \beta, \Delta)).$$

A B-spectrum $\mathscr S$ is a sequence of pairs (β_m, Δ_m) , $-\infty < m < +\infty$, where $\beta_m = (E_m, B, p_m)$ is a Serre fibre space and $\Delta_m : B \to E_m$ is a cross-section, together with maps

$$(6.6) (k_m, K_m): (\beta_m, \Delta_m) \to (\Omega(\beta_{m+1}; \Delta_{m+1}), \Omega(\Delta_{m+1})).$$

Given a B-spectrum \mathscr{S} , we have for $(X, A) \in \mathscr{P}^2$ and $f \in \mathscr{M}(X, B)$, a homomorphism

$$(6.7) (k_m, K_m)_{\#}: \pi_n(\mathscr{L}(X, A, f, \beta_m, \Delta_m)) \to \pi_{n+1}(\mathscr{L}(X, A, f, \beta_{m+1}, \Delta_{m+1}))$$

(using the identification (6.5)). Now, for each integer n, let

$$(6.8) hn(X, A, f; \mathcal{S}) = \operatorname{dir lim}_{m} \pi_{-n+m}(\mathcal{L}(X, A, f, \beta_{m+1}, \Delta_{m+1})).$$

Given $F: I \to \mathcal{M}(X, B)$ from f_0 to f_1 , the homomorphisms

(6.9)
$$F_{\#}: \pi_n(\mathscr{L}(X, A, f_1, \beta_m, \Delta_m)) \to \pi_n(\mathscr{L}(X, A, f_0, \beta_m, \Delta_m))$$

commute with those in (6.7). Let

$$(6.10) F_{\#}: h^{n}(X, A, f_{1}; \mathscr{S}) \to h^{n}(X, A, f_{0}; \mathscr{S})$$

be obtained from these by passing to the direct limit.

Given $g:(X_1, A_1) \to (X_2, A_2)$ and $f \in \mathcal{M}(X_2, B)$, the homomorphisms

$$(6.11) \qquad \mathscr{L}(g)_{\#} : \pi_n(\mathscr{L}(X_2, A_2, f, \beta_m, \Delta_m)) \to \pi_n(\mathscr{L}(X_1, A_1, fg, \beta_m, \Delta_m))$$

commute with those in (6.7). Define

$$(6.12) g^*: h^n(X_2, A_2, f; \mathcal{S}) \to h^n(X_1, A_1, fg; \mathcal{S})$$

to be the direct limit of the $\mathcal{L}(g)_{\#}$.

For $(X, A) \in \mathcal{P}^2$ let $i: A \to X$ and $j: X \to (X, A)$ be the inclusions. Then for $f \in \mathcal{M}(X, B)$ we have

$$(6.13) \quad \mathscr{L}(X, A, f, \beta_m, \Delta_m) \xrightarrow{\mathscr{L}(f)} \mathscr{L}(X, f, \beta_m, \Delta_m) \xrightarrow{\mathscr{L}(i)} \mathscr{L}(A, f|_A, \beta_m, \Delta_m).$$

Using the exponential law we see that $\mathcal{L}(i)$ is a fibre map. Further, $\mathcal{L}(j)$ is an identification with the fibre $\mathcal{L}(i)^{-1}(\Delta_m f|_A)$. Therefore, we have an exact sequence

(6.14)
$$\frac{\mathscr{L}(i)_{\#}}{\longrightarrow} \pi_{n}(\mathscr{L}(A, f|_{A}, \beta_{m}, \Delta_{m})) \xrightarrow{\delta_{\#}} \pi_{n-1}(\mathscr{L}(X, A, f, \beta_{m}, \Delta_{m})) \xrightarrow{\mathscr{L}(i)_{\#}} \pi_{n-1}(\mathscr{L}(X, f, \beta_{m}, \Delta_{m})) \xrightarrow{\mathscr{L}(i)_{\#}} \cdots$$

and the homomorphisms $\delta_{\#}$ commute with those in (6.7). Therefore we may define

(6.15)
$$d: h^{n}(A, f|_{A}; \mathcal{S}) \to h^{n+1}(X, A, f; \mathcal{S})$$

to be the direct limit of the $\delta_{\#}$.

(6.16) THEOREM. With h^n , #, *, and d as defined in (6.8), (6.10), (6.12) and (6.15) we have a B-cohomology theory on \mathcal{P}^2 .

Proof. Using the results of §5, Axioms I through VI are easily checked. Axiom VII follows from the exactness of (6.14) and the fact that exactness is preserved

1968]

under direct limit. For Axiom VIII, note that if $i: (A_1, A_1 \cap A_2) \to (X, A_2)$ is the inclusion, then for $f \in \mathcal{M}(X, B)$,

$$\mathcal{L}(i): \mathcal{L}(X, A_2, f, \beta_m, \Delta_m) \to \mathcal{L}(A_1, A_1 \cap A_2, f|_A, \beta_m, \Delta_m)$$

is a homeomorphism.

7. The group structure. The suspension S(F) of a space F will be the quotient obtained from $F \times I$ by the identification

(7.1)
$$(x, t) \sim (x', t)$$
 if and only if $x = x'$ or $t = 0$ or $t = 1$.

However, we will use a weaker topology than the usual one. Let $\omega: F \times I \to S(F)$ denote the projection. A basis for the topology on S(F) is to consist of sets of the form $\omega(U \times (t_1, t_2))$, U open in F, $0 < t_1 < t_2 < 1$, or $\omega(F \times (t, 1])$, t < 1, or $\omega(F \times [0, t))$, t > 0.

Suppose that $\beta = (E, B, p)$ is a fibre space. Let $\Sigma(E)$ be the quotient obtained from $E \times I$ by the identification

(7.2)
$$(e, t) \sim (e', t)$$
 if and only if $e = e'$ or $t = 0$ or 1 and $p(e) = p(e')$.

Let $\omega: E \times I \to \Sigma(E)$ be the projection. A basis for the topology on $\Sigma(E)$ is to consist of sets of the form $\omega(U \times (t_1, t_2))$, U open in E, $0 < t_1 < t_2 < 1$, or $\omega(p^{-1}(V) \times (t_1, 1])$, t < 1, or $\omega(p^{-1}(V) \times [0, t))$, t > 0, where V is open in E. Define

$$(7.3) \Sigma(p): \Sigma(E) \to B$$

by $\Sigma(p)([e, t]) = p(e)$.

(7.4) LEMMA. If $\beta = (E, B, p)$ is locally trivial with fibre F, then $\Sigma(\beta) = (\Sigma(E), B, \Sigma(p))$ is locally trivial with fibre S(F).

This is easily checked. We will call $\Sigma(\beta)$ the suspension of β .

We will now describe a natural way of assigning to β a *B*-spectrum. Let $\Sigma^m(\beta) = \Sigma(\Sigma^{m-1}(\beta))$ and define

$$(7.5) \Delta_m: B \to \Sigma^m(E)$$

by $\Delta_m(b) = [e, 0 \cdots 0], e \in p^{-1}(b)$. Note that Δ_m is a cross-section to $\Sigma^m(p) : \Sigma^m(E) \to B$. Let $\mathcal{S}(\beta)$ denote the B-spectrum consisting of pairs (Γ_m, δ_m) and maps

$$(7.6) (k_m, K_m): (\Gamma_m, \delta_m) \to (\Omega(\Gamma_{m+1}; \delta_{m+1}), \Omega(\delta_{m+1})),$$

where

(7.7)
$$(\Gamma_m, \delta_m) = (\Sigma^m(\beta), \Delta_m), \quad m > 0,$$
$$= (\Omega^{-m+1}(\Sigma(\beta); \Delta_1), \Omega^{-m+1}(\Delta_1)), \quad m \leq 0,$$

and for m > 0

(7.8)
$$k_m: \Sigma^m(E) \to \Omega(\Sigma^{m+1}(E); \Delta_{m+1})$$

is defined by

$$k_m([e, t_1, ..., t_m])(\lambda) = [\Delta_m p(e), 2\lambda], \quad 0 \le \lambda \le 1/2,$$

= $[e, t_1, ..., t_m, 2-2\lambda], \quad 1/2 \le \lambda \le 1,$

and

$$(7.9) K_m: B \times I \to \Omega(\Sigma^{m+1}(E), \Delta_{m+1})$$

is defined by

$$K_m(b, t)(\lambda) = [\Delta_m(b), 2t\lambda], \quad 0 \le \lambda \le 1/2,$$

= $[\Delta_m(b), 2t(1-\lambda)], \quad 1/2 \le \lambda \le 1;$

whereas for $m \leq 0$,

$$(7.10) k_m: \Omega^{-m+1}(\Sigma(E); \Delta_1) \to \Omega^{-m+1}(\Sigma(E); \Delta_1)$$

is to be the identity, and

(7.11)
$$K_m: B \times I \to \Omega^{-m+1}(\Sigma(E); \Delta_1)$$

is to be the constant homotopy $K_m(b, t) = \Omega^{-m+1}(\Delta_1)(b)$, $0 \le t \le 1$.

The square of $\beta = (E, B, p)$ is $\beta^2 = (E^2, E, p_1)$, where

(7.12)
$$E^2 = \{(e_1, e_2) \in E \times E \mid p(e_1) = p(e_2)\}$$

and $p_1: E^2 \to E$ is given by $p_1(e_1, e_2) = e_1$. There is a cross-section $\Delta: E \to E^2$ by $\Delta(e) = (e, e)$. Now define

$$(7.13) \mu: E^2 \to \Omega(\Sigma(E); \Delta_1)$$

by

$$\mu(e_1, e_2)(\lambda) = [e_2, 2\lambda], \quad 0 \le \lambda \le 1/2,$$

= $[e_1, 2-2\lambda], \quad 1/2 \le \lambda \le 1.$

In the diagrams

(7.14)
$$E^{2} \xrightarrow{\mu} \Omega(\Sigma(E); \Delta_{1}) \qquad E^{2} \xrightarrow{\mu} \Omega(\Sigma(E); \Delta_{1})$$

$$\downarrow^{p_{1}} \qquad \downarrow^{\Omega(\Sigma(p))} \qquad \uparrow_{\Delta} \qquad \uparrow^{\Omega(\Sigma(\Delta_{1}))}$$

$$E \xrightarrow{p} B \qquad E \xrightarrow{p} B$$

the first is commutative and the second is homotopy commutative, a connecting homotopy being

$$(7.15) M: E \times I \to \Omega(\Sigma(E); \Delta_1)$$

by

$$M(e, t)(\lambda) = [e, 2t\lambda], \quad 0 \le \lambda \le 1/2,$$

= $[e, 2t(1-\lambda)], \quad 1/2 \le \lambda \le 1.$

Note that M_t is a lifting of p for $0 \le t \le 1$.

1968]

Given $X \in \mathcal{P}^2$ and $f: X \to B$, let

(7.16)
$$\mathscr{L}(X, f, \beta) = \{g: X \to E \mid pg = f\}$$

and

(7.17)
$$L(X, f, \beta) = \pi_0(\mathscr{L}(X, f, \beta)).$$

Suppose that $L(X, f, \beta)$ is not empty. Let $\alpha \in L(X, f, \beta)$ be represented by $g: X \to E$ and define

(7.18)
$$\psi_{\alpha}: L(X, f, \beta) \to h^{0}(X, f, \mathcal{S}(\beta))$$

to be the composition

$$(7.19) \quad L(X, f, \beta) \xrightarrow{\eta(g)} L(X, g, \beta^2) \xrightarrow{\mu_{\#}} L(X, f, \Omega(\Sigma(\beta); \Delta_1)) \longrightarrow h^0(X, f, \mathcal{S}(\beta)),$$

where $\eta(g)([q]) = [g \times q]$, $q \in \mathcal{L}(X, f, \beta)$, and the unmarked arrow is inclusion into the direct limit. Note that $\eta(g)$ is one-one and onto.

(7.20) Lemma. The correspondence ψ_{α} is independent of the representative chosen for α .

Proof. Let g' also represent α and let $H: X \times I \to E$ satisfy $H_0 = g$, $H_1 = g'$ and $pH_t = f$, $0 \le t \le 1$. Then, for $g \in \mathcal{L}(X, f, \beta)$, define

$$J: X \times I \to \Omega(\Sigma(E); \Delta_1)$$

by $J(x, t) = \mu(H(x, t), q(x)), x \in X, 0 \le t \le 1$. We have $J_0 = \mu(g \times q), J_1 = \mu(g' \times q)$ and $\Omega(\Sigma(p))J_t = f, 0 \le t \le 1$. Therefore $[\mu(g \times q)] = [\mu(g' \times q)]$ in $L(X, f, \Omega(\Sigma(\beta); \Delta_1))$. This completes the proof.

We need now the following fact. Suppose that we have a commutative diagram

(7.21)
$$E_{1} \xrightarrow{\mu} E_{2}$$

$$\downarrow p_{1} \qquad \downarrow p_{2}$$

$$R_{1} \xrightarrow{\nu} R_{2}$$

with both p_1 and p_2 fibre maps. Let F_1 and F_2 denote the respective fibres.

(7.22) LEMMA. Suppose that

$$\mu_{\#} \colon \pi_{m}(F_{1}; e_{1}) \to \pi_{m}(F_{2}; e_{2})$$

is an isomorphism, m < 2n. Then if $X \in \mathcal{P}^2$ is (2n-1)-coconnected, the correspondence

$$\mu_{\#}: L(X, f, \beta_1) \to L(X, \nu f, \beta_2), f \in \mathcal{M}(X, B_1),$$

is one-one and onto.

This is well known.

(7.23) THEOREM. Let $\beta = (E, B, p)$ be locally trivial with fibre F. If F is (n-1)-connected, $X \in \mathcal{P}^2$ is (2n-1)-coconnected and $L(X, f, \beta)$ is not empty, then ψ_{α} in (7.18) is one-one and onto.

Proof. Apply the above lemma to conclude that both $\mu_{\#}$ in (7.19) and the inclusion of $L(X, f, \Omega(\Sigma(\beta); \Delta_1))$ into the direct limit $h^0(X, f, \mathcal{S}(\beta))$ are one-one and onto.

With X and β as in the above theorem, let $(L(X, f, \beta), \alpha)$ denote the set $L(X, f, \beta)$ together with the abelian group structure determined by the condition that ψ_{α} be an isomorphism. For $\gamma_1, \gamma_2 \in L(X, f, \beta)$, let $\gamma_1 +_{\alpha} \gamma_2$ denote their sum in $(L(X, f, \beta), \alpha)$. Using the homotopy M of (7.15), we see that α is the zero in this group.

(7.24) LEMMA. For
$$\alpha_0$$
, $\alpha_1 \in L(X, f, \beta)$ we have $\psi_{\alpha_0}(\alpha_1) = -\psi_{\alpha_1}(\alpha_0)$.

Proof. Let $g_0, g_1: X \to E$ represent α_0, α_1 respectively. Then $\psi_{\alpha_0}(\alpha_1)$ is represented by $\mu(g_0 \times g_1)$ and $\psi_{\alpha_1}(\alpha_0)$ by $\mu(g_1 \times g_0)$. From the definition of μ , the product $\mu(g_0 \times g_1) \cdot \mu(g_1 \times g_0)$ is homotopic as a lifting of f to the trivial lifting $\Omega(\Delta_1) f$. That is, $\psi_{\alpha_0}(\alpha_1) + \psi_{\alpha_1}(\alpha_0) = 0$. This completes the proof.

(7.25) LEMMA. For α_0 , $\alpha_1 \in L(X, f, \beta)$ and $v \in h^0(X, f, \mathcal{S}(\beta))$, we have $\psi_{\alpha_1}\psi_{\alpha_0}^{-1}(v) = \psi_{\alpha_1}(\alpha_0) + v$.

Proof. Let $q: X \to E$ be a lifting of f such that $\mu(g_0 \times q)$ represents v. Then q represents $\psi_{\alpha_0}^{-1}(v)$ and $\psi_{\alpha_1}\psi_{\alpha_0}^{-1}(v)$ is represented by $\mu(g_1 \times q)$. From the definition of μ , we see that $\mu(g_1 \times q)$ is homotopic as a lifting of f to $\mu(g_1 \times g_0) \cdot \mu(g_0 \times q)$. The latter represents $\psi_{\alpha_1}(\alpha_0) + v$. This completes the proof.

(7.26) LEMMA. For
$$\alpha_0, \alpha_1, \alpha_2, \gamma \in L(X, f, \beta)$$
, we have $\alpha_0 + \alpha_1 (\alpha_1 + \alpha_2 \gamma) = \alpha_0 + \alpha_2 \gamma$.

Proof. By (7.24) and (7.25), we have

(7.27)
$$\psi_{\alpha_{1}}(\alpha_{1} + \alpha_{2} \gamma) = \psi_{\alpha_{1}}\psi_{\alpha_{2}}^{-1}(\psi_{\alpha_{2}}(\alpha_{1}) + \psi_{\alpha_{2}}(\gamma))$$

$$= \psi_{\alpha_{1}}(\alpha_{2}) + \psi_{\alpha_{2}}(\alpha_{1}) + \psi_{\alpha_{2}}(\gamma)$$

$$= \psi_{\alpha_{n}}(\gamma).$$

Therefore

(7.28)
$$\alpha_{0} +_{\alpha_{1}} (\alpha_{1} +_{\alpha_{2}} \gamma) = \psi_{\alpha_{1}}^{-1} (\psi_{\alpha_{1}} (\alpha_{0}) + \psi_{\alpha_{1}} (\alpha_{1} +_{\alpha_{2}} \gamma)) \\ = \psi_{\alpha_{1}}^{-1} (\psi_{\alpha_{1}} (\alpha_{0}) + \psi_{\alpha_{2}} (\gamma)) \\ = \psi_{\alpha_{1}}^{-1} (\psi_{\alpha_{1}} \psi_{\alpha_{0}}^{-1} \psi_{\alpha_{2}} (\gamma)) = \psi_{\alpha_{0}}^{-1} \psi_{\alpha_{2}} (\gamma).$$

On the other hand, by (7.25)

(7.29)
$$\alpha_0 +_{\alpha_2} \gamma = \psi_{\alpha_2}^{-1} (\psi_{\alpha_2} (\alpha_0) + \psi_{\alpha_2} (\gamma)) \\ = \psi_{\alpha_2}^{-1} (\psi_{\alpha_2} \psi_{\alpha_0}^{-1} \psi_{\alpha_2} (\gamma)) = \psi_{\alpha_0}^{-1} \psi_{\alpha_2} (\gamma).$$

Comparing (7.28) and (7.29) gives the desired result.

Let \mathscr{U} denote the category of sets and functions, let \mathscr{C} be an arbitrary category and let $F: \mathscr{C} \to \mathscr{U}$ be a contravariant functor. We say that F has a *natural affine* group structure if for each object $X \in \mathscr{C}$ and element $\alpha \in F(X)$, there is a rule

which assigns an abelian group structure to the set F(X). Denote this group by $(F(X), \alpha)$ and for $\gamma_1, \gamma_2 \in F(X)$ let $\gamma_1 +_{\alpha} \gamma_2$ denote their sum in $(F(X), \alpha)$. The following conditions must be satisfied.

- (A). The zero of $(F(X), \alpha)$ is α .
- (B). If $g: X_1 \to X_2$ is a map in \mathscr{C} , then $F(g): (F(X_2), \alpha) \to (F(X_1), F(g)(\alpha))$ is a homomorphism.
- (C). For α_0 , $\alpha_1 \in F(X)$, the translation $T(\alpha_0, \alpha_1)$: $(F(X), \alpha_1) \to (F(X), \alpha_0)$ defined by $T(\alpha_0, \alpha_1)(\gamma) = \alpha_0 + \alpha_1 \gamma$ is an isomorphism.
 - (D). $T(\alpha_0, \alpha_0)$ is the identity, $\alpha_0 \in F(X)$.
 - (E). $T(\alpha_0, \alpha_1)T(\alpha_1, \alpha_2) = T(\alpha_0, \alpha_2), \alpha_0, \alpha_1, \alpha_2 \in F(X)$.

Now let $\mathcal{P}(\beta, 2n-1)$ denote the category whose objects are pairs (X, f) with X a (2n-1)-coconnected CW-complex, $f \in \mathcal{M}(X, B)$ and $L(X, f, \beta)$ not empty. A map $g: (X_1, f_1) \to (X_2, f_2)$ in the category is to be $g: X_1 \to X_2$ such that $f_1 = f_2 g$.

(7.30) THEOREM. Let $\beta = (E, B, p)$ be locally trivial with fibre F which is (n-1)-connected. Then the set functor $L(X, f, \beta) : \mathcal{P}(\beta, 2n-1) \to \mathcal{U}$ has a natural affine group structure.

Proof. Properties (A) and (B) are easily checked. We will show now that

$$T(\alpha_0, \alpha_1): (L(X, f, \beta), \alpha_1) \rightarrow (L(X, f, \beta), \alpha_0)$$

is a homomorphism. By Lemma (7.26)

$$T(\alpha_0, \alpha_1)(\gamma_2 + \alpha_1 \gamma_2) = \alpha_0 + \alpha_1 (\gamma_1 + \alpha_1 \gamma_2)$$

$$= (\alpha_0 + \alpha_1 \gamma_1) + \alpha_0 (\alpha_0 + \alpha_1 \gamma_2)$$

$$= T(\alpha_0, \alpha_1)(\gamma_1) + \alpha_0 T(\alpha_0, \alpha_1)(\gamma_2).$$

Property (D) is evident and (E) is just Lemma (7.26). Finally (D) and (E) imply that $T(\alpha_0, \alpha_1)$ is an isomorphism.

8. Equivariant maps. Let G act as a group of transformations on X and Y. A map $f: X \to Y$ is equivariant if f(gx) = gf(x), $g \in G$, $x \in X$. Two equivariant maps $f_0, f_1: X \to Y$ are equivariantly homotopic if there is a homotopy $F: X \times I \to Y$ from f_0 to f_1 , such that F_t is equivariant, $0 \le t \le 1$. Let E(X, Y) denote the set of equivariant homotopy classes of equivariant maps from X to Y. A map $f: X \to Y$ is an equivariant homotopy equivalence if there is $g: Y \to X$ such that fg and gf are equivariantly homotopic to the identity.

The following is an equivariant form of a theorem of J. H. C. Whitehead [10].

(8.1) LEMMA. Suppose that X and Y are connected CW-complexes on which the action of G is both free and cellular. If $f: X \to Y$ is equivariant and $f_\#: \pi_m(X; x_0) \to \pi_m(Y; y_0)$ is an isomorphism, $m \le \max$ (dim X, dim Y), then f is an equivariant homotopy equivalence.

The proof can be carried out, using the mapping cylinder of f, along the same lines as the proof of the Whitehead theorem.

Let W be a G-free acyclic complex. For any space Z with an action of G, we have a locally trivial fibre space

$$\beta_z = (W \times Z/G, W/G, \pi_z),$$

where G acts diagonally on $W \times Z$ and $\pi_z : W \times Z/G \to W/G$ is induced by projection. The fibre is Z.

(8.3) LEMMA. Suppose X is a CW-complex on which the action of G is both free and cellular. Let $q: W \times X \to X$ be the projection. Then

$$q^{\#}: E(W \times X, Y) \rightarrow E(X, Y)$$

is one-one and onto.

Proof. This follows from Lemma (8.1), since $q_{\#}$: $\pi_m(W \times X, (w_0, x_0)) \to \pi_m(X; x_0)$ is an isomorphism, $m \ge 0$.

Let X satisfy the hypothesis of the above lemma and let

(8.4)
$$\varphi \colon E(X, Y) \to L(W \times X/G, \pi_X, \beta_Y)$$

be the composition

$$E(X, Y) \xrightarrow{q^{\#-1}} E(W \times X, Y) \xrightarrow{\lambda} L(W \times X/G, \pi_X, \beta_Y),$$

where λ is defined as follows. Let $\alpha \in E(W \times X, Y)$ be represented by $g \colon W \times X \to Y$. We have $\tilde{g} \colon W \times X \to W \times Y$ by $\tilde{g}(w, x) = (w, g(w, x))$ and \tilde{g} is equivariant. Its orbit map $\tilde{g}/G \colon W \times X/G \to W \times Y/G$ is a lifting of π_X . Let $\lambda(\alpha)$ be the class of \tilde{g}/G . The correspondence λ is essentially due to A. Heller [3] and is one-one and onto. Therefore φ is one-one and onto.

Fix a space Y and an action of G on Y. Let $\mathcal{Q}(Y, G, 2n-1)$ denote the category whose objects are CW-complexes X with an action of G which is both free and cellular and such that X/G is (2n-1)-coconnected and E(X, Y) is not empty. The maps in the category are to be equivariant maps. We then have a covariant functor

$$(8.5) D: \mathcal{Q}(Y, G, 2n-1) \to \mathcal{P}(\beta_Y, 2n-1)$$

which sends X to $(W \times X/G, \pi_X)$.

Suppose Y is (n-1)-connected. There are the set functors $E(\ , Y)$: $\mathscr{Q}(Y, G, 2n-1) \to \mathscr{U}$ and $L(\ , \beta_Y)$: $\mathscr{P}(\beta_Y, 2n-1) \to \mathscr{U}$ and φ in (8.4) is a natural transformation $E(\ , Y) \to L(\ , \beta_Y)D$. Since φ is one-one and onto, we may, for $X \in \mathscr{Q}(Y, G, 2n-1)$ and $\alpha \in E(X, Y)$, define an abelian group $(E(X, Y), \alpha)$ with underlying set E(X, Y) by the condition that

(8.6)
$$\varphi: (E(X, Y), \alpha) \to (L(W \times X/G, \pi_X, \beta_Y), \varphi(\alpha))$$

be an isomorphism. Then from Theorem (7.30) we have

(8.7) THEOREM. Let Y be an (n-1)-connected space with an action of the finite group G on Y. Then the set functor $E(\ , Y)$: $\mathcal{Q}(G, 2n-1) \to \mathcal{U}$ has a natural affine group structure.

REMARK. The addition in $(E(X, Y), \alpha)$ has a very simple description. Let $g, k_1, k_2: X \to Y$ represent $\alpha, \gamma_1, \gamma_2$ respectively. Let G act diagonally on Y^3 and consider the equivariant map $g \times k_1 \times k_2: X \to Y^3$. The subspace

$$V(Y) = \{(y_1, y_2, y_3) \in Y^3 \mid y_1 = y_2 \text{ or } y_1 = y_3\}$$

is invariant and $\pi_m(Y^3, V(Y)) = 0$, $m \le 2n-1$. Since X/G is (2n-1)-coconnected we may construct a homotopy $H: X \times I \to Y^3$ such that $H_0 = g \times k_1 \times k_2$, $H_1(X) \subset V(Y)$ and H_t is equivariant, $0 \le t \le 1$. Define a folding map $\lambda: V(Y) \to Y$ by $\lambda(y, y_2, y) = y_2$ and $\lambda(y, y, y_3) = y_3$. A representative of $\gamma_1 + \alpha \gamma_2$ is λH_1 . We will not need this fact so we will not stop to prove it.

Let [X, Y] denote the track group of homotopy classes of maps from X to Y and let $\zeta: E(X, Y) \rightarrow [X, Y]$ assign to an equivariant homotopy class its ordinary homotopy class. Define

(8.8)
$$\theta: (E(X, Y), \alpha) \to [X, Y]$$

by $\theta(\gamma) = \zeta(\gamma) - \zeta(\alpha)$.

Fix base-points $w_0 \in W$ and $y_0 \in Y$. Let $i: X \to W \times X/G$ be given by $i(x) = [w_0, x], x \in X$. This identifies X with the fibre $\pi_x^{-1}([w_0])$. Let $w_0^*: X \to W/G$ and $(w_0, y_0)^*: X \to W \times Y/G$ be the constant maps at $[w_0]$ and $[w_0, y_0]$ respectively and let $z \in L(X, w_0^*, \beta_Y)$ be the class of $(w_0, y_0)^*$. Consider the diagram

$$(8.9) \qquad \begin{array}{c} (X, Y] \xrightarrow{\varphi_0} L(X, w_0^*, \beta_Y) \xrightarrow{\psi_z} h^0(X, w_0^*, \mathcal{S}(\beta_Y)) \\ & \qquad \qquad \qquad \uparrow i^* \\ (E(X, Y), \alpha) \xrightarrow{\varphi} L(W \times X/G, \pi_X, \beta_Y) \xrightarrow{\psi_{\varphi(\alpha)}} h^0(W \times X/G, \pi_X, \mathcal{S}(\beta_Y)), \end{array}$$

where φ_0 is defined as follows. Given $g: X \to Y$ define $g_0: X \to W \times Y/G$ by $g_0(x) = [w_0, g(x)], x \in X$. Then let $\varphi_0(g) = [g_0]$.

We have an operation

$$(8.10) \rho: G \times [X, Y] \to [X, Y]$$

of G on [X, Y] defined by $\rho(g, \gamma) = (g^{-1})^{\#}g_{\#}(\gamma), g \in G, \gamma \in [X, Y].$

Next, we have a fibre map $\pi_X \colon W \times X/G \to W/G$ with fibre X. Take $f \in \mathcal{M}(W/G, W/G)$ to be the identity. Then from §4, the collection $h^0(\pi_X^{-1}([w]), \pi_X, \mathcal{S}(\beta_Y))$, $[w] \in W/G$, is a local system over W/G. Out of this we obtain an operation

$$(8.11) \qquad \tilde{\rho} \colon \pi_1(W/G; [w_0]) \times h^0(X, w_0^*, \mathcal{S}(\beta_Y)) \to h^0(X, w_0^*, \mathcal{S}(\beta_Y)).$$

Make the canonical identification of G with $\pi_1(W/G; [w_0])$.

(8.12) LEMMA. The diagram (8.9) is commutative and

$$\psi_z \varphi_0 \colon [X, Y] \to h^0(X, w_0^*, \mathcal{S}(\beta_Y))$$

is an operator isomorphism.

The proof is tedious but straightforward and will be omitted. As a consequence of the lemma, θ is a homomorphism.

For a group A with G as left operators, let I(A) denote its subgroup of invariant elements. Note that the image of θ is contained in I([X, Y]). For an integer n, let $\mathcal{A}(n)$ denote the class of abelian torsion groups whose p-primary component is zero if p does not divide n.

(8.13) THEOREM. Let G have order n. Then

$$\theta: (E(X, Y), \alpha) \to I([X, Y])$$

is an isomorphism modulo $\mathcal{A}(n)$.

Proof. By the preceding lemma it is sufficient to show that

$$(8.14) i^*: h^0(W \times X/G, \pi_X, \mathcal{S}(\beta_Y)) \to I(h^0(X, w_0^*, \mathcal{S}(\beta_Y)))$$

is an isomorphism modulo $\mathcal{A}(n)$. Applying the spectral sequence of §4 to π_X : $W \times X/G \to W/G$, we have

$$E_2^{p,q} = H^p(W/G; [h^q(X, \mathcal{S}(\beta_v))])$$

and a finite filtration

$$h^0(W \times X/G, \pi_X, \mathscr{S}(\beta_Y)) = J^{0,0} \supset J^{1,-1} \supset \cdots \supset J^{k,-k} \supset \cdots$$

with $E_{\infty}^{k,-k} = E_r^{k,-k}$ for large r.

We need the well-known facts [6] that $H^p(W/G; [h^q(X, \mathcal{S}(\beta_Y))])$ is in $\mathcal{A}(n), p > 0$, and

$$H^0(W/G; [h^q(X, \mathcal{S}(\beta_Y))]) \simeq I(h^q(X, w_0^*, \mathcal{S}(\beta_Y))).$$

From the above filtration we have that i^* in (8.14) is an isomorphism modulo $\mathcal{A}(n)$. This completes the proof.

Suppose $G=\mathbb{Z}_2$ and $Y=S^n$, where the action of \mathbb{Z}_2 on S^n is given by the antipodal map. Let $\Sigma^n(X)$ denote the *n*th stable cohomotopy group of X.

(8.15) COROLLARY. Let T be a cellular fixed point free involution on the CW-complex X with X/T (2n-1)-coconnected. Then

$$\theta: (E(X, S^n), \alpha) \to I(\Sigma^n(X))$$

is an isomorphism modulo 2-torsion.

Let $\omega: \Sigma^n(X) \to H^n(X)$ be the Hopf map and let Q denote the rational numbers. A theorem of Serre [8] asserts that

$$(8.16) \omega \otimes 1: \Sigma^{n}(X) \otimes Q \to H^{n}(X; Q)$$

is an isomorphism.

Let Z_2 operate on $H^n(X; Q)$ by the rule $U \to T^*(u)$, n-odd, and $U \to -T^*(u)$, n-even.

(8.17) COROLLARY. With X and T as in (8.15)

$$\omega\theta\otimes 1: (E(X,S^n),\alpha)\otimes Q\to I(H^n(X;Q))$$

is an isomorphism.

Proof. Note that with the operation defined above on $H^n(X; Q)$, $\omega \otimes 1$ is an operator isomorphism. Now apply (8.15).

9. Immersions and embeddings. For a closed C^{∞} -manifold M of dimension n let T(M) and $T_0(M)$ denote respectively its tangent bundle and tangent sphere bundle. Let E^{n+k} denote Euclidean (n+k)-space. An immersion $f \colon M \to E^{n+k}$ is a C^{∞} -map whose derivative $T(f) \colon T(M) \to T(E^{n+k})$ has rank n at each point $x \in M$. Two immersions $f_0, f_1 \colon M \to E^{n+k}$ are regularly homotopic if there is a C^{∞} -map $F \colon M \times I \to E^{n+k}$ such that $F_0 = f_0$, $F_1 = f_1$, and F_t is an immersion, $0 \le t \le 1$. Let $IM^{n+k}(M)$ denote the set of regular homotopy classes of immersions of M into E^{n+k} .

An embedding $f: M \to E^{n+k}$ is a one-one immersion. Two embeddings $f_0, f_1: M \to E^{n+k}$ are isotopic if there is a C^{∞} -map $F: M \times I \to E^{n+k}$ such that $F_0 = f_0$, $F_1 = f_1$ and F_t is an embedding, $0 \le t \le 1$. Let $EM^{n+k}(M)$ denote the set of isotopy classes of embeddings of M into E^{n+k} .

There is a fixed point free involution A_M on $T_0(M)$ which on each fibre S^{n-1} is the antipodal map A_{m-1} .

Let Δ denote the diagonal of $M \times M$. There is a fixed point free involution B_M on $M \times M - \Delta$ defined by $(x, y) \rightarrow (y, x)$.

An immersion $f: M \to E^{n+k}$ determines an equivariant map $T_0(f): T_0(M) \to E^{n+k} \times S^{n+k-1}$. Since the projection $\pi: E^{n+k} \times S^{n+k-1} \to S^{n+k-1}$ is equivariant, so also is $\pi T_0(f): T_0(M) \to S^{n+k-1}$.

An embedding $f: M \to E^{n+k}$ gives an equivariant map $f \times f: M \times M - \Delta \to E^{n+k} \times E^{n+k} - \Delta$. There is $\lambda: E^{n+k} \times E^{n+k} - \Delta \to S^{n+k-1}$ by $\lambda(v_1, v_2) = v_1 - v_2/|v_1 - v_2|$ and λ is equivariant. Then $\lambda(f \times f): M \times M - \Delta \to S^{n+k-1}$ is also equivariant.

Our study of the sets $IM^{n+k}(M)$ and $EM^{n+k}(M)$ is based on the following

(9.1) THEOREM (HIRSCH-HAEFLIGER [5]). Suppose 2k > n+1. The correspondence

$$\eta: IM^{n+k}(M) \rightarrow E(T_0(M); S^{n+k-1})$$

defined by $\eta([f]) = [\pi T_0(f)]$ is one-one and onto.

(9.2) THEOREM (HAEFLIGER [4]). Suppose 2k > n + 3. The correspondence

$$\tau: EM^{n+k}(M) \to E(M \times M - \Delta; S^{n+k-1})$$

defined by $\tau([f]) = [\lambda(f \times f)]$ is one-one and onto.

By means of η and τ the sets $IM^{n+k}(M)$ and $EM^{n+k}(M)$ inherit a natural affine group structure.

(9.3) THEOREM. For k > 1,

$$A_M^{\#}: \Sigma^{n+k-1}(T_0(M)) \to \Sigma^{n+k-1}(T_0(M))$$

is $(-1)^n$ times the identity, modulo 2-torsion.

Proof. There is a spectral sequence $\{E_r\}$ with

$$E_2^{p,q} = H^p(M; [\Sigma^q(S^{n-1})])$$

and a filtration

$$\Sigma^{n+k-1}(T_0(M)) = J^{0,n+k-1} \supset \cdots \supset J^{n,k-1} \supset 0$$

with $J^{p,q}/J^{p+1,q-1} = E_{\infty}^{p,q}$. It is sufficient to show that for q > 0, the induced automorphism of $E_2^{p,q}$ is $(-1)^n$ times the identity. This agrees with the coefficient automorphism determined by $A_{m-1}^{\#}: \Sigma^q(S^{n-1}) \to \Sigma^q(S^{n-1})$, since A_{m-1} is the restriction of A_M to the fibre. It is well known that for q > 0, $A_{m-1}^{\#}$ is $(-1)^n$ times the identity. This completes the proof.

Letting $I(\Sigma^{n+k-1}(T_0(M)))$ denote the subgroup of elements invariant under $(A_{m+k-1})_{\#}A_{M}^{\#}$, we have by the above lemma

(9.4) COROLLARY. Let k > 1. For k even, $I(\Sigma^{n+k-1}(T_0(M))) = \Sigma^{n+k-1}(T_0(M))$ and for k odd, $I(\Sigma^{n+k-1}(T_0(M))) = 0$, modulo 2-torsion.

We will write $M \subseteq E^{n+k}$ ($M \subseteq E^{n+k}$) if there exists an immersion (embedding) of M in E^{n+k} . Applying (8.15) and the preceding corollary, we have

(9.5) THEOREM. Suppose 2k > n+1 and $M \subseteq E^{n+k}$. For k-odd $(IM^{n+k}(M), \alpha) = 0$ modulo 2-torsion. For k-even

$$\theta_{\eta}: (IM^{n+k}(M), \alpha) \to \Sigma^{n+k-1}(T_0(M))$$

is an isomorphism modulo 2-torsion.

For embeddings we have

(9.6) THEOREM. Suppose 2k > n+3 and $M \subseteq E^{n+k}$. Then

$$\theta \tau : (EM^{n+k}(M), \alpha) \to I(\Sigma^{n+k-1}(M \times M - \Delta))$$

is an isomorphism modulo 2-torsion.

Here $I(\Sigma^{n+k-1}(M\times M-\Delta))$ is the subgroup of elements invariant under $(A_{m+k-1})_{\#}B_{M}^{\#}$.

10. Rank of $IM^{n+k}(M)$ and $EM^{n+k}(M)$. In this section it is assumed that M is orientable. Let

(10.1)
$$\tilde{\omega}: (IM^{n+k}(M), \alpha) \to H^k(M)$$

be the composition

$$(IM^{n+k}(M),\alpha) \xrightarrow{\theta\eta} \Sigma^{n+k-1}(T_0(M)) \xrightarrow{\omega} H^{n+k-1}(T_0(M)) \xrightarrow{\psi} H^k(M)$$

where ψ is from the Gysin sequence for $T_0(M) \to M$.

For an immersion $g: M \to E^{n+k}$, the normal class of g is the Euler class $\chi(g) \in H^k(M)$ of the normal bundle of g.

(10.2) LEMMA. Let γ generate $H^{n+k-1}(S^{n+k-1})$. Then with a suitable orientation of the normal bundle of g, we have

$$\chi(g) = \psi T_0(g)^* \pi^*(\gamma).$$

Proof. This follows from Theorem (1.1) of [7]. Let $g^{-1}(T_0(E^{n+k}))$ be the bundle over M induced by g and let

$$T_0(M) \xrightarrow{f_2} g^{-1}(T_0(E^{n+k})) \xrightarrow{\tilde{g}} T_0(E^{n+k})$$

be the factorization of $T_0(g)$. Then

(10.3)
$$\psi T_0(g)^* \pi^*(\gamma) = \psi f_2^* \tilde{g}^* \pi^*(\gamma).$$

In the Gysin sequence for $g^{-1}(T_0(E^{n+k})) \to M$, we have $\psi \tilde{g}^* \pi^*(\gamma) = 1 \in H^0(M)$. Using the notation of Theorem (1.1) of [7], we have

$$\psi f_2^* \tilde{g}^* \pi^* (\gamma) = G_2 \psi \tilde{g}^* \pi^* (\gamma) = G_2^* (1) = \chi(g).$$

This completes the proof.

The above lemma implies that $\chi(g)$ depends only on the class $\beta \in IM^{n+k}(M)$, so we will write $\chi(\beta)$ instead of $\chi(g)$.

(10.4) LEMMA. For
$$\gamma \in IM^{n+k}(M)$$
, $\tilde{\omega}(\gamma) = \chi(\gamma) - \chi(\alpha)$.

Proof. This follows from the preceding lemma and the definition of $\tilde{\omega}$. Now from Theorem (9.5) we have

(10.5) THEOREM. Suppose 2k > n+1 and $M \subseteq E^{n+k}$. For k-odd, $(IM^{n+k}(M), \alpha) \otimes Q = 0$ and for k-even

$$\tilde{\omega} \otimes 1: (IM^{n+k}(M), \alpha) \otimes Q \to H^k(M; Q),$$

given by $\tilde{\omega} \otimes 1(\gamma \otimes x) = (\chi(\gamma) - \chi(\alpha)) \otimes x$, is an isomorphism.

For embeddings, let

(10.6)
$$\tilde{\omega}: (EM^{n+k}(M), \alpha) \to H^{n+k-1}(M \times M - \Delta)$$

be the composition

$$(EM^{n+k}(M), \alpha) \xrightarrow{\theta \tau} \Sigma^{n+k-1}(M \times M - \Delta) \xrightarrow{\omega} H^{n+k-1}(M \times M - \Delta).$$

By Theorem (8.15) we have an isomorphism

(10.7)
$$\tilde{\omega} \otimes 1: (EM^{n+k}(M), \alpha) \otimes Q \rightarrow I(H^{n+k-1}(M \times M - \Delta; Q)).$$

Let $u \in H_{2n}(M \times M)$ be a fundamental class and let

$$(10.8) D: H^{n+k-1}(M \times M - \Delta; Q) \rightarrow H_{n-k+1}(M \times M, \Delta; Q)$$

denote the Lefschetz-Poincaré duality map

$$D(v) = u \cap v, \quad v \in H^{n+k-1}(M \times M - \Delta; Q).$$

Next, let

(10.9)
$$\kappa: H_*(M; Q) \otimes H_*(M; Q) \to H_*(M \times M; Q)$$

be the Künneth map and $\delta: M \to M \times M$ the diagonal map. For $a \in H_{n-k+1}(M)$, write

$$\kappa^{-1}\delta_*(a)=a\otimes 1\oplus 1\otimes a+\hat{a},$$

$$\hat{a} \in \sum_{i=1}^{n-k} H_i(M; Q) \otimes H_{i'}(M; Q),$$

i'=n-k+1-i. The element a is primitive if $\hat{a}=0$. Let $j: M\times M\to (M\times M, \Delta)$ be the inclusion. We have an isomorphism

$$(10.10) \quad (j_{*}\kappa)^{-1}D \colon H^{n+k-1}(M \times M - \Delta; Q) \to \sum_{i=1}^{n-k+1} H_{i}(M; Q) \otimes H_{i'}(M; Q).$$

Define an involution T on the right hand side of (10.10) by

(10.11)
$$T(a \otimes 1) = (-a) \otimes 1 - \hat{a}, \quad \dim(a) = n - k + 1, \\ T(a \otimes b) = (-1)^{n} b \otimes a, \quad \dim(a) = i, \dim(b) = i' > 0.$$

Then $(j_*\kappa)^{-1}D$ is an operator isomorphism when the involution on the left is $(-1)^{n+k}B_M^*$ and on the right is $(-1)^kT$. Now let

(10.12)
$$J_{n,k}(M; Q) = \sum_{i=1}^{r} H_i(M; Q) \otimes H_{i'}(M; Q),$$

where r is the greatest integer less than or equal to n-k/2 and let $P_{n-k+1}(M; Q)$ denote the subgroup of primitive elements in $H_{n-k+1}(M; Q)$.

(10.13) THEOREM Suppose 2k > n+3 and $M \subseteq E^{n+k}$. Then $(EM^{n+k}(M), \alpha) \otimes Q$ is given by the following table:

	$k \equiv 0 \mod 2$	$k \equiv 1 \mod 2$
$n+k\equiv 0,1,2\bmod 4$	$J_{n,k}(M;Q)$	$J_{n,k}(M; Q) \oplus P_{n-k+1}(M; Q)$
$n+k\equiv 3 \mod 4$	$J_{n,k}(M; Q) \oplus H_{n-k+1/2}(M; Q)$	$J_{n,k}(M; Q) \oplus H_{n-k+1/2}(M; Q) \oplus P_{n-k+1}(M; Q)$

Proof. The various cases are all handled in the same way. For example, when $n+k\equiv 0, 1, 2 \mod 4$ and $k\equiv 0 \mod 2$,

$$\rho: J_{n,k}(M; Q) \to \sum_{i=1}^{n-k+1} H_i(M; Q) \otimes H_{i'}(M; Q)$$

by

$$\rho\left(\sum_{i=1}^{r} a_{i} \otimes b_{i'}\right) = \sum_{i=1}^{r} (a_{i} \otimes b_{i'} \oplus (-1)^{ii'} b_{i'} \otimes a_{i})$$

is injective onto the subgroup of elements invariant under $(-1)^kT$.

11. The normal class of an immersion. In this section, M is orientable. We consider a question raised by Lashof and Smale [7] as to what elements $v \in H^k(M)$ are realizable as normal classes of an immersion. Such elements will be characterized as permanent cycles in a spectral sequence.

If $M \subseteq E^{n+k}$ let

(11.1)
$$N^{k}(M) = \{v \in H^{k}(m) \mid v = \chi(\gamma), \gamma \in IM^{n+k}(M)\}.$$

If 2k > n+1, then by Lemma (10.4), $N^k(M)$ is a coset of $\tilde{\omega}(IM^{n+k}(M), \alpha)$. If it is assumed that $M \subseteq E^{n+k-1}$ or $M \subseteq E^{n+k}$, then there is $\alpha \in IM^{n+k}(M)$ such that $\chi(\alpha) = 0$. In this case $N^k(M) = \tilde{\omega}(IM^{n+k}(M), \alpha)$ and is therefore a subgroup of $H^k(M)$.

Let S^{∞} and P^{∞} be the infinite dimensional sphere and projective space respectively, let $X(M) = S^{\infty} \times T_0(M)/Z_2$ and $P_0(M) = T_0(M)/Z_2$ and let $\pi_1: X(M) \to P^{\infty}$ and $\pi_2: X(M) \to P_0(M)$ be the projections. Pick $s_0 \in S^{\infty}$ and define $i: T_0(M) \to X(M)$ by $i(x) = [s_0, x]$, $x \in T_0(M)$. From the definition of $\tilde{\omega}$ and the commutativity of (8.9) we see that the image of $\tilde{\omega}$ is equal to the image of the composition

(11.2)
$$h^{0}(X(M), \pi_{1}, \mathcal{S}(\beta)) \xrightarrow{i^{*}} \Sigma^{n+k-1}(T_{0}(M))$$
$$\xrightarrow{\omega} H^{n+k-1}(T_{0}(M)) \xrightarrow{\psi} H^{k}(M),$$

where $\beta = (S^{\infty} \times S^{n+k-1}/\mathbb{Z}_2, P^{\infty}, \pi_1)$.

Constructing the spectral sequence for the identity map $X(M) \to X(M)$ and $\pi_1 \in \mathcal{M}(X(M), P^{\infty})$, we have

(11.3)
$$E_2^{p,q} = H^p(X(M); [\Sigma^{q+n+k-1}(pt)]) = H^p(P_0(M); [\Sigma^{q+n+k-1}(pt)])$$

(the right-hand identification being made by π_2^*) and

(11.4)
$$j: h^0(X(M), \pi_1, \mathcal{S}(\beta)) \to E_{\infty}^{n+k-1, -(n+k-1)} \subset H^{n+k-1}(P_0(M); [Z]).$$

Then the following diagram is commutative.

(11.5)
$$h^{0}(X(M), \pi_{1}, \mathcal{S}(\beta)) \xrightarrow{i^{*}} \Sigma^{n+k-1}(T_{0}(M))$$

$$\downarrow^{j} \qquad \qquad \downarrow^{\omega}$$

$$H^{n+k-1}(P_{0}(M); [Z]) \xrightarrow{p^{*}} H^{n+k-1}(T_{0}(M))$$

where $p: T_0(M) \to P_0(M)$ is the orbit map. Combining the above facts, we have

(11.6) THEOREM. Suppose 2k > n+1 and $M \subseteq E^{n+k}$ or $M \subseteq E^{n+k-1}$. Then

$$N^{k}(M) = \psi p^{*}(E_{m}^{n+k-1,-(n+k-1)}).$$

(11.7) LEMMA. For k-odd $\psi p^*(H^{n+k-1}(P_0(M); [Z])) = 0$. For k-even, $\psi p^*(H^{n+k-1}(P_0(M); [Z])) \subseteq 2H^k(M)$.

Proof. Comparing the spectral sequence for $T_0(M) \to M$ and $P_0(M) \to M$, we have a commutative diagram

$$H^{n+k-1}(P_0(M); [Z]) \xrightarrow{p^*} H^{n+k-1}(T_0(M))$$

$$\downarrow j$$

$$E_{\infty}^{k,n-1} \qquad \qquad \downarrow j$$

$$H^k(M; H^{n-1}(P^{n-1}; [Z])) \xrightarrow{(\tilde{p}^*)_{\#}} H^k(M; H^{n-1}(S^{n-1})) = H^k(M),$$

where $\tilde{p}: S^{n-1} \to P^{n-1}$ is the restriction of p to the fibre. The involution on Z is $(-1)^{n+k}$. Thus $H^{n-1}(P^{n-1}; [Z])$ is Z_2 or Z depending on whether k is odd or even. In the former case \tilde{p}^* has image 0 and in the latter \tilde{p}^* has image $2H^{n-1}(S^{n-1})$. The lemma now follows from the commutativity of the above diagram.

From (11.6), (11.7) and Theorem (10.6), we have

(11.8) THEOREM. Suppose 2k > n+1 and $M \subseteq E^{n+k-1}$. For k-odd, $N^k(M) = 0$. For k-even, $N^k(M)$ is a subgroup of $2H^k(M)$ having finite index.

REMARK. For k=n or n-1 and k-even, we deduce that

$$\psi p^*(H^{n+k-1}(P_0(M); [Z])) = 2H^k(M).$$

Then using Theorem (11.6), we obtain the following table for $N^k(M)$:

	n-even	n-odd
k=n	$2H^n(M)$	0
k=n-1	0	$2H^{n-1}(M)$

The values for k = n were given by Lashof and Smale [7]. Information for k < n-1 would involve computing the twisted cohomology operations which appear as differential operators in the spectral sequence.

Let $S^k \times S^{n-1}$ have the involution $(a, b) \rightarrow (a, -b)$.

(11.9) LEMMA. For k-even, there is an equivariant map $f: S^k \times S^{n-1} \to S^{k+n-1}$ of degree 2.

Proof. Let $p: S^k \times S^{n-1} \to S^k \times P^{n-1}$ be the orbit map. There is an equivariant map $g: S^k \times S^{n-1} \to S^{k+n-1}$ of degree 0, namely, the projection onto S^{n-1} followed by the inclusion $S^{n-1} \subset S^{k+n-1}$. Now the correspondence

$$E(\hat{S}^k \times S^{n-1}, S^{k+n-1}) \to H^{k+n-1}(S^k \times P^{n-1}; [Z])$$

which assigns to f the primary obstruction d(f, g) to an equivariant homotopy between f and g is one-one and onto. The involution on Z is $(-1)^{k+n} = (-1)^n$ and, by an elementary computation, $H^{k+n-1}(S^k \times P^{n-1}; [Z]) = Z$ and

$$p^*: H^{k+n-1}(S^k \times P^{n-1}; [Z]) \to H^{k+n-1}(S^k \times S^{n-1})$$

takes a generator to twice a generator. Therefore if we choose f so that d(f, g) is a generator, the degree of f will be 2.

Suppose that M is parallelizable. Then $T_0(M) = M \times S^{n-1}$ and we can define

$$(11.10) \qquad \psi \colon \Sigma^{n+k-1}(T_0(M)) \to \Sigma^k(M)$$

to be the composition

$$\Sigma^{n+k-1}(M\times S^{n-1})\xrightarrow{j^{*-1}}\Sigma^{n+k-1}(M\times S^{n-1},M\times S^{n-1})\longrightarrow \Sigma^{k}(M),$$

where j is inclusion and the unmarked arrow is (n-1)-fold desuspension. The following diagram is commutative:

(11.11)
$$\Sigma^{n+k-1}(T_0(M)) \xrightarrow{\psi} \Sigma^k(M)$$

$$\downarrow \omega \qquad \qquad \downarrow \omega$$

$$H^{n+k-1}(T_0(M)) \xrightarrow{\psi} H^k(M)$$

(11.12) THEOREM. Suppose M is parallelizable and 2k > n+1. Then

$$\psi\theta\eta: (IM^{n+k}(M), \alpha) \to \Sigma^k(M)$$

has image 0, k-odd, and $2\Sigma^k(M)$, k-even.

Proof. We will first show that the image of

$$i^*: h^0(X(M), \pi_1, \mathcal{S}(\beta)) \to \Sigma^{n+k-1}(T_0(M))$$

is 0, k-odd, and is contained in $2\Sigma^{n+k-1}(T_0(M))$, k-even. This will imply that the image of $\psi\theta\eta$ is 0, k-odd, and contained in $2\Sigma^k(N)$, k-even. We have a commutative diagram

$$T_0(M) \xrightarrow{i} X(M)$$

$$\downarrow \tilde{\rho} \qquad \qquad \downarrow \rho$$

$$S^{n-1} \xrightarrow{\tilde{l}} S^{\infty} \times S^{n-1}/Z_2$$

where ρ and $\tilde{\rho}$ are projections and $\tilde{\iota}$ is inclusion. Comparing the spectral sequences for ρ and $\tilde{\rho}$, we obtain a commutative diagram

$$h^{0}(X(M), \pi_{1}, \mathcal{S}(\beta)) \xrightarrow{\tilde{i}^{*}} \Sigma^{n+k-1}(T_{0}(M))$$

$$\downarrow j \qquad \qquad \downarrow \tilde{j}$$

$$H^{n-1}(S^{\infty} \times S^{n-1}/Z_{2}; [\Sigma^{k}(M)]) \xrightarrow{\tilde{i}^{*}} H^{n-1}(S^{n-1}; \Sigma^{k}(M))$$

Since j is an isomorphism and i^* has image 0, k-odd, and $2H^{n-1}(S^{n-1}; \Sigma^k(M))$, k-even, it follows that the image of i^* is 0, k-odd, and contained in $2\Sigma^{n+k-1}(T_0(M))$, k-even.

Suppose now that k is even. Let $u \in 2\Sigma^k(M)$ and choose $f: M \to S^k$ such that u=2[f]. Let $f': M \times S^{n-1} \to S^k \times S^{n-1}$ be defined by f'(x,b)=(f(x),b). Then f' is equivariant when the involution on $M \times S^{n-1}$ is $(x,b) \to (x,-b)$ and on $S^k \times S^{n-1}$ is $(a,b) \to (a,-b)$. By Lemma (11.9), there is an equivariant map $g: S^k \times S^{n-1} \to S^{n+k-1}$ of degree 2. Let $\gamma \in E(T_0(M), S^{n+k-1})$ be the class of gf'. Then choosing $\alpha \in IM^{n+k}(M)$ so that $\zeta \eta(\alpha) = 0$ in $\Sigma^{n+k-1}(T_0(M))$, (see (8.8)), we have

$$\psi\theta\eta(\eta^{-1}(\gamma))=2[f]=u.$$

Therefore, when k is even, the image of $\psi\theta\eta$ is onto $2\Sigma^k(M)$. This completes the proof.

Let $S^k(M)$ denote the subgroup of spherical classes of $H^k(M)$, that is, the image of $\omega: \Sigma^k(M) \to H^k(M)$.

(11.13) COROLLARY. Suppose M is parallelizable and 2k > n+1. Then $N^k(M) = 0$, k-odd, and $N^k(M) = 2S^k(M)$, k-even.

Proof. Choose $\alpha \in IM^{n+k}(M)$ such that $\zeta\eta(\alpha)=0$. Suppose $v \in N^k(M)$. Let $\gamma \in IM^{n+k}(M)$ be such that $v=\chi(\gamma)$. Then by Lemma (10.4), $v=\bar{\omega}(\gamma)$. By the preceding theorem, there is $u \in \Sigma^k(M)$ such that $\psi\theta\eta(\gamma)=2u$. Then, by the commutativity of (11.11),

$$v = \tilde{\omega}(\gamma) = 2\omega(u) \in 2S^k(M).$$

Conversely, suppose $v \in 2S^k(M)$. Let $u \in \Sigma^k(M)$ be such that $v = 2\omega(u)$. By the preceding theorem there is $\gamma \in IM^{n+k}(M)$ such that $\psi \theta \eta(\gamma) = 2u$. By the commutativity of (9.12)

$$\chi(\gamma) = \tilde{\omega}(\gamma) = \omega(2u) = v.$$

This completes the proof.

REMARK. Theorems (11.12) and (11.13) are also true if M is a π -manifold. The proofs are essentially the same.

BIBLIOGRAPHY

1. W. Barcus, Note on cross-sections over CW-complexes, Quart. J. Math. Oxford Ser. (2) 5 (1954), 150-160.

- 2. A. Dold, Relations between ordinary and extraordinary cohomology theories, Colloquium on algebraic topology, Aarhus Universitet, 1962, pp. 2-9.
 - 3. A. Heller, On equivariant maps of spaces with operators, Ann. of Math. 55 (1952), 223-231.
- 4. A. Haefliger, *Plongements différentiables dans le domaine stable*, Comment. Math. Helv. 37 (1962), 155-176.
- 5. A. Haefliger and M. Hirsch, *Immersions in the stable range*, Ann. of Math. 75 (1962), 231-241.
 - 6. P. Hilton and S. Wylie, Homology theory, Cambridge Univ. Press, New York, 1960.
- 7. R. Lashof and S. Smale, On the immersion of manifolds in euclidean space, Ann. of Math. 68 (1958), 562-583.
- 8. J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294.
- 9. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.
- 10. J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245.

University of Massachusetts, Amherst, Massachusetts