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1. Introduction. In this paper we will be concerned with the problem of

homotopy classification of liftings of a map. Suppose that j3 = (£, B,p) is a locally

trivial fibre space with fibre £ Then, for/: Y-»- B, there is the set L(X,f, ß) of

homotopy classes of liftings of/ Assuming that L{X,f, ß) is not empty and that Y

is (2n-l)-coconnected and £ is (n-l)-connected, we will construct, for

aeL(X,f,ß), an abelian group structure on L{X,f,ß) such that a is the zero

element. Denote the group by (£(Ar,/, j8), a) and the sum of two elements yx and y2

by Yl +<r Y2-

Given a0, ax eL(Y,/, ß), the different group structures on L{X,f, ß) determined

by a0 and ax are isomorphic in the best possible way. The translation ßL{X,f, ß), ax)

-*■ iL{X,f ß), a0) which sends y to y+aiao is an isomorphism.

A weak form of the classification problem is then to determine the structure of

thegroupCL(Y,/,0),a).

In §2 we define a 5-cohomology theory where B is a fixed space. These are

generalizations of cohomology with local coefficients, and if B is a point, they are

generalized cohomology theories as in [9]. For each CW-pair (Y, A) and integer n,

hniX, A) is a local system of abelian groups over the mapping space J(iX, B). The

group assigned XofeJiiX, B) is denoted by nn(Y, A,f).

In §4 we construct the spectral sequence for a fibre map tr: Y"-> X. This is

analogous to Dold's generalization of the Serre spectral sequence [2].

In §§5 and 6 we define a 5-spectrum and show how to construct a £-cohomology

theory from a 5-spectrum. We then associate to a fibre space ß=iE,B,p) a

5-spectrum Sf'ß) in a natural way and define, for a e L(X,f, ß), a correspondence

ia:LiX,f,ß)->h°iX,f,yiß)),

which, in the stable range, i.e., when Y is (2n—l)-coconnected and £ is (n—1)-

connected, is one-one and onto. The group structure on L(Y,/ ß) having a as zero

element is obtained by pulling back the group structure on h°iX,f S^iß)) via <fia.

Then (using the terminology of §7) we show that L(X,f, ß) has a natural affine

group structure.

Suppose that G is a finite group which acts on Y and Y and is free on Y. Let

£(Y, Y) denote the set of homotopy classes of equivariant maps from Y to Y.

Using a construction of Heller [3] and our previous results, we define an affine
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group structure on E(X, Y), provided E(X, Y) is not empty, X/G is (2«—1)-

coconnected and y is («—l)-connected. Our main result on the structure of

(¿(A", Y), a) is Theorem (8.13).

In §§9 and 10 we make use of recent results of Hirsch and Haefliger [4], [5]

which reduce the problem of classifying immersions (embeddings) of a closed

«-dimensional C "-manifold M in euclidean space En+k to a problem of classifying

equivariant maps. These allow us to define a natural affine group structure on the

set IMn+k(M)(EMn+k(M)) of regular homotopy classes of immersions (isotopy

classes of embeddings) of M in En+k provided the set is not empty and 2A:>« +1

(2k > « + 3). Using Theorem (8.13) we compute the rank and /»-primary component,

/»-odd, of these groups.

In §11 we study a question raised by Lashof and Smale [7] as to what classes in

Hk(M) are realizable as normal classes of an immersion of M into ¿n+fc.

2. Cohomology theories. Given a space X, let X denote the category whose

objects are points of X and such that the set of maps M(x0, xx), x0, Xi £ X, consists

of equivalence classes of paths from xx to x0, the equivalence relation being homo-

topy relative to the end points. A continuous map /: Xx -*■ X2 defines a covariant

functor/: Xx -*• X2 in the obvious way.

Let ¿/ denote the category of abelian groups. A local system of abelian groups

over X is a covariant functor L: X->s/. We will denote ¿(H) by <r# where [a]

is an equivalence class of paths.

Suppose that local systems Lx : Xx -*■ si and ¿2 : X2 -*■ s/ and a map/: A^ -»■ X2

are given. A homomorphism <// over / from Lx to ¿2 is a natural transformation

^:¿1^¿2/.

Let Sf denote the category whose objects are pairs (X, L) where L is a local

system over X and whose maps are pairs (f, <ji) : (Xx, Lx) -*■ (X2, L2), where

/: Xi, -*■ X2 and ^ is a homomorphism over/from ¿x to ¿2.

Let a52 denote the category of CW-pairs. Fix a space B. For any space X let

J((X, B) denote the space with the compact-open topology of maps/: X-^- B. For

g: Xi -> X2 define Jt(g): J((X2, B)-> J(XU B) by Ji(g)(f)=fg.
A B-cohomology theory on 3P2 consists of the following.

(A). For (X, A) e 0>2, fe Jt(X, B) and each integer n, an abelian group

hn(X, A,f).

(B). For (X,A)e3>2 and ¿: I -> M(X, B), with ¿(0)=/0, ¿(l)=/i, a homo-

morphism

F#:h\X,A,fi)^h\X,A,f0).

(C). For g: (Xlt Ax) -*■ (X2, A2) and fe Ji(X2, B), a homomorphism

g*: h\X2, A2,f) -> h\Xi, Ai,fg).

(D). For (X, A) e &2 and/£ J((X, B) a homomorphism

d:h\A,f\A)^hn+\X,A,f).
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These are to have the following properties.

I. For (Y, A) e &2, the collection {h\X, A,f), £#}, fe Jf(X, B), F e JiiX, B)',

is a local system over JiiX, B) which will be denoted by h\X, A).

II. For g: iXx, Ax) -+ (Y2, A2) the collection {g* : h\X2, A2,f) -> h%Xx, Ax,fg)},

feJiiX2, B) is a homomorphism of local systems over Jtig).

Then, for (Y, A) e 0>2, the collection {h\A,f\A), F\A#},fe JiiX, B), FeJ({X, B)'

is a local system over JiiX, B). Here F\A: I-> Jt{A, B) is defined by F\Ait)ia)

= Fit)ia), aeA.

III. For (Y, A) e @2, the collection {d: h\A,f\A) -> hn+\X, A,f)},fe JiiX, B)

is a homomorphism of local systems over the identity map JtiX, B) -*■ JiiX, B).

IV. The function Xn:^>2^£C defined by X\X, A) = iJi{X, B), hn{X, A)) and

JVnig) = i'diig)i S*) is a contravariant functor.

V. For g: {Xx, Ax) -> (Y2, A2) and fe Ji{X2, B), the diagram

«n0WD -► h"+\X2,A2,f)

ig\Alr g*

h\Ax,f\A2g\Al) -> hn+\Xx,Ax,fg)

is commutative.

VI. For G: (Yl5 Ax) x 1^ (Y2, A2) a homotopy from g0 to gx, the diagram

«n(A-2, A2,f)

h\Xx, Ax,fgx)

(fGh

h%Xx,Ax,fgo)

is commutative.

VII. For (Y, A) e 3P2 and feJi{X, B), the sequence

——* n^./U) —- «n+i(x Aj) -^ hn+\x,f) -^-> • • •

is exact. Here /: Y-> (Y, A) and i: A-+ X are inclusions.

VIII. If X=AX\JA2 and iAx, Ax n A2) and (Y, yi2) are in 0>2, then, for

/e^(Y,£),

i*:h\X, A2,f)->//»(A, ^ n ^2,/|Al)

is an isomorphism. Here i: iAx, Ai Ci A2) -*■ (Y, /12) is inclusion.

Example 1. Take £ to be a point. Then any generalized cohomology theory

(such as in [9]) may be regarded as a £-cohomology theory'on 3P2.

For the next example, if £ is a local system of abelian groups over Y, let

H\X, A ; L) denote the nth singular cohomology group of (Y, A) with coefficients

in£.

Example 2.    Fix a space B and a local system L over B. For (Y, A) e 0>2 and
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fe J((X, B), the composition Lj: X-*- s/ is a local system over X. We then have

H\X,A;LJ).
For ¿: I-*Jf(X, B) with ¿(0)=/0, ¿(l)=/i, and xeX, define <jx; /->• B by

°x(t)=F(x,t), Ojg/Sl. Then let F#=ox#:L(fi(x))-*L(fo(x)). There results a

coefficient homomorphism

F#: H\X, A, Lji) -> /7n(Jif, ¿, L/0).

With the homomorphism induced by a continuous mapping of pairs and the

boundary operator defined in the usual way, it is easy to see that we have a B-

cohomology theory on 3f2.

3. Description of ¿#. Assume that a cohomology theory over B is given.

Axioms IV and VI imply.

(3.1) Lemma. If g:(XuAi)-^-(X2,A2) is a homotopy equivalence, then for

feJi(X2,B\

g*:h\X2,A2,f)->h\Xi,Ai,fg)

is an isomorphism.

A subspace A <= X is a weak deformation retract of X if the inclusion i : A -> X

is a homotopy equivalence. By the exact cohomology sequence for (X, A) and the

above lemma, we have

(3.2) Lemma. If A is a weak deformation retract of^X, then for fe M(X, B),

h\X, A,f)=0.

Now let/o./i £ J((X, B) and let ¿: Xx /-* B be a homotopy from/0 to/i. Let

7={0,1}. We then have a boundary operator

(3.3)    d¡: h\Xxt uAxI, Xx{j} uAxI,F)^ hn+1(Xx I,Xx1kjAxI, F),

j = 0, 1.

(3.4) Lemma. Forj=0, 1, d, is an isomorphism.

Proof. By exactness, it is sufficient to show that hn(XxI, Xx{j}\J Ax I, ¿)=0.

This follows from the preceding lemma.

Let </)=0 if j=\ and e(/) = l if /'=0. Define i,: (X, A)-+ (Xxl U Ax I,

Xx {e(j)} u Ax I) by ij(x) = (x,j), j=0,1. By Axiom VIII,

(3.5) if : hn(Xxlu Ax I, Xx {</)} u A x I, F) -* (X, A,f)

is an isomorphism. Hence we have a suspension isomorphism

(3.6) s,: hn+\Xx I, Xx 1 u A x I, F) -* hn(X, A,feU)),   j = 0,1,

byjy=4%^-1.

Let tt: Xx I-+ X be the projection.
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(3.7) Lemma. For f e JiiX, B), the composition
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h\X, A,f) —> hn + 1iXx I,Xxl\J Ax IJtt) -^-> h\X, A,f)

is minus the identity.

The proof is the same as for ordinary cohomology.

The next theorem characterizes £# in terms of suspension.

(3.8) Theorem. Let f0,fx eJt{X, B) and let F: Yx/-> B be a homotopy from

/o to fx. Commutativity holds in the diagram

hn + 1iXxI,Xxlv AxI,F)

■h%X,A,fx)

-F#

Sl
h\X, A,f0)

Proof. Define M: iXxI)xI-> Xxl by Mix, t)ß) = ix, tX). Then FMQ=f0w

and FMX = £. We have by Axioms II and III a commutative diagram

h\X, A,fx)-> h\X, A,f0)

So So
(FM)»

(3.9) hn+1iXxI,Xxî\j AxI,F)---^ hn+\XxI, Xxt u Ax I, F)

Sl

iJi{i0)FM)#
h\X, A,f0) K—^-^-* h\X, A,f0)

By the previous lemma s^ô1 on the right is minus the identity. Next, we have

Jtiix)FM=F in JiiX, B)' and Jt{i0)FM in JiiX, B)' is the constant path on/0.

Therefore iJtiix)FM)# = F# and (^(/0)£M)# is the identity. It follows that s^ö1

on the left is — £#.

Let Tj, = <tv • • vpy be an euclidean /»-simplex and f„ its boundary. Let tpí

= <t)0 • ■ ■ vt _ x, v i + ! • • ■ vpy and let 7((tp) be the closure of fp - tp>(, 0 S i up.

For FeJtiXx Tp, B), define

(3.10) j(: n"(Yx tp, Yx tp, £) -> hn~\Xx tp>¡, Yx fp>i, £),

O^i'^j?, to be the composition

d-1
h\Xx rp, Yx fp, £)-> h"-\Xx fp, XxJ^p), F)

i*
-> hn~\Xx tp>„ Yx fPi(, £).

Applying s0 /»-times, we obtain

(3.11) ig : h\X xfp,Xx f p, £) -> nn - p(Y x {t;p}, £).
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Define Afc: X-+ Xx tp by Xk(x) = (x, ufc), k=p — \,p, and let n: Xx rp->Ibe

the projection.

(3.12) Lemma. ForfeJ((X, B), the diagram

Si
hn(Xxrp, Xxfp,fir)- >hn(XxTPii,XxfPii,fir)

h*->(X,f) (   iy > h"-'(X,f)

is commutative, where k=p ifO^iép, andk=p—l ifi—p.

The proof is the same as for ordinary cohomology.

Now for FeJ((Xx rp, B) consider the diagrams

hn(Xx tp, Xx fp, F) -^-> h\Xx t„,„ Xx fp>i, ¿)

(3.13) A?tf A?*?"1

h\X, ¿Ap)    (   1}    > «n(Z, ¿A,), 0 ú i UP

hn(Xxrp,Xxfp,F)

(3.14) Apio

-* hn(Xx tp>p, Zx fPiP) ¿)

k-iJt-1

«"(A-, ¿Ap) -——*-* h\X, FXp_i)

where T: XxI->B is defined by T(x, t)=F(x, tvp-i+(l-t)vp), Og/^1.

(3.15) Lemma. The diagrams (3.13) and (3.14) are commutative.

The proof is similar to the proof of Theorem (3.8). Here we use the preceding

lemma, the homotopy M:(Xxtp)xI-+ Xxrp by M(x,z)(X) = Xz+(l — X)vp,

0^ A^ 1, and a diagram similar to (3.9).

4. The spectral sequence. Assume that a space B and a ¿-cohomology theory

on ^2 is given. In this section we construct the spectral sequence associated with a

fibre map n: Y^- X. This is a generalization of the Serre-Dold spectral sequence

[2].
We assume that -n: Y ̂ - X is locally trivial, A" is a polyhedron and for each pair

(K, L) of subcomplexes of X, we have (n^ijK), ir_1(X)) e 0>2.

Let/£ J((X, B) be given. Let F(x)=tt~1(x), x e X. We now describe the way in

which the collection of groups hn(F(x),fn), xe X, is a local system over X. Let

a: /-» X be a path from jc0 to xx. By the covering homotopy property, there is

S(d): ¿(x0)x/-* X such that Sfa) covers a and SOOo: ¿(x0) -*■ F(x0) is the

identity. We then have S^: F(x0) -*■ ¿(xj).
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Next, for xeX, we have T{x, a) : I -+ Jt{F{x), B) by Tix, o)it){y)=foit),

Ogt£l,yeFix). Note that Tix0, a)il)=faSio)x. Let

(4.1) o# : h\Fixx),fn) -* h\Fix0),fn)

be the composition

Sic)* 7Yx0, c)#
h\Fixx),fr)-i-^ h\Fix0),firSia)x) '*> h\F{xQ), fir).

(4.2) Lemma. The assignment of hniFix),fir) to xeX and of o# to ae X' is a

local system on X.

Proof. Let a be a path from x0 to xx and t a path from xx to x2. We will show that

(ctt)# = ct#t# and leave the other properties to the reader. Consider the diagram

hniFix2),fn)

S(*T)t

h"iFixx),firSir)x)    T(XUT)* > h\Fixx),fr)

Sio)* Stof
Y Y

h\Fix0),firSiar)x)   Tjx^r)^ h«{Fix0),faSi<,)x)

TiXo, ot)\ /tÍxq, a)#

hniFix0),fir)

The left hand triangle is commutative, since we may take S{ot)x to be the composi-

tion S'(T)1S'(ff)1. The lower triangle is commutative by Axiom I. The square is

commutative by Axiom II. Thus (<"0# = °#t#.

We will denote the local system described above by [nn(£)]-

Let Yp be the /»-skeleton of Y and let Yp=n~\Xp). We have an exact sequence

-► h»iY, Yp,fir) —* h\Y, Yp.x,fa) J—* h%Yp, Y,.ltfir)-►• • •.

Piecing these together leads to an exact couple with

(4.3) E?-« = hp + % Yp, Yp.ltfir),       Dpx" = h" + «( Y, Yp.x, fa).

Fix a total ordering of the vertices of Y. For t„ = <i>0 • • • t>„>, define

(4.4) St: k>+\n-*iTp), n-\rp),fa) -> hp + "-\n-\rp¡i), n~\fp^,fa)

to be i*d~1, where d is from the cohomology sequence of the triple (7t-1(tp),

»-K*,.l),»-V.(Tp)))   and   '':(w_1(Tp.f),'r-1(rp,j))-^(.r-1(fp),7r-1(yi(rP)))   »   the

inclusion.

Applying s0 /»-times leads to an isomorphism

(4.5) ig : hp+"ß-\r9), n-\fp),fa - h"{Fivp),fa).
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A» + V-X(Tp), *-\*,),fir)-> hp + "-\n-\rPii), «-\*,,¡),fn)

(4.6)
(-1)'

JT1

(4.7)

h"(F(vp),fir) ̂—^ h%F(vp),fir),   0Zi<p,

hp + -(-n-\rp), tt-\tp),M -!U hp + "-\n-\rpJ, ^\rp,p),frr)

ig ig"1

y /_ 1 \p_ y

h%F(vp),fir) * > h\F(vp-i),fv)

where a:/-» Ais defined by a(í) = í»p-r-(l-/)üp_i, O^/^l.

(4.8) Lemma. The diagrams (4.6) a«rf (4.7) are commutative.

Proof. We will show that (4.7) is commutative. Choose S: F(vp-i)xtp->

"" ~ 1(tp) to cover the inclusion tp <= A and such that SAP _ x : F(vp _ j) -+■ ¿(up _ j) is the

identity. We have a commutative diagram

#(*■(»„_ ¿/»SA,)«
(5AP)*

h%F(vp),fir)

ip*o ig

«"^(¿(l^i) X rp, F(vp-i) X *„firS) <-hp + *(rr-\Tp), «-*(*,), fir)

Ap _ jSq        Sp

h\F(vp-i),frSXp_i) +
(SXp-i)*

So   sp

h«(F(vp_i),fir)

Now use this, the commutativity of (3.14) and the fact that SXp_i is the identity

to deduce that

sp0-% = (-l)"T#(SXp)*sp0.

Next, note that T=T(vp.u a). Therefore ¿#(5AP)* = a#. The proof that (4.6) is

commutative is similar.

For tp<=A, let i(rp): tr'1^)-^ Yp be the inclusion. We have

(4.9) i(rp)*: hp + %Yp, Y,-Ufit) -+ hp + <(ir-\Tp), rr-\tp),fir).

Let C*(A; [h"(F)]) denote the simplicial cochain complex of A" with coefficients in

MF)]. Define

(4.10) </>: hp+"(Yp, Yp-i,fir) -* C"(X; [h"(F)])

by </i(u)(tp)=s%í(tp)*(u), u ehp+q(Yp, Yp.ufn-). Then </> is an isomorphism and, by

Lemma (4.8), commutes with the boundary operator. Therefore we have an identi-

fication

(4.11) t:Ei-«-+Hp(X;[h'>(F)]).
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We have a filtration

(4.12) h\Y,fa) = J°-n o ... 3 /»•-» z»...,

where

7p--p = Imagery, Yp-x,fa)->h\Y,fa)).

As usual, let Ep>-n-p=Jp-n-p/Jp+1-n-p-1. We will discuss now the convergence of

{Er,iL}tOE„.

Definition. A pair (Y, A) is k-coconnected if for every local system L of abelian

groups over X, we have H\X, A;L)=0,q^k.

(4.13) Lemma. If Y is k-coconnected and Fix), xeX, is l-coconnected, then

D?-"=0, r > max ik+2-p, I +1).

Proof. By inspecting the singular cohomology spectral sequence of it: Ya -*■ Y„

we see that Ys is (s+/)-coconnected. Therefore {Y, Yp-X) is j-coconnected

if s>ma\ik,p— l+l). Now take r>max ik + 2-p, l+l). Then p+r—2>

max {k, p -1 + /) so that by obstruction theory, there is M : YxI-> Y such that M0

is the identity, Mxi Y)<= rp+r_2, and Mt restricted to Yp.x is the identity, O^f ^ 1.

We have a commutative diagram

i* M*
np+'(F, Y^./O-U /ip + '(yp+r_2, Yp.ltfir)-=U np + «(7, Yp.x,faMx)

"^"^-^_ ifirM)#

^^   hp + \Y,Yp.x,fa)

which implies that i* is injective. By exactness,

D?-" = Image (np+<(7, Yp+r.2,fa)-^hp+%Y, Yp.x,fa)) = 0.

(4.14) Theorem. Suppose that either (a) Y is finitely coconnected or (b) Y and

Fix), x e X, are finitely coconnected. Then

(1) For each pair (/», q), there is an integer rip, q) such that E^p% ~ El;".

(2) The filtration (4.12) is finite.

This follows by a standard spectral sequence argument. For case (b), the pre-

ceding lemma is needed.

5. Liftings. Suppose that we have a pair iß, A) where j8=(£, B,p) is a Serre

fibre space and A : B -*■ E is a cross-section (/»A = identity). For (Y, A) e 0>2, let

(5.1) <?{X, A, ß, A) = {g: X-+ E \ gIA = ApglA}

and define

(5.2) cu : &ÍX, A, ß, A) -*■ JiiX, B)

by <o{g)=pg.
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(5.3) Lemma. The map <u is a Serre fibre map.

This follows easily from the exponential law and the fact that p is a Serre fibre

map.

Note that w has a cross-section

(5.4) S : JÍ(X, B) -». Sf(X, A,ß,A)

defined by 8(f)=A/.

The fibre above/£ J((X, B) will be denoted by Se(X, A,f ß, A). When we speak

of the homotopy groups of S£(X, A,f, ß, A), it will be understood that the base-

point is A/

Let ¿: I^J((X, B) be a path from/0 to/i. Then 8¿ is a path in SC(X, A, ß, A)

from A/0 to A/i. We have

(5.5) (S¿)#: nn(<?(X, A,ß,\); A/,) -*,rn(.S?( A, ¿, jB, A) ; A/0).

Now define

(5.6) ¿#: »„(^(A, ¿,/i, ß, A)) -* 7rn(i?(A-, ¿,/0, ß, A))

so that the diagram

nn(Sf(X, A,fi, ß, A)) -JU nn(<f(X, A,f0, ß, A))

*# '#

7rn(^(A", ̂ , )8, A); A/i) ^% 7r.(JSP(Jr, A, ß, A); A/0)

is commutative. (This is possible because of the cross-section 8.) Then, as in [1],

we have

(5.7) Lemma. The correspondence f '-» Trn(SC(X, A,f, ß, A)) and ¿-> F# is a local

system on J((X, B).

We consider the effect of a change of variable. For g: (Xlt Ai) -+■ (A2, A2); we

have a commutative diagram

&(X2, A2, ß, A) —i*i* ^(Zx, ¿lf ¿S, A)

(5.8) I«
^(Ar2, ¿) — -^ ^(A-!, ¿)

where Sf(g)(h)=hg. Therefore the collection

(5.9) <£(g)#: rrn(Sf(X2, A2,f, ß, A)) -► nn(X(X» Aufg, ß, A)),

feJ((X2, B), is a homomorphism of local systems.

Now let (ßi, Ax) and (ß2, A2) be given where ßt = (¿f, ¿, pt), i = 1, 2. By a map

(5.10) (¿,#):(A,A1)-*(/?2,A2)
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we mean k:Ex-+E2 such that p2k=px and K:BxI^-E2 such that KQ=A2,

Kx=kAx, and p2Kt = identity, Oár^l. Thus, up to the homotopy K, k is cross-

section preserving. We have a commutative diagram

&ik)
jSf(Y, A, ßx, Ax) -► &ÍX, A, ß2, Aa)

<5'n> \      /
JiiX, B)

where ^ik){h)=kh. Note that for fe JiiX, B), the composition /*> „#(£, £2)

■"u\ JiiX, E2) is a path in .S?(Y, A, ß2, A2) from A2/to kAxf. Define

(5.12) (Ä:, K)#: v^iX, A,f ßx, Ax)) - ^(^(Y, A,f, ß2, A2)\

fe JiiX, B), to be the composition

&ik)#
TTni<?iX, A,f, ßx, Ax)) > iTni&iX, A,f ß2, A2); kAxf)

iJiif)K)#

TTni&iX,A,f,ß2,A2)).

It is easy to show that {k, K)# is a homomorphism of local systems.

6. £-spectra.   Given iß, A) as in the previous section, let

(6.1) D(£; A) = {a:I^E\ o{I) c p-\b), some ¿> e £, and o(0) = cr(l) = A(¿»)}

and define

(6.2) D(/»):i2(£;A)->£

by Q(/»)(a) = 2», where ail)cp~\b). Using the exponential law we see that ß(|S; A)

= (£2(£; A), £, £2(/»)) is a Serre fibre space. Define a cross-section

(6.3) Q(A):£-^Q(£;A)

by Q(A)(è)(7)=A(/3), O^íál.

The pair (ß(/3; A), 0(A)) will be called the loop space of (ft A).

For (Y, A) e a32 and /e ./#(Y, B), the exponential law gives an identification

(6.4) &iX, A,f, üiß; A), Q(A)) -► Q(^(Y, A,f, ß, A)).

This in turn leads to an identification

(6.5) 7rr(.Sf(Y, A,f Q(ft A), 0(A)) -* 7rr + 1(^(Y, ¿,/, ft A)).

A B-spectrum y is a sequence of pairs (ßm,Am), —oo<m< +oo, where ft,

= (£m, £, pm) is a Serre fibre space and Am : B -*■ £m is a cross-section, together with

maps

(6.6) (*m, Km) : ißm, Am) -* (ii(ft,+! ; Am +,), ü(Am+J).
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Given a 5-spectrum Sf, we have for (X, A) e SP2 and fe Jt(X, B), a homo-

morphism

(6.7) (km, Km)#: nn(SC(X, A,f, ßm, Am)) -+ *K+1(&(Xt A,f, ßm+1, Am+1))

(using the identification (6.5)). Now, for each integer «, let

(6.8) h»(X, A,f; Sf) = dir limn w_„J&(X, A,f, ßm+1, Am + 1)).

Given ¿: I-+J((X, B) from/0 to/i, the homomorphisms

(6.9) ¿#: nn(J?(X, A,fi, ßm, AJ) -^ nn(S?(X, A,f0, ßm, Am))

commute with those in (6.7). Let

(6.10) ¿#: «"(A-, A,fi, Sf)-> h\X, A,f0; Sf)

be obtained from these by passing to the direct limit.

Given g: (Xu At) -*■ (X2, A2) and fe J((X2, B), the homomorphisms

(6.11) <?(g)# : nn(Sf(X2, A2,f ßm, Am)).-> v¿St{Xu Ax,fg, ßm, Am))

commute with those in (6.7). Define

(6.12) g*:hn(X2, A2,f; Sf) -> h\Xu Aufg; Sf)

to be the direct limit of the Sf(g)#.

For (A", A) e 0>2 let /: A -> X and /: X^ (X, A) be the inclusions. Then for

fe J((X, B) we have

(6.13) Sf(X, A,f, ßm, Am) ̂U Sf(X,f ßm, Am) ̂U <?(A,f\A, ßm, Am).

Using the exponential law we see that Sf(i) is a fibre map. Further, ¿f(j) is an

identification with the fibre SC(i)~1(Amf\A). Therefore, we have an exact sequence

« «^    • ■ • —^ "*(S?(A,f\A, ßm, Am)) —^ w..i(SC(X, A,j\ ßm, Am))
(6.14)

-► ?rn _ i(SC(X,f ßm, Am))-> • • •

and the homomorphisms 8# commute with those in (6.7). Therefore we may define

(6.15) d: h\A,f\A; Sf) -> h»+\X, A,f; ¿f)

to be the direct limit of the 8#.

(6.16) Theorem. With h\ #, *, and d as defined in (6.8), (6.10), (6.12) and (6.15)

we have a B-cohomology theory on SP2.

Proof. Using the results of §5, Axioms I through VI are easily checked. Axiom

VII follows from the exactness of (6.14) and the fact that exactness is preserved
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under direct limit. For Axiom VIII, note that if i: {Ax, Ax n A2) -> (Y, A2) is the

inclusion, then for/e JiiX, B),

<£{i): <£iX, A2,f ft,, Am) -* X(Alt Ax n A2,f\A, ßm, Am)

is a homeomorphism.

7. The group structure.   The suspension 5(£) of a space £ will be the quotient

obtained from Fxlby the identification

(7.1) ix, t) ~ ix', t)   if and only if x = *' or t = 0 or t = 1.

However, we will use a weaker topology than the usual one. Let u>: FxI-> SiF)

denote the projection. A basis for the topology on S{F) is to consist of sets of the

foTmuiUxitx, t2)), C/openin£,0<r1<r2<l,orcu(£x(f, 1]), t< 1, or cu(£x [0, t)),

r>0.

Suppose that ß=(£, £, /») is a fibre space. Let £(£) be the quotient obtained from

£ x / by the identification

(7.2) (e, t) ~ (e', t)   if and only if e = e' or r = 0 or 1 and /»(e) = />(e').

Let to: £x/->-2(£) be the projection. A basis for the topology on S(£) is to

consist of sets of the form a>iUxitx, t2)), U open in £, 0 < ^ < i2 < 1, or

o>iP~KV) x itx, 1]), t<l,or u>ip-1{V)x [0, i)), *>0, where V is open in B. Define

(7.3) Z(/»):2(£)^£

by2(j»)([e,/])=/»(e).

(7.4) Lemma. If ß=iE,B,p)   is   locally   trivial  with fibre  F,   then   2(j3) =

(L(£), £, 2(/>)) ö locally trivial with fibre SiF).

This is easily checked. We will call 2(j8) the suspension of ft

We will now describe a natural way of assigning to ß a £-spectrum. Let £m(j8)

=S(Sm-1(i3)) and define

(7.5) Am:5->2>(£)

by Am(¿>) = [e, 0 • • • 0], e e p ' \b). Note that Am is a cross-section to Sm(/>) : Sm(£)^£.

Let y(ft denote the £-spectrum consisting of pairs (rm, Sm) and maps

(7.6) ikm Km) : (rm, 8m) -► (£2(rm+, ; Sm+x), D(Sm+J),

where

(rm,8m) = (2'"(j8),Am))   m>0,

= (Q-^W); Ax), í2- + 1(Ai)),   mSO,

and for w > 0

(7.8) fc«:^*)-*^*^);^!)
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is defined by

kj[e, h.Zm])(A) = [Amp(e), 2A],   0 g A è 1/2,

= [e,/1,...,/m,2-2A],    1/2 S AS 1,
and

(7.9) Km:BxI^n(^ + \E),Am+1)

is defined by

Km(b, /)(A) - [Am(é), 2/A],   0£Ai 1/2,

= [Am(¿),2/(l-A)],    1/2***1;

whereas for m g 0,

(7.10) *m: Q-m + 1(S(¿); Ax)-> Q-m+1(Z(£); Ax)

is to be the identity, and

(7.11) Km:BxI-+Cl-«+HXE);*i)

is to be the constant homotopy Km(b, /) = í2_m + 1(A1)(¿)), 0£/g 1.

The i^ware of ß = (E, B, p) is ß2 = (¿2, ¿, /»j), where

(7.12) ¿2 = {(eu e2)eExE\ p(ei) = />(e2)}

and Pi : E2 -> ¿ is given by /»ifo, e"2) = ei- There is a cross-section A: E-* E2 by

A(e) = (e, e). Now define

(7.13) /x:¿2->Q(S(¿);A1)

by

M«i, *aXA) = fa, 2A],   O^AS 1/2,

= [ei,2-2A],    1/2 g Agi.
In the diagrams

¿2 —y Ü(S(¿) ; Aj)       ¿2 -1—+ Q(Z(¿) ; A:)

(7.14)

¿—r—>B E-^>B

the first is commutative and the second is homotopy commutative, a connecting

homotopy being

(7.15) ^:¿x/^í2(S(¿);A1)

by

M(e, t)(X) = [e, 2/A],   0 < A <, 1/2,

= [e-,2/(l-A)],   1/2* A* 1.

Note that Af( is a lifting of /> for Og/g 1.

Pi Q(S(p))
"(S(A!))



1968] COHOMOLOGY AND THE CLASSIFICATION OF LIFTINGS 461

Given Ye 0>2 and/: Y-* B, let

(7.16) ¿?(Y,/ ß) = {g:X^E\pg=f}

and

(7.17) L{X,f,ß) = n0i<?iX,f,ß)).

Suppose that L{X,f, ß) is not empty.  Let aeLiX,f,ß) be represented by

g: Y-> £ and define

(7.18) *„:■£<*/,ft->*W, ^(ft)

to be the composition

(7.19) L(Y,/ ß) ̂ L UX, g, ß2) -^UL{X,f, D(S(jS); Ax))-> h\X,f ¿r(B)),

where T?(g)([<7]) = [gx^], q e 2?iX,f, ß), and the unmarked arrow is inclusion into

the direct limit. Note that -nig) is one-one and onto.

(7.20) Lemma. The correspondence </ia is independent of the representative chosen

for a.

Proof. Let g' also represent a and let H: Xxl^- E satisfy H0=g, Hx=g' and

pHt=f OS ?= 1. Then, for q e &{X,f, ß), define

J:XxI-^Ci{ZiE);Ax)

by Jix,t)=piHix,t), qix)), x e X, Ogíá 1. We have J0=p{gxq), Ji = P-ig'*q)

and Q(2(/»)y(=/ 03**1. Therefore Hgxq)] = \p{g' xq)) in L(Y,/, 0(2(0); Ax)).

This completes the proof.

We need now the following fact. Suppose that we have a commutative diagram

r1

Ex-> E2

(7.21)

BX—*B2

with both/»! and/»2 fibre maps. Let Fx and £2 denote the respective fibres.

(7.22) Lemma. Suppose that

M ■ wm(£i ; ex) -^ wm(£2 ; e2)

is an isomorphism, m < 2n. Then ifXe @>2is{2n— Yycoconnected, the correspondence

p.# : UX,f, ft) -> UX, vf, ft),  fe JiiX, Bx),

is one-one and onto.

This is well known.

Pi Pi
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(7.23) Theorem. Let ß=(E, B,p) be locally trivial with fibre F. If F is (n-\)-

connected, XeSP2 is (2n—l)-coconnected and L(X,fß) is not empty, then >/ia in

(7.18) is one-one and onto.

Proof. Apply the above lemma to conclude that both p.# in (7.19) and the

inclusion of L(X,f, Q(X(ß); Aj)) into the direct limit h°(X,f Sf(ß)) are one-one and

onto.

With Xand ß as in the above theorem, let (¿(A,/ ß), a) denote the set L(X,f, ß)

together with the abelian group structure determined by the condition that <(ia be an

isomorphism. For ylt y2 e L(X,f ß), let yx +a y2 denote their sum in (L(X,f, ß), a).

Using the homotopy M of (7.15), we see that a is the zero in this group.

(7.24) Lemma. For a0, ax eL(X,f ß) we have <pao(ai) = -^ai(a0).

Proof. Let g0, gx : X-+ ¿represent a0, a± respectively. Then ^aa(ai) is represented

by p.(g0'xgi) and i/>ai(a0) by /*(giXg0). From the definition of p., the product

P-(go xgi)-P-(gi xgo) is homotopic as a lifting off to the trivial lifting Q,(Ai)f That

is, l/,«o(oti) + ^,a1(0ío)=0. This completes the proof.

(7.25) Lemma. For a0, ai eL(X,f,ß) and veh°(X,f Sf(ß)), we have ^i0x(»)

=>l'a1(<*o) + v-

Proof. Let q: X-+ E be a lifting of/such that p.(gQxq) represents v. Then q

represents >pâo(v) ar>d ̂ aifc1^) is represented by p,(gi xq). From the definition of p.,

we see that p.(gi x q) is homotopic as a lifting of/to p.(gi x g0) - p.(g0 x q). The latter

represents <pai(ao) + v. This completes the proof.

(7.26) Lemma. For a0,aua2,yeL(X,f,ß), we have a0+ai (ai+<t2y)=a0+<ray.

Proof. By (7.24) and (7.25), we have

>l'a1(«l+aaY) = ^a1fe1(^O2(0tl) + ^a2(>'))

(7.27) = K(«J+M«ù+*a,(y)
= KM-

Therefore

«0 +«! («1 +a2 y) = fcHlAaiOo) + 4>ai(aí +a2 Y))

(7.28) = K\K^o)+K(y))

On the other hand, by (7.25)

2 . «o+«a Y = feHWao) + 0aa(y))

= >l>a~¿(<l'a¿t'a~¿xl>ajy)) = feVa^y)-

Comparing (7.28) and (7.29) gives the desired result.

Let <2r denote the category of sets and functions, let *€ be an arbitrary category

and let F: f -* ^ be a contravariant functor. We say that F has a natural affine

group structure if for each object X e # and element a e ¿(A), there is a rule
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which assigns an abelian group structure to the set FiX). Denote this group by

(£(Y), a) and for yx, y2 e £(Y) let yx+ay2 denote their sum in (£(Y), a). The

following conditions must be satisfied.

(A). The zero of (£(Y), a) is a.

(B). If g: Xx -> X2 is a map in if, then Fig): (£(Y2), a) -> (£(YX), £(s)(a)) is a

homomorphism.

(C). For a0, ax e FiX), the translation £(a0, ax): (£(Y), ax) -» (£(Y), a0) defined

by £(a0, ai)(y) = o£0+ai y is an isomorphism.

(D). £(«„, a0) is the identity, «0 e £(Y).

(E).  £(a0, «i)Tiax, a2) = £(«<>, a2), a0, ax, a2 e FiX).

Now let á*(ft 2n-1) denote the category whose objects are pairs (Y,/) with Y a

(2n— l)-coçonnected CW-complex, fe JiiX, B) and LiX,f ß) not empty. A map

g- iX,A) -* iX2,f2) in the category is to be g: Xx -*■ X2 such that/j =/2g.

(7.30) Theorem. Let /?=(£, B,p) be locally trivial with fibre F which is (n-1)-

connected. Then the set functor L{X,f, ß): a"iß, 2n-1) -> ^ has a natural affine

group structure.

Proof. Properties (A) and (B) are easily checked. We will show now that

T{a0, ax): (£(Y,/ ft, ax) -» {L{X,f, ft, «„)

is a homomorphism. By Lemma (7.26)

£(«o, ai)iy2+ai Y2) = «o+«i (yi +ai Y2)

= ia0+ai Yl)+ao («0+ai Va)

= £(«o, «i)(yi)+ao ^(«o, «i)(y2)-

Property (D) is evident and (E) is just Lemma (7.26). Finally (D) and (E) imply that

£(<x0, ax) is an isomorphism.

8. Equivariant maps. Let G act as a group of transformations on Y and Y.

A map /: Y->- Y is equivariant if figx)=gfix), g e G, x e X. Two equivariant

maps/o,/: X-*- Y are equivariantly homotopic if there is a homotopy £: Yx/-*- Y

from/o to/x, such that £¡ is equivariant, 0^/g 1. Let £(Y, Y) denote the set of

equivariant homotopy classes of equivariant maps from Y to Y. A map/: X-> Y

is an equivariant homotopy equivalence if there is g: Y-+ X such that^g and gf'are

equivariantly homotopic to the identity.

The following is an equivariant form of a theorem of J. H. C. Whitehead [10].

(8.1) Lemma. Suppose that X and Y are connected CW-complexes on which the

action of G is both free and cellular. Iff: Y-»- Y is equivariant and f#: 7rm(Y; x0)

-*■ "■( Y; y0) is an isomorphism, m á max (dim Y, dim Y), then f is an equivariant

homotopy equivalence.

The proof can be carried out, using the mapping cylinder of/ along the same

lines as the proof of the Whitehead theorem.
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Let W be a G-free acyclic complex. For any space Z with an action of G, we have a

locally trivial fibre space

(8.2) ßz = (WxZ/G,W/G,nz),

where G acts diagonally on WxZ and irz: WxZ/G-y W/G is induced by pro-

jection. The fibre is Z.

(8.3) Lemma. Suppose X is a CW-complex on which the action of G is both free

and cellular. Let q: Wx A-> X be the projection. Then

q#:E(WxX, T)-^¿(A-, Y)

is one-one and onto.

Proof. This follows from Lemma (8.1), sinceq#: nm(Wx X, (w0, x0)) -*■ nm(X; x0)

is an isomorphism, m ̂  0.

Let X satisfy the hypothesis of the above lemma and let

(8.4) <p: E(X, Y) -* L(Wx X/G, nx, ßY)

be the composition

q*-1                            X
E(X, Y) --> E(WxX, Y)-> L(Wx X/G, irx, ßY),

where A is defined as follows. Let a e E( W x X, Y) be represented by g : WxX^~ Y.

We have g: Wx X^~ Wx Y by g(w, x) = (w, g(w, x)) and g is equivariant. Its orbit

map g/G:Wx X/G -+ Wx Y/G is a lifting of ttx. Let A(a) be the class of g/G. The

correspondence A is essentially due to A. Heller [3] and is one-one and onto.

Therefore <p is one-one and onto.

Fix a space Y and an action of G on Y. Let 2.(Y, G, 2«— 1) denote the category

whose objects are CW-complexes X with an action of G which is both free and

cellular and such that X/G is (2«- l)-coconnected and E(X, Y) is not empty. The

maps in the category are to be equivariant maps. We then have a covariant functor

(8.5) D:2(Y,G,2n-\)^@(ßY,2n-\)

which sends X to (Wx X/G, nx).

Suppose Y is («-l)-connected. There are the set functors ¿( , Y):

2(Y,G,2n-l)^W and ¿( , ßY): &>(ßY, 2n-l)^<% and <p in (8.4) is a natural

transformation ¿( , Y) -> L( , ßY)D. Since <p is one-one and onto, we may,

for Xe2(Y, G, 2«-l) and a£¿(A", Y), define an abelian group (E(X, Y),a)

with underlying set ¿(A", Y) by the condition that

(8.6) <p: (E(X, Y), a) -*(L(Wx X/G, ttx, ßY), a^a))

be an isomorphism. Then from Theorem (7.30) we have

(8.7) Theorem. Let Y be an (n-\)-connected space with an action of the finite

group G on Y. Then the set functor E( , Y): J(G, 2«-1) ->- <W has a natural affine

group structure.
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Remark. The addition in {EiX, Y), a) has a very simple description. Let

g, kx,k2:X-+ Y represent a, yx, y2 respectively. Let G act diagonally on Y3 and

consider the equivariant map gxkxxk2: X-*■ Y3. The subspace

V(Y) = fl>i, y%, y3) e Y3 | yx = y2 or yx = y3}

is invariant and wm(Y3, F(Y))=0, m^2n-l. Since X/G is (2n-l)-coconnected

we may construct a homotopy H: Yx/-> Y3 such that H0=gxkxxk2, HxiX)

<=ViY) and Ht is equivariant, Ogi^l. Define a folding map A: F(Y)->- Y by

Ky> y2, y) =J2 and A(y, j, j3)=^3. A representative of yx +a y2 is XHX. We will not

need this fact so we will not stop to prove it.

Let [Y, Y] denote the track group of homotopy classes of maps from Y to Y

and let £: EiX, Y)-+[X, Y] assign to an equivariant homotopy class its ordinary

homotopy class. Define

(8.8) 0:{EiX, Y),a)->[X, Y]

by 0(y) = £(y)-£(a).

Fix base-points w0 e W and y0e Y. Let i: X-*-WxX/G be given by i{x)

= [w0, x], x e X. This identifies Y with the fibre 7r~1([w0]). Let w*: X^~ W/G and

(wo, v0)*: X-> Wx Y/G be the constant maps at [w0] and [w0, y0] respectively and

let z e £(Y, w*, ft) be the class of (w0, y0)*. Consider the diagram

[X, Y] -!—* £(Y, w*, ft) -I—> n°(Y, < ^(ft))

(8-9) "fl

(£(Y, Y), a) -?-► £(If x Y/G, ttx, ft) ^ A°(IFx Y/G, **, ̂ (ft)),

where ?0 is defined as follows. Given g: Y-* Y define g0: ^->- WxY/G by g0(jc)

= [wo. #(*)]> * £ Y. Then let 9?0(g) = [go]-

We have an operation

(8.10) P:Gx[X, Y]->[X, Y]

of G on [Y, Y] defined by pig, y) = (g-1)#g#(y), g e G, y e [Y, Y].

Next, we have a fibre map -nx: WxX/G-^-W/G with fibre Y. Take /e

JHW/G, W/G) to be the identity. Then from §4, the collection h°ßx HM), trx, ¿"(ft)),

[w] £ W/G, is a local system over W/G. Out of this we obtain an operation

(8.11) p: nxiW/G; [w0]) xh\X, w*, £f{ßY)) -* A°(Y, w*, 2>ißY)).

Make the canonical identification of G with ttxÍW/G; [w0]).

(8.12) Lemma. The diagram (8.,9) is commutative and

^<p0:[X,Y]^h°{X,w*,yißY))

is an operator isomorphism.
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The proof is tedious but straightforward and will be omitted. As a consequence

of the lemma, 0 is a homomorphism.

For a group A with G as left operators, let 1(A) denote its subgroup of invariant

elements. Note that the image of 0 is contained in I([X, Y]). For an integer n,

let j/(«) denote the class of abelian torsion groups whose /»-primary component is

zero if p does not divide «.

(8.13) Theorem. Let G have order n. Then

0:(E(X,Y),a)^I([X, Y])

is an isomorphism modulo s4(n).

Proof. By the preceding lemma it is sufficient to show that

(8.14) /*: h\Wx X/G, nx, Sf(ßY)) -> I(h°(X, wtf, Sf(ßY)))

is an isomorphism modulo s/(n). Applying the spectral sequence of §4 to ttx :

WxX/G-> W/G, we have

Ei- = H"(W/G; [h"(X, Sf(ßY))])

and a finite filtration

h°(Wx X/G, nx, Sf($Y)) = /°'° => /»•-» => • •. => /*•"* =_- • •

with Ek¿-k = E^--k for large r.

We need the well-known facts [6] that HP(W/G; [h"(X, Sf(ßY))])is inrf(n),p>0,

and

H°(W/G; [h-(X, Sf(ßY)))) ~ I(h-(X, wt, Sf(ßY))).

From the above filtration we have that /* in (8.14) is an isomorphism modulo

•&(ri). This completes the proof.

Suppose G=Z2 and Y=Sn, where the action of Z2 on Sn is given by the antip-

odal map. Let 2n(A) denote the «th stable cohomotopy group of X.

(8.15) Corollary. Let T be a cellular fixed point free involution on the CW-

complex X with X/T (2n — l)-coconnected. Then

0:(E(X,S"),a)->I(X»(X))

is an isomorphism modulo 2-torsion.

Let co : Sn( A) -> Hn(X) be the Hopf map and let Q denote the rational numbers.

A theorem of Serre [8] asserts that

(8.16) u, (g 1 : X»(X) ®Q-> H\X; Q)

is an isomorphism.

Let Z2 operate on Hn(X; Q) by the rule U^T*(u), n-odd, and U^ -T*(u),

«-even.
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(8.17) Corollary. With X and T as in (8.15)

w0 ® 1 : {EiX, 5"), a) ® ß -> 7(/7n(Y; 0)

w an isomorphism.

Proof. Note that with the operation defined above on Hn{X; Q), w (g> 1 is an

operator isomorphism. Now apply (8.15).

9. Immersions and embeddings. For a closed C "-manifold M of dimension n

let T{M) and T0{M) denote respectively its tangent bundle and tangent sphere

bundle. Let En+k denote Euclidean (n+/t)-space. An immersion f: M->£n+kisa

C°°-map whose derivative £(/): T{M) -+ T{En+k) has rank n at each point xeM.

Two immersions/,,/: M-*- En+k are regularly homotopic if there is a C°°-map

£: Mx/->£n+fc such that £0=/0, Fx=fx, and £( is an immersion, O^r^l. Let

IMn+k{M) denote the set of regular homotopy classes of immersions of M into
ßn + k

An embeddingf: M->£n+lcisa one-one immersion. Two embeddings/0,/i: M

->En+k are isotopic if there is a C'-map £: MxI^»En+k such that £0=/0,

£i=/i and £ is an embedding, O^i^l. Let EMn+k{M) denote the set of isotopy

classes of embeddings of M into En+k.

There is a fixed point free involution AM on T0{M) which on each fibre S"-1 is

the antipodal map Am-X.

Let A denote the diagonal of M x M. There is a fixed point free involution BM on

M x M-A defined by {x, y) -*■ {y, x).

An immersion f:M->-En+k determines an equivariant map T0{f):T0{M)

-+En+kxSn+k-1. Since the projection it: En+kxSn+k-1 -> S"4-*-1 is equi-

variant, so also is TtToif): T0{M) -^Sn+"-1.

An'embedding/: M-+ En+k gives an equivariant map/x/: MxM—A ->• En+k

xEn+k-A. There is A: En+kxEn+k-A-^ Sn+k~1 by A(t»1} t;2) = t»1-t>2/|i;1-t»2|

and A is equivariant. Then A(/x/): MxM—A-*Sn + k~1 is also equivariant.

Our study of the sets IMn + k{M) and EMn + k{M) is based on the following

(9.1) Theorem (Hirsch-Haefliger [5]). Suppose 2k>n+1. The correspondence

r¡: IMn+k{M) -* E{T0{M); Sn+k'1)

defined by r¡{[f]) = [7r£0(/)] is one-one and onto.

(9.2) Theorem (Haefliger [4]). Suppose 2k>n + 3. The correspondence

t: EMn+k{M) -> E{MxM-A; S**"'1)

defined by t([/]) = [A(/x/)] is one-one and onto.

By means of -n and t the sets IMn+k{M) and EMn+k{M) inherit a natural

affine group structure.
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(9.3) Theorem. Fork>\,

¿#.Sn+k-i(ro(M))^Sn+fc-i(ro(M))

is (— l)n times the identity, modulo 2-torsion.

Proof. There is a spectral sequence {¿r} with

¿I-« = /7p(M;[S',(5n-1)])

and a filtration

2n+fc-1(r0(Af)) = jo-"*"-1 d .. .s y-*-1 = 0

with yp-''/7J'+1-?-1=¿S,'«. It is sufficient to show that for q>0, the induced auto-

morphism of ¿2'•, is (— l)n times the identity. This agrees with the coefficient

automorphism determined by ^_1:S"(S'n"1)->S,(5n"1), since Am.x is the

restriction of AM to the fibre. It is well known that for q > 0, A%_ x is ( — l)n times the

identity. This completes the proof.

Letting I(En+k~1(T0(M))) denote the subgroup of elements invariant under

(Am+k-i)#A&, we have by the above lemma

(9.4) Corollary. Let k>\. Fork even, /(Sn+k - \T0(M)))=2"+k - \T0(M)) and

for k odd, I(I.n+k-1(T0(M)))=0, modulo 2-torsion.

We will write Af£¿n+fc (M<=En+k) if there exists an immersion (embedding) of

M in En+k. Applying (8.15) and the preceding corollary, we have

(9.5) Theorem. Suppose 2k>n + l and MçEn+k. For k-odd (IMn+k(M), a)=0

modulo 2-torsion. For k-even

07,: (IMn+k(M), a) -^Sn+k-1(¿0(M))

is an isomorphism modulo 2-torsion.

For embeddings we have

(9.6) Theorem. Suppose 2k>n + 3 andM<=En+k. Then

0r: (EMn+k(M), a)^I(Zn+k-1(MxM-A))

is an isomorphism modulo 2-torsion.

Here  I(2,n + k~1(Mx M—A))  is  the  subgroup  of elements  invariant  under

(^m + k-l)#¿Af-

10. Rank of IM n+k(M) and EM n+k(M).   In this section it is assumed that M is

orientable. Let

(10.1) w: (IMn+k(M), a) -+ Hk(M)

be the composition

(IMn+k(M), a) -1+ JP+*-HTd(M)) -^-* Hn+k-\T0(M)) -—► Hk(M)

where ^ is from the Gysin sequence for T0(M) -»■ M.
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For an immersion g: M-> En+k, the normal class of g is the Euler class

xig) £ Hk{M) of the normal bundle of g.

(10.2) Lemma. Let y generate Hn+k'1{Sn+k-1). Then with a suitable orientation

of the normal bundle of g, we have

xig) = >pT0{g)*7r *{y).

Proof. This follows from Theorem (1.1) of [7]. Let g-1{T0{En+k)) be the bundle

over M induced by g and let

T0{M) -^-> g-^ToiE^")) -^ T0{E« + k)

be the factorization of T0{g). Then

(10.3) <l>To{g)***{y) = 4>m***iY).

In the Gysin sequence for g~\T0{En+k))-+ M, we have ipg*ir*iy) = l e H°{M).

Using the notation of Theorem (1.1) of [7], we have

W2*g*«*iY) = G2<bg*n*{y) = GUI) = xig)-

This completes the proof.

The above lemma implies that xig) depends only on the class ß £ IMn+k{M),

so we will write xiß) instead of xig)-

(10.4) Lemma. For y eIMn+k{M), ¿>{y)=xÍY)-XÍa)-

Proof. This follows from the preceding lemma and the definition of ¿¡.

Now from Theorem (9.5) we have

(10.5) Theorem. Suppose 2k>n + l and MçEn+k. For k-odd, {IMn+k{M),a)

(g) 0 = 0 and for k-even

¿> <g) 1 : {IMn+k{M), a) ® Q -> Hk{M; Q),

given by ¿> ® l(y (g) x) = ix{y)-xia)) ® x, is an isomorphism.

For embeddings, let

(10.6) w: {EMn + k{M), a) -^ Hn + k~\Mx M-A)

be the composition

dr                                             u>
{EMn+k{M),a)->Zn+k-\MxM-A)-> Hn+k~\Mx M-A).

By Theorem (8.15) we have an isomorphism

(10.7) w ®l:{EMn+k{M), a) ® Q-^I{Hn+k-\MxM-A; Qj).
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Let u e H2n(M x M) be a fundamental class and let

(10.8) D:H«+k-1(MxM-A;Q)->Hn-k+1(MxM,A;Q)

denote the Lefschetz-Poincaré duality map

D(v) = unv,       veHn+k-\MxM-A;Q).

Next, let

(10.9) k: H*(M; Q) ® H+(M; Q) -* H¿MxM; Q)

be the Künneth map and 8 : M ->■ M x M the diagonal map. For a e /7n_fc+1(Af),

write

<i_18*(a) = a <g) 1 © 1 ® a+á,

áe'J //((M; 0 ® 7/(.(M; ß),

i '=«—A: +1 — i. The element a is primitive if a=0. Let / : M x M -> (Af x M, A) be

the inclusion. We have an isomorphism

(10.10)   (j,Ky1D:Hn + k-i(MxM-A;Q)-+  £    Ht(M; Q) <g> HV(M; Q)
n-fc+ 1

I
i = l

Define an involution T on the right hand side of (10.10) by

T(a® 1) = (-a)(g> 1-á,   dim (a) = n-fc+1,
(10.11)

¿(a ® b) = (- 1)"7> <g> a,    dim (a) = /', dim (b) = V > 0.

Then (/.„*)-1Z) is an operator isomorphism when the involution on the left is

(_ ly+fcß* and on the right is (- 1)T. Now let

(10.12) Jn*(M; 0=2 H(M> Q) ® H^M; Q),

where r is the greatest integer less than or equal to n—k/2 and let ¿n_fc + 1(M; Q)

denote the subgroup of primitive elements in H„-k+1(M; Q).

(10.13) Theorem Suppose 2k>n + 3 and M^En+k. Then (EMn+k(M), a) <g> Q

is given by the following table:

A:=0mod2 k=l mod2

n + k = 0, 1,2 mod 4 JnAM; Q) JnAM;Q)®Pn-^1(M;Q)

n + k=3 mod 4 Jn.áM; Q) ® Hn-k+UM; Q) Jn.ÁM; Q) ® Hn-K + il2(M; Q)

®Pn-k + i(M;Q)
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Proof. The various cases are all handled in the same way. For example, when

n+k=0,1,2 mod 4 and k=0 mod 2,

P-JUM; Q) - ""J' Ht{M; Q) ® HAM; Q)

by

p(2 at ® *,.) = 2 (fli ® *i' © (-1)"'¿í- ® aï)
\t=i /      (=i

is injective onto the subgroup of elements invariant under (— 1)T.

11. The normal class of an immersion. In this section, M is orientable. We

consider a question raised by Lashof and Smale [7] as to what elements v e Hk{M)

are realizable as normal classes of an immersion. Such elements will be character-

ized as permanent cycles in a spectral sequence.

If Mç£n+,clet

(11.1) Nk{M) = {ve Hk{m) \ v = x{y), y e £Mn+fc(M)}.

If 2k>n + \, then by Lemma (10.4), Nk{M) is a coset of û{IMn+k{M), a). If it is

assumed that MçE**"-1 or M<=En+k, then there is a£/Mn+fc(M) such that

x(«)=0. In this case Nk{M) = w{IMn+k{M), a) and is therefore a subgroup of
Hk{M).

Let S°° and £°° be the infinite dimensional sphere and projective space re-

spectively, let X{M)=SxxT0{M)/Z2 and P0{M) = T0{M)/Z2 and let wx: X{M)

-> £ ■" and tt2 : X{M) -*■ £0(M) be the projections. Pick i0 £ S" and define i : TQ{M)

-*» X{M) by i{x)=[s0, x], x £ T0{M). From the definition of w and the commuta-

tivity of (8.9) we see that the image of w is equal to the image of the composition

h%X{M), nx, y(B)) -Í-* S« + "-i(£o(M))
yii.A)

-?-* Hn+k-1{T0{M)) —> H\M),

where /S=(S"° x Sn+k-1/Z2, P", ttx).

Constructing the spectral sequence for the identity map X{M) -*■ X{M) and

irx e JiiX{M), £"), we have

(11.3) £§•< = Hp{X{M); [S'+n+k-10»/)]) = HP{P0{M); [V+«+k-\pt)])

(the right-hand identification being made by *%) and

(11.4) ;: h\X{M), »x> ¿Ifl))-*«**-!.-»**-» c H"+k-\P0{M); [Z]).

Then the following diagram is commutative.

n°(Y(A/), »j, ^(ft)-> V>+k-i{T0{M))

(11.5) y O)

H^-^P^M); [Z]) -Î—► Hn+k-\T0{M))
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where/;: T0(M) ->P0(M) is the orbit map. Combining the above facts, we have

(11.6) Theorem. Suppose 2k>n+\ and M<=En+k or Af£2?"+*_*. Then

Nk(M) = #*(¿S+k"1,"(n+fc~1))-

(11.7) Lemma.     For    k-odd    ibp*(Hn+k-1(Po(M);[Z]))=0.     For    k-even,
^p*(Hn+k-1(P0(M); [Z]))^2Hk(M).

Proof. Comparing the spectral sequence for T0(M) -* M and P0(M) -> M, we

have a commutative diagram

H« + k-HP0(M);[Z])- ^HnJfk-\T0(M))

?k,n -1

n

(p*)#Hk(M; Hn-\P*-1; [Z])) vr ,fF> Hk(M; Hn-\Sn'1)) = Hk(M),

where/>: 5""1^-¿n_1 is the restriction of /> to the fibre. The involution on Z is

(- l)n + k. Thus Hn-1(Pn~1; [Z]) is Z2 or Z depending on whether k is odd or even.

In the former case/5* has image 0 and in the latter/»* has image 2Hn~1(Sn~1). The

lemma now follows from the commutativity of the above diagram.

From (11.6), (11.7) and Theorem (10.6), we have

(11.8) Theorem. Suppose 2k>n+l and MçEn+k-1. For k-odd, Nk(M)=0.

For k-even, Nk(M) is a subgroup of2Hk(M) having finite index.

Remark. For k = n or «—1 and /c-even, we deduce that

</>p*(H«+k-\P0(M); [Z])) = 2Hk(M).

Then using Theorem-(11.6), we obtain the following table for Nk(M):

k=n

k=n-\

2H«(M)

0

n-odd

0

2H"-\M)

The values for k=n were given by Lashof and Smale [7]. Information for k<n— 1

would involve computing the twisted cohomology operations which appear as

differential operators in the spectral sequence.

Let SkxSn~1 have the involution (a, b) -* (a, —b).

(11.9) Lemma. For k-even, there is an equivariant map f: SkxSn~1 -> S"*"'1

of degree 2.
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Proof. Let/»: Sk x S"'1 -»■ SkxPn~1 be the orbit map. There is an equivariant

map g: SkxSn~1 -> Sk+n~1 of degree 0, namely, the projection onto S"'1

followed by the inclusion S'-'cS'+'-i, Now the correspondence

E{SkxSn-\ Sk+n-1)^Hk+n-1{SkxPn-1;[Z])

which assigns to / the primary obstruction d{f g) to an equivariant homotopy

between/and g is one-one and onto. The involution on Z is (- l)fc+n=(— 1)" and,

by an elementary computation, Hk+n~1{SkxPn~1;[Z])=Z and

p*:Hk+n-1{SkxP"-1;[Z])^Hk+n-1{SkxSn-1)

takes a generator to twice a generator. Therefore if we choose/so that d{f g) is a

generator, the degree of/ will be 2.

Suppose that M is parallelizable. Then T0{M) = MxSn~1 and we can define

(11.10) ^:Ln+k-1{T0{M))^i:k{M)

to be the composition

Xn+k-1{MxSn-1)-->Xn+k-1{MxSn-1, MxS»-1)->Zk{M),

where/' is inclusion and the unmarked arrow is (n-l)-fold desuspension. The

following diagram is commutative :

2"+k - \T0{M)) -—+ Xk{M)

(11.11) \w w
Y /

Hn+k-1{T0{M)) —+ HkiM)

(11.12) Theorem. Suppose M is parallelizable and2k>n + \. Then

*ftj: {IMn+k{M), a) -> Sfc(M)

has image 0, k-odd, and 2Lk{M), k-even.

Proof. We will first show that the image of

i* : n°(Y(M), »lf ^(ft) -* S- + k- \T0iM))

is 0, k-odd, and is contained in 7Zn+k~1{T0{M)), ¿-even. This will imply that the

image ofipd-q is 0, k-odd, and contained in 7LkiN), /c-even. We have a commutative

diagram

T0(M)-L^Y(M)

i-'-Urxs»-1/^
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where p and p are projections and fis inclusion. Comparing the spectral sequences

for p and p, we obtain a commutative diagram

,-*
h°(X(M), nu £f(B))-> X* + k-\T0(M))

j

Hn'\S'axS'í--íIZ2;[i:k(M)])->Hn-1(Sn~1;?,k(M))

Since /is an isomorphism and /* has image 0, A>odd, and 2Hn~1(Sn~1; ~Lk(M)),

k-even, it follows that the image of/'* is 0, A>odd, and contained in lLn+k~1(T0(M )),

k-even.

Suppose now that k is even. Let u e lZk(M) and choose /: M' -> Sk such that

u=2[f]. Letf':MxSn-1->SkxSn-1be defined by f'(x, b)=»(f(x), b). Then/'

is equivariant when the involution on MxS11'1 is (x, b)^(x, —b) and on

SkxSn~1 is (a, b)->(a, —b). By Lemma (11.9), there is an equivariant map

g: Sk x Sn-X -* Sn+k~1 of degree 2. Let y £ E(T0(M), 5n + k-1) be the class of gf.

Then choosing aeIMn+k(M) so that Cr?(«)=0 in 2n+fc-1(r0(M))) (see (8.8)),

we have

*Wn-Kv)) = 2[/] = «.

Therefore, when £ is even, the image of i/i0t) is onto TZk(M). This completes the

proof.

Let Sk(M) denote the subgroup of spherical classes of Hk(M), that is, the image

ofw.lZk(M)^Hk(M).

(11.13) Corollary. Suppose M isparallelizable and2k>n+l. Then Nk(M) = 0,

k-odd, andNk(M) = 2Sk(M), k-even.

Proof. Choose aeIMn+k(M) such that ^(a)=0. Suppose veNk(M). Let

yeIMn + k(M) be such that v = x(y)- Then by Lemma (10.4), v = w(y). By the

preceding theorem, there is ueHk(M) such that i/fÉfy(y) = 2«. Then, by the com-

mutativity of (11.11),

v = ¿¡(y) = 2m(u) e 2Sk(M).

Conversely, suppose v e 2Sk(M). Let uelZk(M) be such that v = 2co(u). By the

preceding theorem there is y £ IMn + k(M) such that ifi0r)(y) = 2u. By the commuta-

tivity of (9.12)

x(y) = d>(y) = <o(2u) = v.

This completes the proof.

Remark. Theorems (11.12) and (11.13) are also true if M is a 7r-manifold. The

proofs are essentially the same.
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