COHOMOLOGY AND THE
CLASSIFICATION OF LIFTINGS

BY
JAMES C. BECKER

1. Introduction. In this paper we will be concerned with the problem of
homotopy classification of liftings of a map. Suppose that 8=(E, B, p) is a locally
trivial fibre space with fibre F. Then, for f: X — B, there is the set L(X, f, B) of
homotopy classes of liftings of f. Assuming that L(X, f, B) is not empty and that X
is (2n—1)-coconnected and F is (n—1)-connected, we will construct, for
e € L(X, f, B), an abelian group structure on L(X, f; B) such that « is the zero
element. Denote the group by (L(X, £, B), «) and the sum of two elements y, and y,
by y1+a 72

Given «y, o, € L(X, f, B), the different group structures on L(X, f, B) determined
by e, and «, are isomorphic in the best possible way. The translation (L(X, f, B), ;)
— (L(X, f, B), %) which sends y to y+,, o, is an isomorphism.

A weak form of the classification problem is then to determine the structure of
the group (L(X, f, B), o).

In §2 we define a B-cohomology theory where B is a fixed space. These are
generalizations of cohomology with local coefficients, and if B is a point, they are
generalized cohomology theories as in [9]. For each CW-pair (X, 4) and integer n,
h"(X, A) is a local system of abelian groups over the mapping space #(X, B). The
group assigned to fe #(X, B) is denoted by 4*(X, 4, f).

In §4 we construct the spectral sequence for a fibre map »: Y — X. This is
analogous to Dold’s generalization of the Serre spectral sequence [2].

In §§5 and 6 we define a B-spectrum and show how to construct a B-cohomology
theory from a B-spectrum. We then associate to a fibre space B=(E, B,p) a
B-spectrum () in a natural way and define, for « € L(X, f, B), a correspondence

Yot LX, £, B) = KX, £, S (B)),

which, in the stable range, i.e., when X is (2n—1)-coconnected and F is (n—1)-
connected, is one-one and onto. The group structure on L(X, f, B) having « as zero
element is obtained by pulling back the group structure on A°(X, f, #(B)) via ..
Then (using the terminology of §7) we show that L(X, f, ) has a natural affine
group structure.

Suppose that G is a finite group which acts on X and Y and is free on X. Let
E(X, Y) denote the set of homotopy classes of equivariant maps from X to Y.
Using a construction of Heller [3] and our previous results, we define an affine
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group structure on E(X, Y), provided E(X, Y) is not empty, X/G is (2n—1)-
coconnected and Y is (n—1)-connected. Our main result on the structure of
(E(X, Y), o) is Theorem (8.13).

In §§9 and 10 we make use of recent results of Hirsch and Haefliger [4], [5]
which reduce the problem of classifying immersions (embeddings) of a closed
n-dimensional C ®-manifold M in euclidean space E™** to a problem of classifying
equivariant maps. These allow us to define a natural affine group structure on the
set IM "5 (MY(EM™**(M)) of regular homotopy classes of immersions (isotopy
classes of embeddings) of M in E™** provided the set is not empty and 2k>n+1
(2k > n+3). Using Theorem (8.13) we compute the rank and p-primary component,
p-odd, of these groups.

In §11 we study a question raised by Lashof and Smale [7] as to what classes in
H¥*(M) are realizable as normal classes of an immersion of M into E™**,

2. Cohomology theories. Given a space X, let X denote the category whose
objects are points of X and such that the set of maps M (x,, x,), xo, X; € X, consists
of equivalence classes of paths from x; to x,, the equivalence relation being homo-
topy relative to the end points. A continuous map f: X; — X, defines a covariant
functor f: X, — X, in the obvious way.

Let &/ denote the category of abelian groups. A local system of abelian groups
over X is a covariant functor L: X — /. We will denote L([¢]) by a4 where [o0]
is an equivalence class of paths.

Suppose that local systems L,: X; — & and L,: X, — &/ and amap f: X; — X,
are given. A homomorphism ¢ over f from L, to L, is a natural transformation
$:L, - L,f.

Let Z denote the category whose objects are pairs (X, L) where L is a local
system over X and whose maps are pairs (f, ¢): (Xy, L;) = (X3, L;), where
f: X1 — X; and ¢ is a homomorphism over f from L, to L,.

Let 22 denote the category of CW-pairs. Fix a space B. For any space X let
# (X, B) denote the space with the compact-open topology of maps f: X — B. For
g: X, — X, define #(g): #(X,, B)— #(X,, B) by #(g)(f)=fg.

A B-cohomology theory on 2 consists of the following.

(A). For (X, A)e 2?2, fe #(X, B) and each integer n, an abelian group
h(X, A, f).

(B). For (X, A)e #? and F:I— #(X, B), with F(0)=fo, F(1)=f;, a homo-
morphism

Fy: hv(X, A, f,) = hY(X, A4, f,).

(C). For g: (X;, 4;) > (X;, A;) and fe #(X,, B), a homomorphism
g*: i Xy, Az, f) = (X4, Ay, /).
(D). For (X, A) € #2 and f'e #(X, B) a homomorphism
d: b (4, fla) = KX, 4, f).
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These are to have the following properties.

1. For (X, A) € 22, the collection {h*(X, 4, f), Fy}, f€ #(X, B), Fe #(X, BY,
is a local system over (X, B) which will be denoted by A*(X, A).

II. For g: (X,, A,) = (X2, 4,) the collection {g*: h*(X,, 4,5, f) = h*(X1, 431,12)},
fe#(X,, B)is a homomorphism of local systems over .#(g).

Then, for (X, A) € 22, the collection {h*(4, f|4), F |44}, f € #(X, B), Fe #(X, B)
is a local system over #(X, B). Here F|,: I— #(A, B) is defined by F|.(t)(a)
=F(t)(a), ac A.

III. For (X, A) € 22, the collection {d: h"(4, f|,) = h** (X, 4, f)}, fe€ #(X, B)
is a homomorphism of local systems over the identity map #(X, B) - #(X, B).

IV. The function 5#": 2% — £ defined by (X, A)=(#(X, B), h*(X, A)) and
H(g)=(#(g), g*) is a contravariant functor.

V. For g:(X;, A;) - (X,, 4y) and fe A(X,, B), the diagram

d
h(Az, fla)) —— B+ 1 (X,, Ao, f)
1(gIA1)* lg*

d
hn(Al’fIAzglAl) — KX, 41, f3)
is commutative.
VI. For G: (X,, A;) x I — (X3, A5) a homotopy from g, to g;, the diagram

* h™( X1, A1, f81)
g

(X, Az,f)\ j(fc)#
%*
80 Som(xy, Ay, fzo)
is commutative.

VII. For (X, A) € #2 and fe .#(X, B), the sequence

* 7%

i* d j
s (A, 1)~ B X, A, ) L (X, 1)
is exact. Here j: X — (X, A4) and i: A — X are inclusions.
VII If X=A4,9U 4, and (4,, 4, N A;) and (X, 4;) are in #2, then, for
fe #(X, B),
i*: h”(Xa A2’f) - hn(Al’ Al N A2’f|.41)

is an isomorphism. Here i: (4;, 4; N 4,) — (X, A4,) is inclusion.

ExaMPLE 1. Take B to be a point. Then any generalized cohomology theory
(such as in [9]) may be regarded as a B-cohomology theory on #2.

For the next example, if L is a local system of abelian groups over X, let
H™(X, A; L) denote the nth singular cohomology group of (X, A) with coefficients
in L.

ExaMPLE 2. Fix a space B and a local system L over B. For (X, A) € #? and
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f€ #(X, B), the composition Lf: X — & is a local system over X. We then have
H™(X, A; Lf).
For F: I— #(X, B) with F(0)=f,, F(1)=f;, and x € X, define o,: I— B by
o0 (t)=F(x,t), 0=t=1. Then let Fg=o0,z4: L(f1(x)) > L(fo(x)). There results a
coefficient homomorphism
Fy: HY(X, A, Lfy) -~ H™(X, A4, Lf,).

With the homomorphism induced by a continuous mapping of pairs and the
boundary operator defined in the usual way, it is easy to see that we have a B-
cohomology theory on 22,

3. Description of Fy. Assume that a cohomology theory over B is given.
Axioms IV and VI imply.

(3.1) LemMA. If g:(X,, A;) = (X3, A2) is a homotopy equivalence, then for
fE "”(XQ’ B),
g*: h"(Xm A2,f) - hn(XI’ Ahfg)
is an isomorphism.

A subspace A< X is a weak deformation retract of X if the inclusion i: 4 — X
is a homotopy equivalence. By the exact cohomology sequence for (X, 4) and the
above lemma, we have

(3.2) LeMMA. If A is a weak deformation retract of X, then for f< .#(X, B),
h(X, A, f)=0.

Now let fo, f;1 € #(X, B) and let F: X xI— B be a homotopy from f; to f;. Let
I={0, 1}. We then have a boundary operator

(3.3) dih(Xx1UAxI, Xx{j}U AxI, F)—>h"*Y XxI, Xx1U AxI, F),
j=01

(3.4) LeMmMA. For j=0, 1, d; is an isomorphism.

Proof. By exactness, it is sufficient to show that A*(X x I, X x{j} U A x I, F)=0.
This follows from the preceding lemma.

Let &(j)=0 if j=1 and &(j)=1 if j=0. Define i;: (X, A) > (XxI U Ax],
X x{e(j)} U A xI) by ifx)=(x,j), j=0, 1. By Axiom VIII,
3.5 ¥ (X x1u AxI, Xx{e(j)} U AxI, F)— (X, 4, f;)
is an isomorphism. Hence we have a suspension isomorphism
(3.6) s (X I, Xx1 U AxI, F)—> kX, A, fo)), j=0,1,

by s;=i%,d; 1.
Let w: X xI— X be the projection.
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(3.7) LeMMA. For fe #(X, B), the composition

KX, A, f) s b+ (XX T, X1 U Ax 1, fr) —2s kY(X, 4, f)

is minus the identity.

The proof is the same as for ordinary cohomology.
The next theorem characterizes Fy in terms of suspension.

(3.8) THEOREM. Let fo, f, € #(X, B) and let F: X xI— B be a homotopy from
Jo to fi. Commutativity holds in the diagram

(X, 4, /)
Y (X xI, Xx1 U AxI, F) —Fy

SN, A, )

Proof. Define M: (XxI)xI— XxI by M(x, t)(N)=(x, tA). Then FM,=f,m
and FM,=F. We have by Axioms II and III a commutative diagram

i, 4, ) EER | ik, 4,1
Iso Iso
(FM)4

(39 MY XxI, XxITUAxI,F)—=5 "+ (X xI, Xx1 U AxI, F)

; ;
M (i) FM

wx, 4,y Lk, a1
By the previous lemma 5,551 on the right is minus the identity. Next, we have
M (i) )FM=F in #(X, BY and #(i,)FM in #(X, B) is the constant path on f,.
Therefore (#(i,)FM )y =Fy and (#(i;)FM) is the identity. It follows that s,s5*
on the left is — Fg.

Let 7,=(v,---v,> be an euclidean p-simplex and +, its boundary. Let =,
={Vp* + *Vy_1, Vy41" * -Upy and let J(7,) be the closure of +,—7,;, 0Zi<p.

For Fe #(X x 7,, B), define

(3.10) St (X X 7py XX #py F) > B~ Y (X X 73, X X #p 4, F),

0=i=p, to be the composition

-1

B X X 7y X X 1y, F) —> h* "} (X X 15, X xJ(1,), F)

i*
—— h"'l(Xx Tp.g, XX ‘fp", F).

Applying s, p-times, we obtain
(3.11) 58 (X X 1y, X X #p, F) = h*~?(X % {v,}, F).
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Define Ay: X — X x 1, by A(x)=(x, v), k=p—1,p, and let =: Xx7,— X be
the projection.

(3.12) LemMA. For fe€ #(X, B), the diagram

RY
BN X X 7y X X #py fir) ——> KX X 1,4, X X #5 1, fi7)

l)\:ss’ lA:sg‘l
4 Y-
B2 X, ) ——— b""(X, /)

is commutative, where k=p if 0Si<p, and k=p—1 if i=p.

The proof is the same as for ordinary cohomology.
Now for F e #(X x r,, B) consider the diagrams

BYX X 75 XX 1y, F) > KX x 1, 4, XX #5 4, F)
G.13) 17«:%8 lh:ss‘l
(=1
h*(X, FA, —S; X,F\), O0=<iZp

s,
(X X 1y XX 49y F) ——> KX X Tp. gy X X #p 3, F)
(.14) 1/\:&’: 1)\:- 81
(—1PTy
h*(X, F\,) ———> h™(X, F),_;)
where T: X xI— B is defined by T(x, t)=F(x, tv,_,+(1—1t)v,), 0<t=<1.
(3.15) LEMMA. The diagrams (3.13) and (3.14) are commutative.

The proof is similar to the proof of Theorem (3.8). Here we use the preceding
lemma, the homotopy M:(Xx1,)xI— Xx71, by M(x,z)A)=Az+(1—A)v,,
0=<A=1, and a diagram similar to (3.9).

4. The spectral sequence. Assume that a space B and a B-cohomology theory
on 2% is given. In this section we construct the spectral sequence associated with a
fibre map =: ¥ — X. This is a generalization of the Serre-Dold spectral sequence
[2).

We assume that =: ¥ — X is locally trivial, X is a polyhedron and for each pair
(K, L) of subcomplexes of X, we have (=~%(K), »~*(L)) € #2.

Let fe #(X, B) be given. Let F(x)=="1(x), x € X. We now describe the way in
which the collection of groups h"(F(x), fr), x € X, is a local system over X. Let
o:I— X be a path from x, to x;. By the covering homotopy property, there is
S(0): F(xo) x I— X such that S(o) covers ¢ and S(o)o: F(x,) = F(x,) is the
identity. We then have S(o),: F(x,) = F(x,).
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Next, for xe X, we have T(x,o):I— #(F(x), B) by T(x, o)t)(y)=fo(t),

0=t=1, y € F(x). Note that T(x,, o)(1)=fmS(0),. Let

@1 oy W(F(x), fr) > B(F(xo), fr)

be the composition

h"(F(x,), fm) —‘Sﬂ) T (x09 0’)#

> B(F(xo), frS(0)r) ———> K(F(xo), fr).
(4.2) LeMMA. The assignment of h™(F(x), fr) to x€ X and of oy to o€ X' is a
local system on X.

Proof. Let o be a path from x, to x, and = a path from x, to x,. We will show that
(o7)4 =0474 and leave the other properties to the reader. Consider the diagram

HEG), frS @) — SR (), fi

S(f)f/'

HF(xa), fr) (o)t S@)t
S S E (o), frS(or)y) TO0 D p(F(xy), frS(a))

T(xo, 07)# T (%0, 0)#

h"(F (x O)a f 77)

The left hand triangle is commutative, since we may take S (o), to be the composi-
tion S(7),5(0);. The lower triangle is commutative by Axiom I. The square is
commutative by Axiom II. Thus (e7)gz=og74.

We will denote the local system described above by [A"(F)].

Let X, be the p-skeleton of X and let ¥,=="1(X,). We have an exact sequence

i* ;%

o s B, Y ) s O Yy ) L (Y Yy ) s
Piecing these together leads to an exact couple with
43 EPt = h** (Y, Yyoy, f), T4 = h*AY, Y,y fr).

Fix a total ordering of the vertices of X. For 7,=<v," - -v,), define
@4 SN (1), mT (), fr) > B N N (1y,0), m (), f)

to be i*d~!, where d is from the cohomology sequence of the triple (7~ (r,),

7™ (o), wHUre))) and i (7 (ry,), 7N () > (1 (), 7 H(J(7y))) s the
inclusion.
Applying §, p-times leads to an isomorphism

4.5) §8: WP (m = Y(1p), m~ X(#p), fm —> hA(F(v,), fr).
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Consider the diagrams

B?* (= (1,), m= (), fm) = B>+ =Y = (rp,0), m™ (4,0, f7)

(4.6) l%’ 153 i
h(F (vy),fﬂ)(—l h(F(vy), fm), 0 =i <p,

1+ 5= 3(r,), 1K), fr) T BN ), 7 ), f)
(%)) 156’ 158 -
(= 1Yoy
K(F(@,), fr) ————> B(F (@, -1), fr)
where o: I — X is defined by o(t)=1v,+ (1 —t)v,_,, 05t 1.
(4.8) LEMMA. The diagrams (4.6) and (4.7) are commutative.

Proof. We will show that (4.7) is commutative. Choose S: F(v,_;)x 7, —
7~ }(7,) to cover the inclusion 7,< X and such that SA,_,: F(v,-,) = F(v,-,) is the
identity. We have a commutative diagram

(S »)*
h(F (vy-1), fuS)y) <——— h*(F(vy), fm)

I/\:‘ss g Iss

B+ F (0, 1) X 79y F(0p 1) X #p, frS) <—— h** Y(m~(7y), m~X(#,), f)

lA:- 875, ls's-‘s',
. (SA, - )* .
B(F(vy-1), faSA, - 1) «————— h(F(vy-1), fm)
Now use this, the commutativity of (3.14) and the fact that SA,_, is the identity

to deduce that
§8- 15): = (_ 1)"T#(S/\,,)*5'8.

Next, note that T=T(v,_,, ¢). Therefore Ty(SA,)* =04 The proof that (4.6) is
commutative is similar.
For r,< X, let i(7,): #~(7,) > Y, be the inclusion. We have

4.9) i(r)*: BP*(Y,, Yoy, fm) = B4~ (1), m™ (), fm).

Let C*(X; [h%(F)]) denote the simplicial cochain complex of X with coefficients in
[#%(F)]. Define
(4.10) Y b+, Y, -y, fr) > C(X; [H(F)))

by Y(u)(y)=58i(7,)*(u), u € "**%(Y,, Y,_,, fm). Then ¢ is an isomorphism and, by
Lemma (4.8), commutes with the boundary operator. Therefore we have an identi-
fication

4.11) y: E3*— H?(X; [h%(F)).
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We have a filtration
4.12) ™Y, fr) =J0*>...D JPr-P 5.

where
J#*=? = Image (h"(Y, Y, ., fr) = h*(Y, fn)).

As usual, let Ez»-r=J7n-?/Jr+La-r-1 We will discuss now the convergence of
{E,, d} to E,.

DEFINITION. A pair (X, A) is k-coconnected if for every local system L of abelian
groups over X, we have HY(X, A; L)=0, q=k.

(4.13) LemMA. If Y is k-coconnected and F(x), x € X, is l-coconnected, then
D=0, r>max (k+2-p, I+1).

Proof. By inspecting the singular cohomology spectral sequence of =: Y, — Y,
we see that Y, is (s+/)-coconnected. Therefore (Y, Y,_,) is s-coconnected
if s>max(k,p—1+/). Now take r>max (k+2-p,l/+1). Then p+r—2>
max (k, p—1+1/) so that by obstruction theory, there is M: Y x I — Y such that M,
is the identity, M,(Y)< Y, .-, and M, restricted to Y, _, is the identity, 0=¢=<1.
We have a commutative diagram

j % *
(Y, Yoy, fr)——> B (Vs s, Yp—l’fﬂ)y}_’ W+ (Y, Yp-1,frMy)

l(ﬁrM )#

Mg
h* (Y, Yp-hf")

which implies that i* is injective. By exactness,
P = Image (h’+q( Y, Yr+r—2’f") - hp+q( Y, Y»— laf")) = 0.

(4.14) ‘THEOREM. Suppose that either (a) X is finitely coconnected or (b) Y and
F(x), x € X, are finitely coconnected. Then

(1) For each pair (p, q), there is an integer r(p, q) such that Ef;,,~ E2°.

(2) The filtration (4.12) is finite.

This follows by a standard spectral sequence argument. For case (b), the pre-
ceding lemma is needed.

5. Liftings. Suppose that we have a pair (8, A) where B=(E, B, p) is a Serre
fibre space and A: B— E is a cross-section (pA=identity). For (X, A) € #2, let

(5.1) L(X,A,B,8) ={g: X—E| g4 =0pg4}
and define
(5.2) w: Z(X, A, B,A) > #(X, B)

by w(g)=pg.
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(5.3) LeMMA. The map w is a Serre fibre map.

This follows easily from the exponential law and the fact that p is a Serre fibre

map.
Note that w has a cross-section
549 8: M(X, B)— Z(X, A, B,A)

defined by 8(f)=Af.

The fibre above f € #(X, B) will be denoted by Z(X, 4, f, B, A). When we speak
of the homotopy groups of Z(X, 4, f, B, A), it will be understood that the base-
point is Af.

Let F: I — .#(X, B) be a path from f; to f,. Then 8F is a path in Z(X, 4, B, D)
from Af; to Af;. We have

(5.5 (OF)y: m(L(X, A4, B, 8); fy) > m(Z(X, 4, B, B); Afo).
Now define
(5'6) F#: ‘”n(g(X) A’fh B9 A)) g ‘”n(g(X9 A’fO’ ﬁ’ A))

so that the diagram

F,
m(L(X, A, f;, B, 8) —> 7 (L(X, 4, fo, B, D)
li# li#
(OF)4
ﬂn(‘?(X9 A, B: A); A.fl) _— ”n(g(xy A9 B’ A); Aﬁ))

is commutative. (This is possible because of the cross-section 8.) Then, as in [1],
we have

(5.7) LEMMA. The correspondence f — m,(ZL(X, A, f, B, A)) and F — F is a local
system on #(X, B).

We consider the effect of a change of variable. For g: (X, 4;) = (X3, 42); we
have a commutative diagram

'?(Xza Az, Bs A) fﬁti)) 'g(Xh Al’ B; A)
(5.8) 1«* lw
A (g)

M (X,, B)—————— #(X,, B)
where #(g)(h)=hg. Therefore the collection
(5.9 L(8)y: m(L(Xa, As, f, B, B)) = m(L(X1, 41, 12, B, D)),

fe #(X,, B), is a homomorphism of local systems.
Now let (8;, A,) and (B, A;) be given where B,=(E,, B, p;), i=1, 2. By a map

(5.10) (%, K): (B1, A1) > (B2, A2)
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we mean k: E, — E, such that p,k=p, and K: BxI— E, such that K,=A,,
K, =kA,, and p,K,=identity, 0<¢t<1. Thus, up to the homotopy K, k is cross-
section preserving. We have a commutative diagram

2()
Q(X, 4, By, Al) - f(,\” 4, Ba, A;)
.11)

w w

(X, B)

where Z(k)(h)=kh. Note that for fe .#(X, B), the composition 1%, #(B, E,)
#D M(X, E,) is a path in L(X, 4, By, A,;) from Azfto kA, f. Define

(5.12) (ks K)y: m(L(X, A, £, B1, 8)) — 7o L(X, 4, f, B, Ag)),
fe#(X, B), to be the composition
Lk)y ,
77'n('g’(/Y’ Asf; ﬁli Al)) E— "n('g(X9 A9f; 32’ Az), kAlf)
lwmx)#
”n('g’(X’ A’f; Bz, Az))

It is easy to show that (k, K) is a homomorphism of local systems.
6. B-spectra. Given (B, A) as in the previous section, let
(6.1) Q(E;A) ={e:I— E| o(I) = p~Y(b), some b € B, and o(0) = o(1) = A(b)}
and define
6.2) Q(p): UE;A)—~ B
by Q(p)(e)=b, where o(I)<p~1(b). Using the exponential law we see that Q(8; A)
=(Q(E; A), B, Q(p)) is a Serre fibre space. Define a cross-section
(6.3) Q(A): B— Q(E; A)

by Q(A)EXH)=A®), 0s1<1.
The pair (Q(B; A), Q(A)) will be called the loop space of (B, A).
For (X, A) € 2% and fe .#(X, B), the exponential law gives an identification

(6.4) L(X, 4, f, QB; B), Qd)) - AZL(X, 4, f, B, b)).
This in turn leads to an identification
(6.5) T(L(X, 4, f, UB; B), QA)) = =, (L(X, A4, f, B, D).

A B-spectrum & is a sequence of pairs (B, A,), —00<m< +0o0, where B,
=(Enm, B, pn) is a Serre fibre space and A,,: B— E,, is a cross-section, together with
maps

(6.6) (kms Kn): (Bms Am) = (QBr+15 A+ 1), A1)
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Given a B-spectrum % we have for (X, 4) € #2 and fe .#(X, B), a homo-
morphism

6.7)  (km Kn)g: m(L(X, A, f, By Bn)) > 0 s i(L(X, 4, f, Brs 1, Bm+1))

(using the identification (6.5)). Now, for each integer n, let

6.8) (X, A, f; &) = dirlimp, 7_p . (ZL(X, 4, f, B+ 1, Bms1)-
Given F: I - #(X, B) from f, to f;, the homomorphisms

(6.9) Fy: m(L(X, A, f1, Bm, Bm)) = 7 L(X, A, for B D))

commute with those in (6.7). Let

(6.10) Fy: (X, A, f1; &) —> WX, A4, fo; &)

be obtained from these by passing to the direct limit.
Given g: (X;, A;) - (X3, 45) and fe #(X,, B), the homomorphisms

(6'1 1) g(g)#: "n(‘?(XZ, AZ;j; ﬁma Am))_> "ﬂ('g,(Xh Alsfg9 Brm Am))
commute with those in (6.7). Define
6.12) g*: WXy, Ag, f; &) —> h(Xy, Ay, 185 )

to be the direct limit of the £(g)x.
For (X, A)e %2 let i: A— X and j: X — (X, A) be the inclusions. Then for
fe #(X, B) we have
2(j) 2(i)
(6‘13) _?(X, A9j; Bm’ Am) _— g(X:f’ ﬁma Am) I g(AsflA’ Bm’ Am)
Using the exponential law we see that £(i) is a fibre map. Further, #(j) is an
identification with the fibre £(i)~*(A,.f|4). Therefore, we have an exact sequence

L@ )
6.14) o _ﬂ_) ﬂ”(g(A’flA’ B> B )—i_) a-1(L(X, A4, 1, Bns Am))

— T (L(X, S, By Bm)) ——> -
and the homomorphisms 84 commute with those in (6.7). Therefore we may define
(6.15) d: kA, f|a; &) —> B (X, 4, f; &)
to be the direct limit of the 84.

(6.16) THEOREM. With h*, #, *, and d as defined in (6.8), (6.10), (6.12) and (6.15)
we have a B-cohomology theory on #2.

Proof. Using the results of §5, Axioms I through VI are easily checked. Axiom
VII follows from the exactness of (6.14) and the fact that exactness is preserved
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under direct limit. For Axiom VIII, note that if i: (4;, 4, N Ag) - (X, A,) is the
inclusion, then for f € .#(X, B),

.‘Z(z), .?(X, A2’f; Bma Am) - g(Ala Al N A29fl49 pma Am)
is a homeomorphism.

7. The group structure. The suspension S(F) of a space F will be the quotient
obtained from F x I by the identification

(7.1 (x,t) ~(x,t) ifandonlyifx =x"ort=00rt=1.

However, we will use a weaker topology than the usual one. Let w: FxI— S(F)
denote the projection. A basis for the topology on S(F) is to consist of sets of the
form w(U x (t,, 1)), Uopenin F,0<t; <t;<1,0r w(Fx(t,1]), <1, or w(Fx [0, 1)),
t>0.

Suppose that B=(E, B, p) is a fibre space. Let Z(E) be the quotient obtained from
E x I by the identification
(72) (e,t) ~(e’,t) ifandonlyife =€ or¢ = 0or 1 and p(e) = p(e’).

Let w: ExI—>X(E) be the projection. A basis for the topology on Z(E) is to
consist of sets of the form w(Ux(fy,t3)), U open in E, 0<t,<t;<1, or
w(p~Y (V) x(ty, 1]), t<1, or w(p~*(V)x [0, t)), >0, where V is open in B. Define
(7.3) Z(p):Z(E)— B

by Z(pX([e, t])=p(e).

(7.4) LemMA. If B=(E, B,p) is locally trivial with fibre F, then X(B)=
(Z(E), B, Z(p)) is locally trivial with fibre S(F).

This is easily checked. We will call 3(B) the suspension of B.
We will now describe a natural way of assigning to B a B-spectrum. Let Z™(B)
=2(Z"~1(B)) and define

(7.5) An: B— Z"(E)

by An(b)=[e, 0- - -0}, e € p~1(b). Note that A,, is a cross-section to Z™(p): Z™(E)—B.
Let &(8) denote the B-spectrum consisting of pairs (I'y, 8,,) and maps

(7°6) (km, Km): (Fm’ Sm) g (Q(Fm+ 15 8m+1)9 Q(smi-l))»

where

(7 7) (P ms 8m) = (Zm(p), Am)’ m>0,
‘ = (Q " (Z(B); A, Q7™ H(AY), m S0,

and for m>0

(7.8) km: ZME) > QE"*YE); Apsa)
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is defined by
ku(e, t1, . . ., ta)(A) = [Anp(e),21]), 0 £ A £ 1/2,

= [e’ tyeoos tms Z_ZA]) 1/2 = A = l’
and

(1.9) Kn: BxI—> QE™*Y(E), Ans1)
is defined by
K (b, 1)(A) = [An(),212), 0= A< 1/2,
= [Bnd), 2:(1-2)), 12=A =15
whereas for m =0,

(7.10) kp: Q™ ™*YZ(E); Ay) > Q™Y Z(E); Ay)
is to be the identity, and
(7.11) K, BxI— Q-™+Y(X(E); A))

is to be the constant homotopy Kn(b, 1)=Q "*}(A)(b), 0=t<1.
The square of B=(E, B, p) is B2=(E?, E, p,), where
(7.12) E? = {(e1, e) e EXE | p(e;) = plea)}

and p,: E2— E is given by p,(e,, e;)=e,. There is a cross-section A: E — E2 by
A(e)=(e, e). Now define

(7.13) w: E2 > Q((E); A,)
by
pler, e2)(A) = [eg,22]), 0 =A< 1/2,
=[e,2-21], 12225 1.
In the diagrams

et amE);s)  EB2-Es oEE);a)
7.14 ) 2 QZ(p))
ary | ) | Ja , o

E——B E——B

the first is commutative and the second is homotopy commutative, a connecting
homotopy being

(7.15) M: ExI— Q((E); Ay)
by
M, 1)) =[e,212], 0=AX=1)2
=[e,2t(1-%), 1221

Note that M, is a lifting of p for 0=s¢<1.
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Given X e %% and f: X — B, let

(7.16) L(X,f,B) ={g: X—E|pg =f}
and
(7.17) L(X, f, B) = no(L(X, f, B)).

Suppose that L(X,f,B) is not empty. Let «€L(X,f, B) be represented by
g: X — E and define

(7.18) Ya: L(X, f, B) = K°(X, f, S (B))
to be the composition

(7.19) L(X,f:P) ne), L(X, g, B) 2> L(X, /, QE(B); Ay) —> KX, £, S (B)),

where 7(g)(¢q)=[g xq], g € Z(X, f, B), and the unmarked arrow is inclusion into
the direct limit. Note that 5(g) is one-one and onto.

(7.20) LEMMA. The correspondence y, is independent of the representative chosen
Jor a.

Proof. Let g’ also represent « and let H: X x I — E satisfy Hy=g, H,=g" and
pH,=f,0=t<1. Then, for g € Z(X, f, B), define

J: XxI— QZ(E); Ay)

by J(x, t)=p(H(x, 1), q(x)), x€ X, 0=t=<1. We have Jo=p(gxq), Jy=p(g’ xq)
and Q(Z(p))J;=f, 0=t 1. Therefore [u(g xq)]=[u(g' xq)] in L(X, f, AZ(B); A,)).
This completes the proof.

We need now the following fact. Suppose that we have a commutative diagram

E, L > E
(7.21) 11’1 lpz
14

B,—— B,
with both p; and p, fibre maps. Let F; and F, denote the respective fibres.
(7.22) LEMMA. Suppose that
pa: mn(Fy; €1) > mn(Fa; €2)
is an isomorphism, m < 2n. Then if X € P2 is (2n— 1)-coconnected, the correspondence
pa: (X, f, B) — L(X, of, Ba), fe #(X,By),
is one-one and onto.

This is well known.
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(7.23) THEOREM. Let B=(E, B, p) be locally trivial with fibre F. If F is (n—1)-
connected, X € P? is (2n—1)-coconnected and L(X, f, B) is not empty, then y, in
(7.18) is one-one and onto.

Proof. Apply the above lemma to conclude that both pg in (7.19) and the
inclusion of L(X, f, Q(Z(8); A,)) into the direct limit h°(X, f, S(B)) are one-one and
onto.

With X and B as in the above theorem, let (L(X, f, B), ) denote the set L(X, f, B)
together with the abelian group structure determined by the condition that i, be an
isomorphism. For y,, y, € L(X, f, B), let y, +, y. denote their sum in (L(X, f, ), «).
Using the homotopy M of (7.15), we see that « is the zero in this group.

(7.24) LEMMA. For ay, o; € L(X, f, B) we have g, (ay) = — (o).

Proof. Let go, g,: X — Erepresent «q, o, respectively. Then ¢,,(«,) is represented
by u(goxg1) and i, («p) by n(g, xgo). From the definition of p, the product
(8o % g1)- n(g: X go) is homotopic as a lifting of f to the trivial lifting Q(A,)f. That
iS, Yuo(@1) +¥a,(20) =0. This completes the proof.

(7.25) LeMMA. For oo, a; € L(X, f, B) and v e h°(X, f, £ (B)), we have 3z, (v)
= '/‘al'(“o) +v.

Proof. Let g: X — E be a lifting of f such that u(g, xq) represents v. Then ¢
represents z.'(v) and ,, .1 (v) is represented by u(g; x g). From the definition of x,
we see that u(g; xg) is homotopic as a lifting of f'to u(g; X go)- u(go X q). The latter
represents i, (o) +v. This completes the proof.

(7.26) LEMMA. For oo, oy, a5, y € L(X, f, B), we have ag+q, (0144, ¥)=0o+q, .
Proof. By (7.24) and (7.25), we have

‘/’a;("‘l +a, ')’) = ‘/’a;'/’gzl('/'az(al) + ¢a2(7))
(7.27) = Pay(@2) + Yay(1) + ¥, ()
= ¢¢2(’Y)~

Therefore
ao+e, (al +a, )') = '/’;11('/’111(“0) + ‘/’a;(al +a, )
(7.28) = Pz, oy (%0) + ¥z, ())
= Y a¥ae Y. (7)) = Yy Yar(7)-
On the other hand, by (7.25)
o +¢27 = ¢;zl(¢aa(a0)+¢¢3(}'))
= ¥ (Yasbis Y, (7)) = Yo Pan(¥)-
Comparing (7.28) and (7.29) gives the desired result.
Let % denote the category of sets and functions, let € be an arbitrary category

and let F: € — % be a contravariant functor. We say that F has a natural affine
group structure if for each object X €% and element « € F(X), there is a rule

(7.29)
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which assigns an abelian group structure to the set F(X). Denote this group by
(F(X), «) and for y,, y, € F(X) let y,+, v, denote their sum in (F(X), «). The
following conditions must be satisfied.

(A). The zero of (F(X), &) is e.

(B). If g: X; — X, is a map in €, then F(g): (F(Xy), o) = (F(X,), F(g)e)) is a
homomorphism.

(O). For ay, o, € F(X), the translation T'(o, o;): (F(X), &) = (F(X), ) defined
by T'(wo, a1)(y) =0+, y is an isomorphism.

(D). T(cp, @) is the identity, o € F(X).

(B). T(“O’ a)T (e, a2)=T(!¥o, ag), @, @, &y € F(X).

Now let Z(8, 2n— 1) denote the category whose objects are pairs (X, f) with X a
(2n—1)-coconnected CW-complex, f'€ #(X, B) and L(X, f, B) not empty. A map
g: (X4, fi) = (X3, f2) in the category is to be g: X; — X, such that f; =f,g.

(7.30) THEOREM. Let B=(E, B, p) be locally trivial with fibre F which is (n—1)-
connected. Then the set functor L(X, f, B): #(B, 2n—1) — % has a natural affine
group structure.

Proof. Properties (A) and (B) are easily checked. We will show now that

T(“O’ al): (L(X’j; B)9 al) - (L(X9f; ﬁ)s ao)
is a homomorphism. By Lemma (7.26)

T(eo, 1 )(¥2+a, ¥2) = @otay (V1+a, ¥2)
= (@o+a; Y1) Fao (@0+a; 72)
= T(xo, o)1) +ao T(xo, a1)(‘)'2)-

Property (D) is evident and (E) is just Lemma (7.26). Finally (D) and (E) imply that
T (o, ;) is an isomorphism.

8. Equivariant maps. Let G act as a group of transformations on X and Y.
A map f: X — Y is equivariant if f(gx)=gf(x), g€ G, xe€ X. Two equivariant
maps fo, f1: X — Y are equivariantly homotopic if there is a homotopy F: X xI— Y
from f, to f;, such that F, is equivariant, 0<<1. Let E(X, Y) denote the set of
equivariant homotopy classes of equivariant maps from Xto Y. Amapf: X - Y
is an equivariant homotopy equivalence if there is g: Y — X such that fg and gf are
equivariantly homotopic to the identity.

The following is an equivariant form of a theorem of J. H. C. Whitehead [10].

(8.1) LEMMA. Suppose that X and Y are connected CW-complexes on which the
action of G is both free and cellular. If f: X — Y is equivariant and fy: mn(X; Xo)
—> (Y, yo) is an isomorphism, m <max (dim X, dim Y), then f is an equivariant
homotopy equivalence.

The proof can be carried out, using the mapping cylinder of f, along the same
lines as the proof of the Whitehead theorem.
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Let W be a G-free acyclic complex. For any space Z with an action of G, we have a
locally trivial fibre space

(8°2) B. = (WXZ/G, W/G, "Z),

where G acts diagonally on WxZ and =;: WxZ/G — W|G is induced by pro-
jection. The fibre is Z.

(8.3) LEMMA. Suppose X is a CW-complex on which the action of G is both free
and cellular. Let q: Wx X — X be the projection. Then

g*: EWx X, Y)— E(X, Y)

is one-one and onto.

Proof. This follows from Lemma (8.1), since gg: m,(W X X, (Wo, Xo)) = mm(X; Xo)
is an isomorphism, m 2 0.
Let X satisfy the hypothesis of the above lemma and let

8.4) o: E(X, Y)— L(W x X|G, nx, By)

be the composition
g#! A
EX,Y)—— E(Wx X, Y)—— L(Wx X/G, mx, By),

where A is defined as follows. Let « € E(W x X, Y) be represented by g: Wx X — Y.
We have §: Wx X — W x Y by §(w, x)=(w, g(w, x)) and § is equivariant. Its orbit
map §/G: Wx X|G — Wx Y/G is a lifting of mx. Let A(«) be the class of §/G. The
correspondence A is essentially due to A. Heller [3] and is one-one and onto.
Therefore ¢ is one-one and onto.

Fix a space Y and an action of G on Y. Let 2(Y, G, 2n— 1) denote the category
whose objects are CW-complexes X with an action of G which is both free and
cellular and such that X/G is (2n— 1)-coconnected and E(X, Y) is not empty. The
maps in the category are to be equivariant maps. We then have a covariant functor

8.5) D: 2(Y,G,2n—1) - P(By,2n—1)

which sends X to (W x X/G, my).

Suppose Y is (n—1)-connected. There are the set functors E( , Y):
2Y,G,2n—1)— % and L( ,By): P(By, 2n—1) - % and ¢ in (8.4) is a natural
transformation E( , Y)— L( ,By)D. Since ¢ is one-one and onto, we may,
for Xe 2(Y, G,2n—1) and «€ E(X, Y), define an abelian group (E(X, Y), @)
with underlying set E(X, Y) by the condition that

(8.6) ¢: (E(X, Y), o) > (L(Wx X|G, mx, By), 9(*))
be an isomorphism. Then from Theorem (7.30) we have

(8.7) THEOREM. Let Y be an (n— 1)-connected space with an action of the finite
group G on Y. Then the set functor E( , Y): 2(G, 2n—1) — % has a natural affine
group structure.
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ReMARK. The addition in (E(X, Y),«) has a very simple description. Let
g, ki, ky: X — Y represent «, y,, y, respectively. Let G act diagonally on Y2 and
consider the equivariant map gx k; x k,: X — ¥Y3. The subspace

V(Y) = {1, y2 ¥s) € Y3 | y1 = yaor y, = yg}

is invariant and =, (Y3, V(Y))=0, m<2n—1. Since X/G is (2n—1)-coconnected
we may construct a homotopy H: X x I — Y3 such that Hy=g x k; X k3, Hy(X)
<V(Y) and H, is equivariant, 0<¢=<1. Define a folding map A: V(Y)— Y by
Ay, ¥2, )=y, and A(p, ¥, y3)=ys. A representative of y; +, ys is AH;. We will not
need this fact so we will not stop to prove it.

Let [X, Y] denote the track group of homotopy classes of maps from X to ¥
and let {: E(X, Y)— [X, Y] assign to an equivariant homotopy class its ordinary
homotopy class. Define

(8.8) 9: (E(X, Y), ) = [X, Y]

by 8(y)={(»)— ().

Fix base-points woe W and y,€ Y. Let i: X—> Wx X/G be given by i(x)
=[w,, x], x € X. This identifies X with the fibre =5 *([w,]). Let w§: X — W/G and
(W, Yo)*: X — W x Y/G be the constant maps at [w,] and [wy, y,] respectively and
let z € L(X, wg, By) be the class of (wq, ¥o)*. Consider the diagram

X, ¥1—2s LX, W, Br) s WOCX, Wi, S (B)

(89) ]e ] -
EX, 1), ) LW X[G, mx, ) P22 1OW x X/G, mx, S By),

where ¢, is defined as follows. Given g: X — Y define go: X = W x Y/G by go(x)

=[wo, g(x)], x € X. Then let po(g)=[go].
We have an operation

(8.10) p: Gx[X, Y]~ [X, Y]

of G on [X, Y] defined by p(g, 7)=(g_1)#g#(7)’ geG,yelX, Y]

Next, we have a fibre map nx: Wx X/G — W/G with fibre X. Take fe-
M (W|G,W|G)to be the identity. Then from §4, the collection h°(=x 1([w]), 7x, L(By)),
[w] € W/G, is a local system over W/G. Out of this we obtain an operation

(8.1 p: m(WIG; [wo]) x (X, w§, L (By)) — h(X, w§, & (By)).
Make the canonical identification of G with =,(W/G; [w,]).

(8.12) LEMMA. The diagram (8.9) is commutative and

'/’29’0: [X’ Y] - hO(X, W:, 'Sp(ng))

is an operator isomorphism.
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The proof is tedious but straightforward and will be omitted. As a consequence
of the lemma, 6 is a homomorphism.

For a group A with G as left operators, let /(A) denote its subgroup of invariant
elements. Note that the image of 6 is contained in I([X, Y]). For an integer n,
let &7(n) denote the class of abelian torsion groups whose p-primary component is
zero if p does not divide n.

(8.13) THEOREM. Let G have order n. Then
0:(E(X, Y), ) > I([X, Y])

is an isomorphism modulo s/(n).

Proof. By the preceding lemma it is sufficient to show that
(8.14) i*: k(W x X|G, mx, L(By)) = I(h°(X, w§, S (By)))
is an isomorphism modulo £/(n). Applying the spectral sequence of §4 to mx:
W x X/G — W/G, we have

Ef = HX(W[G; [R(X, S (By))])
and a finite filtration
(W x X|G, mx, P(By)) = JO° D J1=15...D Jk -k >..

with E¥% ~*=E¥ -k for large r.
We need the well-known facts [6] that H?(W/G; [h%(X, ¥ (By))]) is in & (n), p>0,
and
HYW|G; [K(X, L(Br)]) ~ I(h*(X, w§, S (Br)))-

From the above filtration we have that i* in (8.14) is an isomorphism modulo
&/ (n). This completes the proof.

Suppose G=Z, and Y=S", where the action of Z, on S™is given by the antip-
odal map. Let Z*(X) denote the nth stable cohomotopy group of X.

(8.15) CoROLLARY. Let T be a cellular fixed point free involution on the CW-
complex X with X|T (2n— 1)-coconnected. Then

0: (E(X, S™), o) > I(Z™(X))
is an isomorphism modulo 2-torsion.

Let w: Z*(X) - H™"(X) be the Hopf map and let Q denote the rational numbers.
A theorem of Serre [8] asserts that
(8.16) w®1:Z(X)® 00— HYX; Q)

is an isomorphism.
Let Z; operate on H*(X; Q) by the rule U — T*(u), n-odd, and U — —T*(u),
n-even.
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(8.17) CorOLLARY. With X and T as in (8.15)
wf @ 1: (E(X, S™), ®) @ Q= I(H™(X; Q)

is an isomorphism.

Proof. Note that with the operation defined above on H*(X; 0), » ® 1 is an
operator isomorphism. Now apply (8.15).

9. Immersions and embeddings. For a closed C®-manifold M of dimension n
let T(M) and To(M) denote respectively its tangent bundle and tangent sphere
bundle. Let E*** denote Euclidean (n+ k)-space. An immersion f: M — E™** is a
C~-map whose derivative T'(f): T(M) — T(E™*¥) has rank n at each point x € M.
Two immersions fo, fi: M — E™** are regularly homotopic if there is a C®-map
F: M xI— E"*¥ such that F,=f,, F;=f;, and F, is an immersion, 0<¢=<1. Let
IM™+¥(M) denote the set of regular homotopy classes of immersions of M into
En+k'

An embedding f: M — E™** is a one-one immersion. Two embeddings f,, f1: M
— E™** are isotopic if there is a C*-map F: M xI— E™** such that F,=f,,
Fy=f, and F, is an embedding, 0=<¢<1. Let EM"**(M) denote the set of isotopy
classes of embeddings of M into E"*F,

There is a fixed point free involution 4, on To(M) which on each fibre S*~1 is
the antipodal map A4,, ;.

Let A denote the diagonal of M x M. There is a fixed point free involution B,, on
M x M —A defined by (x, y) — (, x).

An immersion f: M — E™** ‘determines an equivariant map To(f): To(M)
— Entkx §n+k-1 Since the projection =: E**kx Sn+k-1_ §n+k-1 5 equi-
variant, so also is #To(f): To(M) — S*+E-1,

An‘embedding f: M — E™** gives an equivariant map fxf: M x M—A — E**¥
x E**k—A, There is A: E***x Er**¥—A — S"+k-1 by Nv,, v5) =0, — va/|v; — vy
and A is equivariant. Then A(fxf): M x M—A — S™*¥~1 is also equivariant.

Our study of the sets IM**¥(M) and EM"*¥(M) is based on the following

(9.1) THEOREM (HIRSCH-HAEFLIGER [5]). Suppose 2k >n+ 1. The correspondence
n: IMPYE (M) — E(To(M); S***-1)
defined by 7([f])=[#To(f)] is one-one and onto.
(9.2) THEOREM (HAEFLIGER [4]). Suppose 2k >n+3. The correspondence
7. EM"*¥ (M) —> E(Mx M—A; Sn+k-1)
defined by t([f])=[Afxf)] is one-one and onto.

By means of 5 and 7 the sets IM"***¥(M) and EM™*¥(M) inherit a natural
affine group structure.
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(9.3) THEOREM. For k>1,
Afy: TR (T(M)) — Zr R~ Y(To(M))
is (—1)* times the identity, modulo 2-torsion.
Proof. There is a spectral sequence {E,} with

Ep* = H*(M; [2(S™ )
and a filtration
Zn+k-l(To(M)) = Jontk-1 5., .5 Jmk-1 5 (

with J#-¢/Jr+1.a-1= Epa Tt is sufficient to show that for ¢>0, the induced auto-
morphism of Ef? is (—1)* times the identity. This agrees with the coefficient
automorphism determined by A#_,:ZY(S"~!)—>ZY(S""?), since A4,., is the
restriction of A4, to the fibre. It is well known that for g >0, 4# _, is (— 1)" times the
identity. This completes the proof.

Letting I(Z"**~}(To(M))) denote the subgroup of elements invariant under
(Ap+k-1)#Af, we have by the above lemma

(9.4) COROLLARY. Let k> 1. For k even, I(Z"**~Y(To(M)))=Z"**~YTo(M)) and
Jor k odd, I(Z"+*~Y(Ty(M)))=0, modulo 2-torsion.

We will write M E*** (M< E"*¥) if there exists an immersion (embedding) of
M in E™*¥, Applying (8.15) and the preceding corollary, we have

(9.5) THEOREM. Suppose 2k >n+1 and M< E***. For k-odd (IM"**(M), «)=0
modulo 2-torsion. For k-even

bn: (IM™4(M), @) — Z***~ Y (To(M))
is an isomorphism modulo 2-torsion.
For embeddings we have
(9.6) THEOREM. Suppose 2k >n+3 and M< E™*¥, Then
Or: (EM**¥(M), o) > I(Z"*¥~Y(M x M —A))
is an isomorphism modulo 2-torsion. '

Here I(Z"**~}(M x M—A)) is the subgroup of elements invariant under
(Am‘bk-l)#Bg-

10. Rank of IM"**(M) and EM "**(M). In this section it is assumed that M is
orientable. Let

(10.1) @: (IM***(M), @) - H¥(M)

be the composition

(M5, @) s S+ T (M) s H* 3, 000) s HY D)

where ¢ is from the Gysin sequence for To(M) — M.
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For an immersion g: M — E"** the normal class of g is the Euler class
x(g) € H¥(M) of the normal bundle of g.

(10.2) LeMMA. Let y geherate Hr*k-Y(§n+k-1) Then with a suitable orientation
of the normal bundle of g, we have

x(&) = $To(8)*m*(7).

Proof. This follows from Theorem (1.1) of [7]. Let g~ (To(E™**)) be the bundle
over M induced by g and let

1) L g1 B9y L T

be the factorization of Ty(g). Then
(10.3) YTo(g)*n*(y) = Yf&g**(v).

In the Gysin sequence for g~Y(To(E"**)) - M, we have yg*n*(y)=1¢e HY(M).
Using the notation of Theorem (1.1) of [7], we have

WErm*(y) = GYg*n*(y) = GI(1) = x(g)-

This completes the proof.
The above lemma implies that x(g) depends only on the class B € IM™*¥(M),
so we will write y(B) instead of y(g).

(10.4) LEMMA. For y € IM™**(M), &(y)= x(v) — x(c).

Proof. This follows from the preceding lemma and the definition of &.
Now from Theorem (9.5) we have

(10.5) THEOREM. Suppose 2k>n+1 and M< E™**. For k-odd, (IM™**(M), «)
® O0=0 and for k-even

@ QL:(IM**¥M),«) ® Q> HYM; Q),

given by & @ 1(y ® x)=(x(y)—x(2)) ® x, is an isomorphism.
For embeddings, let

(10.6) @: (EM™***(M), «) > H***~Y(M x M —A)
be the composition

(EM™5(M), o) b Enk=1(M x M—A) ——> H*F-1(M x M=A),
By Theorem (8.15) we have an isomorphism

(10.7) @ @ 1: (EM™¥M),a) ® Q— I(H***"Y(Mx M—-A; Q)).



470 J. C. BECKER [September

Let u € H;,(M x M) be a fundamental class and let
(10.8) D: H" W " Y MxM—-A; Q)= H,_...(MxM,A; Q)
denote the Lefschetz-Poincaré duality map
D)=unv, veH" " " Y MxM-A;Q).
Next, let
(10.9) x: Hy(M; Q) @ Ho(M; Q) > H (M x M; Q)

be the Kiinneth map and 8: M — M x M the diagonal map. For ae H,,_, .,(M),
write

Kk 18,(a) =a®@1D1®a+d,
n-k
de 2 H(M; Q) ® H(M; Q),

=1

i’=n—k+1—i. The element a is primitive if 4=0. Let j: M x M — (M x M, A) be
the inclusion. We have an isomorphism

n-k+1

(10.10) (jur)"D: H™* " (MxM—-A; @)~ > H(M; Q) ® Hi(M; Q).

i=1
Define an involution T on the right hand side of (10.10) by

T@® 1) =(—a)®1-d, dim(e) =n—k+1,

(10.11) ) . .
T@a®b)=(-D*b®a, dim(@@) =i dim@®)=i > 0.

Then (j,x)~D is an operator isomorphism when the involution on the left is
(—=1)"**B¥ and on the right is (—1)*7T. Now let

(10.12) ToalM; Q) = Z H(M; 0) ® HdM; 0),

where r is the greatest integer less than or equal to n—k/2 and let P,_,.,(M; Q)
denote the subgroup of primitive elements in H,_,.(M; Q).

(10.13) THEOREM Suppose 2k >n+3 and M<E™**, Then (EM"**(M), o) ® Q
is given by the following table:

k=0 mod 2 k=1mod 2
n+k=0,1,2mod 4 | Jn(M; Q) Inx(M; Q) @ Pp_i+1(M; Q)
n+k=3 mod 4 Jai(M; Q) @ Hy—ics12(M; Q) | Jn k(M5 Q) @ Hyir1,2(M; Q)
@ Pr_r+1(M; Q)
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Proof. The various cases are all handled in the same way. For example, when
n+k=0,1,2mod 4 and k=0 mod 2,

n—-k+1

piuiM; Q) > H(M; 0) ® Hi(M; Q)

i=1

by
P(Z a® bl') = Z (@ ® b @ (-1)"br @ a)

{=1 i=1
is injective onto the subgroup of elements invariant under (—1)*T.

11. The normal class of an immersion. In this section, M is orientable. We
consider a question raised by Lashof and Smale [7] as to what elements v € H*(M)
are realizable as normal classes of an immersion. Such elements will be character-
ized as permanent cycles in a spectral sequence.

If M E*** let

aLn NYM) = {ve H(m) | v = x(v), y € IM"**(M)}.

If 2k>n+1, then by Lemma (10.4), N*¥(M) is a coset of &(IM™**(M), ). If it is
assumed that Mc E**¥-! or M E™**, then there is a € IM"*¥(M) such that
x(«)=0. In this case N¥(M)=a&(IM™**(M), ) and is therefore a subgroup of
H¥(M).

Let S® and P> be the infinite dimensional sphere and projective space re-
spectively, let X(M)=S®xTo(M)/Z; and P(M)=Ty(M)/Z, and let =,: X(M)
— P® and 7, X(M) — Po(M) be the projections. Pick s, € S © and define i: To(M)
— X (M) by i(x)=[se, x], x € To(M). From the definition of & and the commuta-
tivity of (8.9) we see that the image of @ is equal to the image of the composition

i*

(11.2) RA(X(M), my, S (B)) —> Z"+*=H(To(M))

s B an) s o),

where B=(S® x S**¥-1/Z,, P, m).
Constructing the spectral sequence for the identity map X(M)— X(M) and
m € #M(X(M), P*), we have
(11.3)  E2® = H(X(M); [Z**"** =2 (pt)]) = HP(Po(M); [Z7*"**=1(pt)])
(the right-hand identification being made by #¥) and
(11.4) j: A(X(M), my, S(B)) = EGt*~1:~+k-D < Hr+k-Y(Py(M); [Z]).

Then the following diagram is commutative.
it
(X (M), my, L(B)) ——> Z*+*~Y(T(M))
(11.5) lj 10’

H™ =Y(Py(M); [Z]) EAEN H™*¥ =Y(Ty(M))
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where p: To(M) — Po(M) is the orbit map. Combining the above facts, we have
(11.6) THEOREM. Suppose 2k>n+1 and McE"** or M E™**~1, Then
Nk(M) — l/’p*(EQ'* k-1, —(n+k-1)).

(11.7) LeMMA. For k-odd Yp*(H"**~YPo(M); [Z]))=0. For k-even,
Yp*(H™+*~Y(Po(M); [Z])=2H“(M).

Proof. Comparing the spectral sequence for To(M) — M and Py(M) — M, we
have a commutative diagram

H™ k=1 (Py(M); [ZJ)—‘"*—>H“"‘1(T0(M))
j J
Eln-1 Ezn-? ¢
N 1

H*(M; H™-Y(P"-1; [Z]))Q—Q#—)Hk(M; H*"Y(S™"1)) = HX(M),

where j: S*~* — P™~1 is the restriction of p to the fibre. The involution on Z is
(=Dr*k, Thus H*~Y(P"~*; [Z]) is Z, or Z depending on whether k is odd or even.
In the former case j* has image 0 and in the latter 5* has image 2H"*~1(S"~*). The
lemma now follows from the commutativity of the above diagram.

From (11.6), (11.7) and Theorem (10.6), we have

(11.8) THEOREM. Suppose 2k>n+1 and MS E™**-1. For k-odd, N*(M)=0.
For k-even, N¥(M) is a subgroup of 2H*(M) having finite index.

REMARK. For k=n or n—1 and k-even, we deduce that
Yp*(H™**"Y(Py(M); [Z])) = 2HH(M).
Then using Theorem. (11.6), we obtain the following table for N*(M):

n-even n-odd
k=n 2HY(M) 0
k=n—1 0 2H""Y(M)

The values for k=n were given by Lashof and Smale [7]. Information for k<n—1
would involve computing the twisted cohomology operations which appear as
differential operators in the spectral sequence.

Let S*x .S"~! have the involution (a, b)) — (a, —b).

(11.9) LEMMA. For k-even, there is an equivariant map f: S*x S*~1 — Sk+n-1
of degree 2.
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Proof. Let p: S¥x S™"~! — §* x P*~1 be the orbit map. There is an equivariant
map g:S¥xS""!— §k*n-1 of degree 0, namely, the projection onto S*-1
followed by the inclusion S"~*<S¥+"=1 Now the correspondence

E(Skxsn-l’ Sk+n—1)_>Hk+n—-l(SkxPn-1; ¥4))

which assigns to f the primary obstruction d(f, g) to an equivariant homotopy
between f and g is one-one and onto. The involution on Z is (—1)¥**=(—1)" and,
by an elementary computation, H***~1(§*x P*~1; [Z])=Z and

p*: Hk+n-1(SkXPn-1; [Z])__> Hk+n-1(skxsn—1)

takes a generator to twice a generator. Therefore if we choose fso that d(f, g) is a
generator, the degree of f will be 2.
Suppose that M is parallelizable. Then To(M)=M x S*~! and we can define

(11.10) i IR LTy(M)) — ZHM)

to be the composition
k-1

zn+k—1(MxSn—1)J__)zn+k-1(MxSu—1, MxS"1) > TH(M),

where j is inclusion and the unmarked arrow is (n—1)-fold desuspension. The
following diagram is commutative:

ST, ) s 200)
(11.11) l“’ l“’
v

H™*~YTo(M)) —> H*(M)
(11.12) THEOREM. Suppose M is parallelizable and 2k >n+1. Then
Ybn: IM"*(M), &) > ZX(M)
has image 0, k-odd, and 22¥(M), k-even.
Proof. We will first show that the image of
i*: k(X (M), m, F(B)) > Z" £~ HTo(M))

is 0, k-odd, and is contained in 2Z***¥~1(T,(M)), k-even. This will imply that the
image of Y0y is 0, k-odd, and contained in 2Z*(N), k-even. We have a commutative
diagram

To(M) —l—> X(M)

P,k

]
Sn-l — s 9> xsn—1/22



474 J. C. BECKER [September

where p and p are projections and i is inclusion. Comparing the spectral sequences
for p and p, we obtain a commutative diagram

7k

HX(M), m, S(B) ——> T~ YTo(M)

y y
H"=Y(S® x8§"1Zy; [E(M))]) z, H"=Y(S"~ 1 ZH(M)

Since j is an isomorphism and i* has image 0, k-odd, and 2H "~ }(S"~1; Z¥(M)),
k-even, it follows that the image of i* is 0, k-odd, and contained in 2Z"**~1(T,(M)),
k-even.

Suppose now that k is even. Let u € 2X%(M) and choose f: M — S* such that
u=2[f] Let f': MxS* 1 — S¥x S""1 be defined by f'(x, b)=(f(x), b). Then f*
is equivariant when the involution on MxS"*~! is (x, ) — (x, —b) and on
SkxS"-1 is (a, b)— (a, —b). By Lemma (11.9), there is an equivariant map
g:Sk¥x Sm-1— Sn*k-1 of degree 2. Let y € E(To(M), S***~1) be the class of gf".
Then choosing « € IM™*¥(M) so that {n(«)=0 in Z"**~}(Ty(M)), (see (8.8)),
we have

Pon(n~'(») = 2[f] = u

Therefore, when k is even, the image of 6y is onto 2X¥(M). This completes the
proof.

Let S*(M) denote the subgroup of spherical classes of H*(M), that is, the image
of w:ZHM)— H*(M).

(11.13) COROLLARY. Suppose M is parallelizable and 2k > n+ 1. Then N¥(M)=0,
k-odd, and N¥(M)=2S*(M), k-even.

Proof. Choose o€ IM™**(M) such that {n(«)=0. Suppose ve N*(M). Let
yeIM™*(M) be such that v=x(y). Then by Lemma (10.4), v=a(y). By the
preceding theorem, there is u € Z¥(M) such that §6n(y)=2u. Then, by the com-
mutativity of (11.11),

v = @(y) = 2w(u) € 28%(M).

Conversely, suppose v € 2S%(M). Let u € (M) be such that v=2w(u). By the
preceding theorem there is y € IM "**(M) such that ¢:6y(y) =2u. By the commuta-
tivity of (9.12)

x(y) = @(y) = oQu) = v.
This completes the proof.

REMARK. Theorems (11.12) and (11.13) are also true if M is a =-manifold. The

proofs are essentially the same.
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