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1. Introduction. A number a is called badly approximable if j a — p/q | > c/q2

for some c > 0 and all rationals pjq. It is known that an irrational number a is

badly approximable if and only if the partial denominators in its continued

fraction are bounded [4, Theorem 23]. In a recent paper [7] I proved results of

the following type: // fuf2,•■• are differenliable functions whose derivatives

are continuous and vanish nowhere, then there are continuum-many numbers a

such that all the numbers fi(a),f2(a), ••• are badly approximable.

Let 0<a<l/2, 0 < ß < 1, and consider the following game of two players

black and white. First black picks a closed interval B¡. Then white picks a closed

interval Wx c By whose length is a times the length of Bt. Then black chooses an

interval B2 <= Wx which is closed and has length ß times the length of IF,. Then

again white picks a closed interval W2 c B2 of length a times the length of B2,

and so on. Call white the winner of a play if the intersection of the intervals W}

is badly approximable; otherwise black is called the winner.

Who will win? Since the badly approximable numbers have Lebesgue measure

zero, [4, Theorem 29], one might think that black can always win. It turns out,

however, that white can always win (Theorem 3).

We shall show that sets S with this property (namely that white can always

play such that the intersection [j W¡ is in S) necessarily contain continuum-many

elements (Lemma 23), that countable intersections of sets with this property

again have this property (Theorem 2), and that if S has this property, and f(x)

has a continuous derivative with f'(x) # 0 everywhere, then the set of a with

/(a) e S again has this property (Theorem 1). These facts imply the result stated at

the beginning.

We shall discuss games of much greater generality than those mentioned in this

introduction.

The author is indebted to the referee for very valuable suggestions.

2. (¡5, ®)-games. Let M, Q be sets, Q' a subset of SI, and a a mapping from Q

into subsets of M. Call ^-function any function §> which assigns to every Be£l

a nonempty set <?>(B) <= Í2 such that for C e &(B),

«(C) c a(B).
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Now let g,® be ^-functions, and let S be an arbitrary subset of M. Consider

the following game of two players black and white. First black picks an element

B, eQ'. Then white picks Wi Gg(B,). Then black picks B2g(5(IF1). Then again

white chooses an element W2 e %(B2), and so forth. Put B? = a(B¡), W*= a(W,)

(i= 1,2, •••). One has Bf => W? => B*2 => W* => • ■ •. We call white the winner of

a play if P)¡°=i W* = P)¡=iB* is contained in S; otherwise black is the winner.

This game we call (g, © ; S)-game. We call S an (g, (§))-w inning set if white can

always win the (g, © ; S)-game.

Another way of defining an (g, ©)-winning set is the following. Let F„ (n = 1,2, • • •)

be the set of functions f(B1,B2, —,£„) defined for elements B¡eíl such that

/(Bi.-.BJeSiA). A sequence /„/2)- where /BG£„(n = 1,2,-) will be

called a strategy. A strategy is called (g, ©;S)-winning strategy if the following

holds: Let B1,B2,---, Wl7W2,--- be sets such that Bl eil' and

(1) B„ e W.K-Ù 0-2,3, -X

(2) Wn = fn(Bu-,Bn)       (n = l,2,-).

Then Pl"=1B* is necessarily contained in S. Now S is an (g,©)-winning set if

and only if there is an (g, © ; S)-winning strategy. White will win by choosing

Wn=fn(Bu-,Bn) when Bu-,Bn are given (n = l,2,-).

This means that white bases his decision on how to pick W„ not only on B„,

but also on the previous elements Bl,---,B„_l. Is this necessary? In other words,

if S is a winning set, does there exist a winning strategy of the type fn(Bu---,Bn)

=/CßJ (« = 1.2,•••)) where /gF,? Such a strategy we shall call positional

strategy. Using the well-ordering principle we shall show in the last section that a

winning set does indeed have a positional winning strategy. This result has the

following interpretation. In our game both players know the outcomes of all the

previous moves. One obtains a different game if one specifies that white at the

nth move shall know B„ but shall not remember the number n or the previous

elements B,,—,B„_,. Now the result on positional strategies means that if S is a

winning set of the original game, it is also a winning set of the new game. A special

case of this was proved in [2, §4].

Let /,,/2,— be a winning strategy. We call BUB2,--- with B1eñ', B¡gí2

an fi,f2,---chain if there are elements WUW2,--- such that(1)and (2) hold. The

intersection of the sets B* = a(B„) of a chain is in S. We call B1,--,Bk a finite

/,,/2," -chain if there are Bk+l,Bk+2,-- such that BuB2,--,Bk,Bk+u-- is an

/„/2,--chain.

Lemma 1. Let Bl,B2,-- be elements of Q such that B1,--,Bk is a finite /,,

/2,•• -chain for every k. Then B,,B2, ••• is an fuf2,---chain.

Proof. Pmí W„ =/,(B,,-..,BJ (n = 1,2,—). Since Bl,—,Bk is a chain,

(3) Bje^Wj-J (l^j^k).
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Since k is arbitrary, (3) holds in fact for every j. Hence (1) and (2) hold, and

B¡,B2>— is an fuf2,---chain.

We shall repeatedly use this lemma without mention.

It is reasonable to call S a losing set if black can always win. It was shown by

Gale and Stewart [3] that an (g, (5 ; S)-game need not be determinate, and hence

in general there are sets which are neither (g, (S)-winning nor (g, (S)-losing.

3. (a,/?)- and (a*b)-games. Already we have to specialize.

For completeness we mention Oxtoby's game [6]. Here M is a topological space,

and Í2 = Cl' consists of a class of subsets with nonempty interiors such that given

a nonempty open set O there is a set C c O, C e Cl. a is the identity map. 3(B) = ©(B)

consists of all subsets of B which are in Cl. A special case is the Banach-Mazur-

game [5], [8]. Here M is the real line and Cl consists of M and all closed intervals.

Let M be a complete metrical space with distance function d(x,y). Let Cl = Cl'

consist of all pairs (p, c), where p is a positive real number and ceM. The elements

B = (p, c) of Q will be called balls or more precisely balls of M, and we call p = p(B)

the radius, c = c(B) the center of B. With Bed we associate the set B* = a(B)

consisting of all points xeM satisfying d(x,c) ^ p. In general, a(B) does not

determine B, but it does if M is a Banach space of positive dimension.

We say a ball B1 =(pi,c1) is contained in a ball B2 = (p2,c2) and write B, <= B2

if

pt +d(cuc2) = p2.

This implies (but is not implied by) a(Bj) tz a(B2). One easily checks that B, <= B2

and B2 c B3 implies B1 c B3.

Let 0<7<1. Given BeCl, let By be the set of all balls B' c B having

p(B') = yp(B). Let gy be the ^-function defined by ^y(B) = By.

Now let 0 < a < 1, 0 < ß < 1, S c M. The ((5a,,5í;S)-game is well defined.

For brevity we will call this the (a,ß;S)-game. Thus in an (a,/f)-game, black

first picks a ball Bu then white picks a ball Wl e B", then black a ball B2 e Wf, and

so forth.

Next let M be the real line and Cl = Cl' the set of all closed intervals of positive

length. For a. take the identity mapping. If / is a closed interval and ol an

integer, write CI for the unique set of c closed intervals whose lengths are c-1

times that of/, and which cover /. Let eg be the ^-function with cj5(L) = CI.

Now let a > 1, b > 1 be integers, S c M. The ("g,6 g ; S)-game is well defined.

For convenience we call it (a*b;S)-game.

A variant of the (a*a)-game is the a-digit-game. Here Cl' consists of a single

element only, namely the unit-interval 0 = x — 1. This game amounts to the

following. First white chooses a digit c¡ to base a, namely ct = 0,!,•••,a — 2 or

a - 1. Then black chooses a digit c2, and soon. White is the winner if x = 0,c1c2---

(written in the scale of a) is in S. Every (a*a)-winning set is an a-digit-winning set.



1966] BADLY APPROXIMABLE NUMBERS AND CERTAIN GAMES 181

Lemma 2. Let 0<a<l, 0 < /? < 1, a>l, b> 1, where a,b are integers

and where

abaß = 1,       aa ïï 2.

Then every (a,ß)-winning set on the real line is (a*b)-winning.

Proof. Here Cl = Ci' consists of closed intervals of positive length, and a is the

identity map. Thus we need not distinguish between BeQ. and the set B* = a(B) cz M.

Let h¡, h2, ••• be an (a, ß; S)-winning strategy. Given £,, —, £„, put

W„ = hiBu-,Bn)- The length l(Wn) of Wn satisfies l(Wn) = od(Bn) ̂  2a-1 l(B„).

Hence there is a W„ea Bn, Wn cz IF„. Put fn(Bu-,Bn) = W„. We claim /„/2,- ••

to be an (a*b;S)-winning strategy. Suppose (1), (2) hold with © = b<$. Then

(4) B„ e#¡f_, (n = 2,3,-),

(5) W„  = ^(B,, -.BJ (n = l,2,-)

hold. (4) is true because B„ cz kF„_, cz JF„_„ B^V,,.,, IF«,, g W^'\ and

(aab)~l = ß. By (4), (5),B1,B2,--- is a n,,n2,..--chain of the (oc,/?;S)-game, and

P|B„isinS.

Lemma   3. Let 0 < a < 1, 0 < ß < 1, a > 1, b > 1,

aoaj? = 1,       fcj? ̂ 2

where a, b are integers. Then every (a*b)-winning set is also (oc,ß)-winning.

Proof. Let ku h2, ••• be an (a*b; S)-winning strategy. Define/, by induction on n

as follows. Given a closed interval B, pick some B, eB[bß)'\ then IF, = n,(B,).

Define /1(B,)=IF1. Given B1,-,B„, n > 1, put IF„_, = L-^B^-^J,

and pick Bn such that ZJ„ cz B„, B„ e 6IF„_,. This is possible since l(Bn) = ßl(Wn_,)

^ 2ft_1/(IFB_i). (Here we used B„ c Ik7/-,. If this is not the case, the sequence

Bl,B2,-,B„ will not occur in a play, and/„(B,,—,B„) can be defined arbitrarily.)

Now put /B(B,,-,B„) = n„(B„-.-,ZÍ„). We claim /,,/2,--- is an (a,j?;S)-winning

strategy. Suppose (1), (2) hold with © = %". Then

Bn  e  6IF„_, (n = 2,3,-),

Wn = n„(B„-,Bn)       (n = l,2,-).

Hence Bj,B2,-.. is a huh2, —chain for the (a*b)-game. P)B„ is in S and P) IFn

is in S.

4. More about (a, /?)-winning sets. Again let Í2 be the set of "balls" B = (p, c),

where p > 0 and c gM. Given a ball B of center c and radius p and a point x e M

write

e(x,B) = d(x,c)p~1.

One has e(x, B) = 0 if and only if x = c, e(x, B) g 1 if and only if x e a(B).
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Lemma 4. Let e = e(x,B) <; 1 and 0 < y < 1. Every ball B'eByhas e' = e(x,B')

in the interval

(6) max(0,(e + y - \)y~l) = e' = (e + 1 - y)y_1.

// y = 1 — e, rbere is always a ball B' e £v having e' = e(x, B') = 0. Moreover,

if M is a Banachspace of positive dimension with distance d(y,z) = | y — z\, then

for every e' in the interval (6) rbere is a B' eBy with e(x,B') = e'.

Proof. Let B have center c and radius p, B' eBy center c' and radius p' = py.

e' = d(x,c')p'-1 = (d(x,c) + d(c,c'))p'-1 ^ (d(x,c) + p- p')p'_1

= (á(x,c)p-1+l)pp'-1-l=(e + l)r1 -l = (e+l-y)y-\

e'= (d(x,c)-d(c,c'))p'-^(d(x,c)- p + p')p'-1 =(e+y-\)y-\

Hence (6) always holds.

Now let y g 1 — e. The ball B' with center x and radius yp is in B, since

yp + d(x,c) = yp + ep = p. Here e'= e(x,B') = 0. Next, let M be a Banach-

space and y > 1 — e. Let B' be the ball with center c' = c — e~ '(y — l)(x — c) and

radius p'=yp. Now yp+d(c',c)=yp + iz'(x,c)(l — y)e_1 =yp + ep(l—y)e-1 =p,

hence B' <= By. Furthermore, e' = e(x, B')=d(x, c')p' ~'=d(x, c)(l 4- (y - l)e~ 'Xyp)- '

= ep(l + (y — l)e~' )(yp)~~l = (e + y - l)y~ '. Thus if M is a Banachspace, there

is always aB'cB' whose e' = e(x,B') is the left endpoint of the interval (6).

Let e > 0, put c' = c + e_1(y — l)(x — c) and let B' be the ball with center c'

and radius p' = py. d(c, c') = d(x, c)(i - y)e~í = (1 - y)p = p - p', and therefore

B'6By. Also e' = e(x,B') = d(x,c')p'~1 = d(x,c) (1 - (y - l)e_1) (yp)-1

- ep(l - (y - iyW1 = (e + 1 - y)y-x.

If e = 0, let c' be any point having d(c,c') = p — p' = (1 — y)p, and let B'

be the ball with center c' and radius p' = yp. Then B' c By and e' = e(x,B')

= d(x,c')p'-1=d(c,c')p'-1=(i-y)py-1p-1= (I-y)y-1.

Hence if M is a Banachspace there is always a ball B' eBy whose e' = e(x,B')

equals the right endpoint of the interval (6). Since for B' <= By, e' = e(x, B')

depends continuously on the center c' of B', there is a ball B' c: By whose e(x,B')

equals e', where e' is an arbitrary number in the interval (6).

Lemma 5. Suppose 0 < a < 1, 0 < ß < 1, 2<x = l+a.ß. Then the only (a,p>

winning set is M itself.

Proof. Let xeM. Black may choose Bt with center x. Hence et = et(x,B¡) = 0.

Then ^eß* satisfies e/ = e(x, Wx) = (1 - a)a-1 by Lemma 4. Now

ß = ß + (2a - 1 - ap>-1 = 2 - a-1 = 1 - (1 - a)a_1 ^ 1 - e',, hence by

Lemma 4 black can choose B2 e IFf with e2 = e(x, B2) = 0. Thus B2 also has

center x. In this fashion black can enforce that x is the center of every ball B„.
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Then x is in the intersection of the "ballsets" a(B„) = B* and every winning set S

must contain x. Since x was arbitrary, S = M.

Lemma 6. Let 0 < a < 1, 0 < /J < 1, 2/? ̂  1 + aß. Then every dense set S is

(a,ß)-winning.

Proof. Let S be dense, and suppose black picks a ball with center c and radius p.

There is an x e S having d(x, c) ^ (1 — a)p. White may pick IF, cz B\ with center

x. Now, using the same method black used in Lemma 5, white can enforce that all

the balls W„ have center x.

Lemma 7. Let M be a Banachspace of positive dimension, 0<a<l, 0<ß<i,

2a < 1 + aß. Then any set R obtained by removing a finite number of points

from a winning set S is again a winning set.

Proof. Let R be obtained from the winning set S by removing x. If black picks

Bx such that x £ B* then of course white can win. If in fact at some stage of a play

there occurs a Bn with x£B*, then white can win. Hence it suffices to show that

white can play in such a way that x $ B* for some n.

Assume xeB* and set e, = e(x, B,) :g 1. White can pick a ball IF, having

e\ = e(x, Wl)(e1 + 1 - a)of1 by Lemma 4. If e\ > 1, x $ W* and we are through.

Otherwise e\ + ß - 1 = (e, + 1 -a)a~1 + ß- 1 = e1a"1 + (l + aß - 2a)a "1 > 0

and B2eWf satisfiese2 = e(x,B2) ^ ^cT1/?-1 + (Í + aß - 2a)(ayS)_1 > et(aß)'1

by Lemma 4.

Generally, if xe B*, white can play such that either x $ W* or

e(x,Bn+1)>(aßY1e(x,Bn).

Since (aß) '' > 1, there will sooner or later occur a ball Bm with x $ B*.

Lemma 8. Let 0 < a < 1, 0 < ß < 1, 0 < a' < 1, 0 < ß' < 1, aß = a'ß', a' S «•

Then every (a,ß)-winning set is also (a',ß')-winning.

Proof. Assume a'< a. Let /i,,n2,— be an (a,ß; S)-winning strategy. Given

Bu-,Bn, write Wn = h„(Bu-,B„), pick some IF„g IFn*'/flI and put /„(B„-,B„)=IF„.

Suppose (1), (2) hold with © = g"'. Then

BneWii\*=   W{_, (n = 2,3,-),

Wn   = n„(B„-,B„)     (n = l,2,-).

Hence Bt,B2,-- is a hx,h2, —chain of the (oe,/3)-game and P)B* is in S.

Therefore /,,/2>— is an (oe',/T;S)-winning strategy.

Lemma   9. Every (a,ß)-winning set is (a(ßa)k, ß)-winning for k — 0,1,2, —.

Proof. Suppose in the (a, j8)-game, white not only makes his choices of the balls

Wn, but also of the balls B„, except those where (k + 1) | (n — 1) (that is, k + 1
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divides n — 1). Thus black can pick only every (k + l)st ball B„, namely

Bi,B1+ik+1), B1+2(l+1),•••. The balls

°1> "k+l>^l+(t+l)> "2(fc+l)>^l+2U+l)> "■

are balls of an (a(/?a) \ ß)-play. If white can win the (a, /?)-game it certainly can win

the(a(j?a)\p>game.

Corollary. Let a'ß' = (aß)k for some integer k>0 and ß' = ß. Then every

(a,ß)-winning set is (cc',ß')-winning.

Proof. Combine Lemmas 8 and 9.

Problem. Is it true that an (a, /?)-winning set is necessarily (a',/T)-winning

if a' = a, ß' - ßl In particular is this true if M is the real line?

5. Behavior of winning sets under local isometrics. Let M,M' be metrical spaces

with distance-functions d(x,y) and d'(x',y'), respectively. Assume that for every

ball B of M, a(B) = B* is compact, and make the same assumption on M'. M,M'

are then locally compact and complete. Let a be a homeomorphism from M onto

M'. The function

(7) fi(x,y) = d'(a(x),c(y))/d(x,y)

is defined and continuous for x # y. We call a a local isometry if p. can be con-

tinued to a function p which is defined, continuous and ^ 0 for all x, y in M.

Theorem 1. Let a be a local isometry from M onto M'. Let S a M be an

(a, ß)-winning set. Then S' = tr(S)c:M' is an (a',ß')-winning set if a'ß'=aß,oi'«x.

We first need a lemma. Write x for the inverse map of a and define v(x',y') for

x',y' eM' by either of the following two equivalent formulae:

(8) v(x',y') = l/p(T(x'),T(y')),       p(x,y) = l/v(<r(x),a(y)).

When x' / y', v(x',y') = rf(T(x'),-r(y'))/d'(x',y'). Given X > 0 and a ball B of M

with center c and radius p write o(A,B) for the ball B' of M ' with center a(c) and

radius Ap. Given X > 0 and a ball £' of M' with center c' and radius p' write

x(X, B') for the ball B of M with center t(c') and radius Xp'. Denote the set of balls

C c W with p '(C) = ¿5p'(B') by B'6~.

Lemma 10. Let B' be a ball of M', and e > 0. Put v0 = maxv(x',y'), taken

over all(x',y')eB'* xB'*.

There exists a 8 = 8(B',s)>0 such that every C efl' 6~ has the following

property.

Put v = v(c',c') and p = v~1 = p(x(c'),x(c')), where c' is the center of C

Now for any ball D' c C ofM' and any ball D ofM,

(9) D c t(v(1 - e), D') implies o(p(l - s),D) c D'.
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On the other hand, ifE is a ball of M with E cz t(v0, C) and E' a ball of M',

(10) E' cz a(p(i — e),E) implies x(v(l — e),E') cz E.

Proof. Let B = t(2v0,B'). p(x,y) is uniformly continuous and bounded from

below in B* x B*. Hence there is an n = n(B',e) > 0 such that

ifx1,x2,y1,y2 are in B* and d(xux2) ^ n, d(y\,y2) rg n.

Set a, = m(3v0p(B'))_1, let C'gB"5'- and suppose D, D' satisfy the hypothesis

of (9). Now if D = (d,Pd), D' = (d',p'd), B' = (b',p'b), C = (c',p'c)

(12) pJ + d(d,x(d'))^v(l-E)pd.

Now since ß'cC'c B,' d'(d',b') ^ p'b, whence c/(T(a"),r(¿')) ^ v0p¿. Similarly,

d(x(c'),x(b'))^voP'b. Finally, by (12), d(d,x(b'))^d(d,x(d')) + d(x(d'),x(b'))

S vp'd + v0p'b ̂  2v0pb. Since B has radius 2v0p¿, the points x(d'),x(c'),d are all

inB*.

Furthermore, d(x(d'), r(c')) Ú v0d'(d',c') S v0p'c <; v0¿,pí < n/2, ¿(a*, t(c'))

^ d(d,x(d')) + d(x(d'), x(c')) zS vp'd + n/2 ?g v0<5,p¿ + n/2 :g n. Hence by (11),

p(x(d'),d) < P(X(C'),X(C'))(1 +E)= p(i + E).

Now

p(l - E)Pd + d'(o(d), d')  <   pPd + p(d, X(d'))d(d, X(d'))

< p(l + £)(pd + d(d,x(d'))

^pv(l-E)(l+E)p'd<pd.

Thus the conclusion of (9) holds.

Hence to obtain (9), one may take ô = o¡. Now, by symmetry, one may treat

B as we did B'. There is a b2 > 0, such that (10) holds if CgB Ä27 E cz C, and

if E' is a ball of M'. We set <5 = min(8uôj) and show (10) holds for E cz t(v0,C).

By what we just said it suffices to verify t(v0, C) e Bi2~.

We have C cz B' ô~ hence p'c ̂  5pi and pc'+ d'(c', b') ^ p6'. Since b', c' are in

B'*, voP'c + d(x(c'), x(b')) ^ voPc. + v0d'(c', b') g voP'b, whence t(v0, C) cz B.

Finally, the radius of t(v0, C) is VqP^' g <5v0p6' < ¿2p,,.

Proof of Theorem 1. Let the hypotheses of the theorem be satisfied. There is an

e > 0 such that a' = <x(l — e)2, ß' = ß(l — e)-2. Suppose black starts with a ball B[.

Choose 5 = S(B'1,e). Since a'ß' < 1, some ball B' of the play will be in B[.

Let v = v(b'j, b'j), where by is the center of B/, and p ■» v _1. Then (9) will hold for

balls £>' cz Bj of M' and balls £> of M, while (10) will hold for balls E cz t(v0,B})
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of M and £' of M', where v0 = max(x',y'), taken over all (x',y')eB[* x £/*.

We may assume this already to be true for j = 1.

Let fuf2, ••• be an (a,ß;S)-winning strategy. We claim the functions f(,f2,---

defined by

f'n(B\,-,B'n) = o(p(l - £),/„(i(v(l - e),B[),-,x(v(1 - £),B„)))        (n = 1,2,-)

are an (<x',ß' ; S')-winning strategy for plays beginning with our particular B[.

First we have to verify f'„(B\, •••,BB)e£„"*. For this purpose set B¡ = t(v(1 — e),B'¡)

(z = l,-,n) and W.-fJplt-tBJ. Now Wn cz £„ = t(v(1 - e),B'n), whence

f'n(B[,~-,B'¿ = o(p(l - ¿),Wn) c B'n by (9). (After all, B'ncB{). A comparison

of radii actually shows /„(£,, ■•■,B„)e B'„" .

Now let balls B\,B'2,--; W¿, W2,-- ofM' satisfy

B'„  e   W*lt in = 2,3,-),

W^= f'n(B\,-,B'n) (n = l,2,-).

Put £„ = t(v(1 -£),£„), WH=fJ(Bu-,BJ (n = l,2,--). One has B^cB/,
hence p¿., + ¿'(bj, b„_ t) ^ p„',, whence v0p'bn_ , + d(x(b[),x(b^ t)) ^ VqP,,', , which

gives   t(v0, B'n-i) c t(v0, B[).    W„_x c Bn_r = t(v(1 - £),BB'_j) c r(v0, B¿-¡)

czx(v0,B[). Hence we may apply (10) with £= IF„_1 and see that £,',<= W^-i

= /„'-i(5;,--,BB'_,) = tr(|i(l - 8). Wn-i) implies

B„ = t(v(1 - e),B'n) c »;_,       (n = 2,3,■■■).

Using this and W„= f„(Bi,---,Bn)(n = 1,2, •••), we conclude   x=p)B* eS.

Let x' = Ç\B'n*. This implies cf(x', b'„) i£ p^, whence íí(t(x'), b„) = d(x(x'),x(b'„))

g v0p¿n. Since b„ tends toward x and Pi,„->0, t(x') = x, whence x' = <r(x)eo-(S) = S'.

6. a-winning sets. Let 0 < a < 1. Call a subset S of a complete metrical space

a-winning, if it is (a, ß)-winning for every ß, 0 < ß < 1.

Lemma   11. Let 0 < a' < a < 1. Tben every a-winning set is a'-winning.

Proof. Given any ß', 0 < ß' < 1, there exists a /?, 0 < ß < 1, such that

<x/J = a'/?'. S is (a, ß)-winning, hence (a',/T)-winning by Lemma 8.

Lemma   12. The only a-winning set S c M with a > 1/2 is S = M itself.

Proof. There is a ß, 0 < ß < 1, having 2a ^ 1 + aß. The result is now an

immediate consequence of Lemma 5.

Let S c M. Define the winning dimension of S,

(13) windim S,

as follows. Windim S = 0 if S is a-winning for no a > 0. Otherwise windim is the

least upper bound of all a in 0 < a < 1 such that S is a-winning. It follows from

Lemma 12 that windim S = 1 if and only if S = M ; otherwise 0 - windim S = 1/2,
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Lemma 13. Let M,M' be metrical spaces such that for balls B of M and

B' ofM', a(B) and a(B') are compact. Let o be a local isometry from M onto M'

and let S cz M. Then

windim a(S) = windim S.

Proof. Apply Theorem 1.

Theorem 2. The intersection of countably many a-winning sets is a-winning.

Corollary.    Windim (f^JL i S¡) = g.l.b. (windim Sj).

Proof of Theorem 2. We have to show that S = |) Sj is a-winning if each

of the sets Sj is. We show that S is (a,/?)-winning, say. White will win by playing

according to the following rule.

At the first, third, fifth, ■■■ move, white moves according to an (a,a/Ja;S,)-

winning strategy. Since B2I +, e B2f",, white can enforce in this way that f] B*

is in S,, no matter what strategy he uses in his second, fourth, sixth, ••• move.

At the second, sixth, tenth, ••• move, white uses an (a,a(/?a)3 ;S2)-winning

strategy. Generally, at the kth move, where k s 2/_1(mod2'), white moves

as if he were playing the (a, a(ßa)2'~1 : S)-game, and thus can enforce that f"| B* is

inS.

Our rule amounts to this: Let f\,f\, •••(/= 1,2, ••■) be an (a,a(aß)2'~1 ; S¡)-

winning strategy. We now define a strategy/,,/2,— as follows. For k = 2l_1 (mod 2')

and/c = 2'-1 + (i - 1)2', set

fk(Bi,--,Bk) =/(B2i-i, B2i-i + 2i, —, B2i-i + ((_1)2i).

Then

B2'-' + (t-l)2'e    JF2'-' + (f-2)2 (f = 2,3, •••),

W^«-»+(«-i)2> = ftiBi'-i, ■••>-ß2'-i + ((-i)2')    it = F2,•••),

and the intersection

OO

[] B2i-i + f(_,)2i

isinS, (1= 1,2,-).

Lemma 14. Let M be a Banachspace. Let T be be obtained from an a-winning

set S, S cz M, 0 < a ^ 1/2, by deleting at most countably many points. Then

T is also a-winning.

Proof. Let T be obtained by removing the points x1,x2, ■■■ from S, and let

Tj be obtained by removing xU"-,Xj from S. Each of the sets Tj is a-winning by

Lemma 7, hence T is a-winning by Theorem 2.
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7. Badly approximable numbers. In this section M is the space of real numbers

with the usual metric, and the badly approximable numbers are considered as

subset of M.

From here until the end of §12, a will be 1-1. Hence we need not and will not

distinguish between elements B e fi and sets B* = a(B) cz M.

Theorem 3. The set S of badly approximable numbers is (a,ß)-winning for

every a, ß having 0 < a < 1, 0 < ß < 1, 2a < 1 + aß.

Corollary. Windim S = 1/2.

Remark. Badly approximable numbers can be generalized to n-tuples, and then

the analogous theorem holds. See [1] or [7].

Proposition. Let 0<a<l, 0</?<l, y = 1 + a/? - 2a > 0. Suppose black

begins his play with a ball of radius p ( = interval of length 2p). Put

ô = (y/2)min(p,a2/?2y/8). Then white can enforce that x = (~]B„ satisfies

Ix ~ Pl°. I > àq1 for all integers p and q ^ 0.

Obviously this proposition implies the theorem. Note that reals x with

| * — p\q | > àq ~ 2 have partial denominators ^ ö~i.

Lemma 15. Let a,/J,y be like in the proposition. Let the integer t satisfy

(aß)' < y/2. Assume a ball Bk with center bk and radius pk occurs in some

(a,ß)-play. Then white can play in such a way that Bt+( is contained in the

"halfline" x> bk + pkyß.

Proof. Let g+eF" be the function which assigns to an interval B of center c

and length 2p the interval with center c + p(l — a) and length 2ap. Now for

given Bk + l, 0 ^ i < t, white chooses Wk + i = g+(Bk + i). Denote the center of B„

by bn, the center of W„ by w„ (n = 1, 2, •••). Then wk = bk + pk(l — a),

bk+i ^wk-apk(l -JS) = bk + pky > bk, and bk+t^bk + pky. Since Bk+t has

radius (aß)'pk < pkyß, Bk+t is in the halfline x > bk + pkyß.

Proof of the Proposition. We may assume black starts with a ball B, of

radius p ^ a/fy/8. Otherwise, if p > a/fy/8, there will be a first B¡ in the course

of the play having radius p¡ g| a/?y/8, and then a2/?2y/8 < pj ^ a/?y/8. Since both

p > a2ß2yß and p¡ > a2/J2y/8, it does not matter whether ô is defined using p or

Pj, and white can play as if Bj were the first black ball. Hence assume

p ^ ajffy/8.

Choose the integer t such that a/fy/2 zg (aß)' < yß and define R > 0 by

Z*2(ajß)' = 1.

To prove the proposition it will suffice to show that white can play in such a way

that
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(14) |x-p/g|>¿Y-2

whenever (p, q) = 1 (that is, p and q are relatively prime),

(15) xeB„t+l and 0 < q < R"

for some integer n — 0.

Clearly (14) holds if (15) holds for n = 0, since 0 < q < R° = 1 has no integral

solution q. Suppose B1,B(+1,B2r + 1,---,B(t_1)t+1 are already such that (14) holds

if (15) holds for 0 — n ^ k — 1. Now in the next moves white has to worry only

over fractions p\q where Rk~i =q < Rk. In fact white has to worry over at most

one such fraction : If | x — p/tj| < 8/q2, |x' - p'/q'\ < 8¡q'2, where £*_1 = q < Rk,

R'-^q'KR", p/qïp'lq', x,x' both in B(t_1)(+1, then \plq-p'/q'\ =8\q2
+ 8lq'2 + 2p(B(fc_1)(+1) = 28R2-2k + 2p(zßf-1)' = 2(p + 8)R2~2k< 4pR2~2k

= iaßyR2~2k=iaßy(aß)~'R-2k^R-2k, while on the other hand \p/q-p'lq'\

— l/(qq') > R~2k, which gives a contradiction.

Hence white has to worry over at most one subinterval C of B(l_])t+1 of length

2p(C) = 28jq2 = 28R2~2k . Now if C has its center to the left or on the center b

of B(4_1)(+1, C is contained in the halfline x = b + 8R2~2k = b + 8(aß)ik~1)'

= b + op(it_1)i+1/p = b + p(k_1)/+1y/2, where p(i_1)(+1 is the radius of B(k_1)r+1.

By Lemma 15 white can enforce that Bkt+1 is contained in x > b +p(jk_i)i+iy/2,

and Bkt + thas empty intersection with C. The reasoning is similar if the center of C

is to the right of the center oí B(k_l)t+1.

There is an analogy of a-winning sets with residual sets ( = complements of

sets of first category) in so far, as countable intersections of residual sets are again

residual sets. By definition, residual sets are sets T with the property that every

intersection T (~\0 with a nonempty open set O contains a nonempty open set O',

as well as countable intersections of sets with this property.

The numbers with unbounded partial denominators in their continued fraction

are a residual set. This set is the intersection of the sets Tk of numbers with at least

one partial denominator = k, and it is easy to see that every intersection of Tk

with an open interval contains an open interval.

Thus the set of numbers with unbounded partial denominators is a residual set

but not a winning set, and the set of numbers with bounded partial denominators

is a-winning for 0 < a = 1/2, but is a set of first category. This is in contrast to

the situation for the Banach-Mazur game [6, Theorem 1 ].

8. Anormal numbers.

Theorem 4. LetO <a< 1,0 < ß < l,y = l + aß -2x> 0. Let g be an integer

so large that

(16) g>4(aj?y)"1

and let d be a digit in the scale of g, i.e., d = 0,!,••-,g - 2 or g— 1. The set S
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of reals x in whose "decimal" expansion to scale g the digit d occurs at most finite

number of times is (a,ß)-winning.

Corollary. The sets S* of numbers x which are not normal to base s is (a,ß)-

winning, and therefore windimSf = 1/2.

Proof of the Corollary. Some i ntegral power g of s satisfies ( 16). The set of numbers

with only finitely many zeros in their expansion to scale g is contained in the set

of numbers not normal to scale g, which is the same as the set of numbers not

normal to scale s. Hence this latter set is (a, )3)-winning by the theorem.

Proof of Theorem 4. Let black begin with the ball B, of radius p. Choose

integers k ^ 1, n0^l such that

(17) g'k!4>(aßr-1p^(aß)g-kl4.

Define integers n,,n2, ••• by

(18) g-k-JlÄ->(*ßTJ-1p^(aß)g-k-Jl4.       (j = 1,2,-).

Then, since aß > 4/(gy),

(19) g~k-Jl4>(aß)"'-lp>g-k-J-1ly>g-k-i-il4-      (J = l,2,-).

Thus n0 < n, < n2 < •••.

We are going to show that white can play such that every x e Bnj, j ^ 1, has

its (fc+j)th digit different from d. Let Bnj_, be given. The numbers x whose

(k +j)th digit equals d are in intervals of length g~k~j whose distance is

^gi-*-J(l _ i/g) ^ gl-k-i¡2 > 2(aß)"'-1-1p = 2p(Bnj_l). Hence white has to

worry over at most one interval C<=Bnj_t of length ^ g ~k~{ Let us assume

without loss of generality that the center of C is less or equal to the center b of

B„]_l. Then C is contained in the halfline

x < b + g-k-J/2 < b + (aßY-'-'pyß = b + p(Bnj_t)yß.

Put t-Hj— n,_,.

(a/?)' = ((aßT'-'pMaß) *"~V) < Cr*"'/4)«f "'"'/» = 7/4

and Lemma 15 applies. White can enforce Bnj = B„ji+( to be in the set of x

having x > b + p(B„._1)yß, and hence can enforce that C O Bnj is empty.

9. Numbers with infinitely many zeros in their decimal.

Theorem 5. Let g > 2 be integral and let Sg be the set of reals which have

infinitely zeros in their "decimal,, to base g. Then Sg is ag = ((g — l)2 + 1)~ '-

winning but not a-winning for a > ae. Hence

windim Sg = ag = ((g - l)2 + 1)~ '.
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Let k = l,n be integers. Write Ik(n) for the interval [ng~k ,ng~k + (g - IV" ' g~k~\,

Kk for the union of all intervals Ik(ri), n = 0, ± 1, ± 2, •••.

Lemma 16. Let I be a closed interval of length 1(1) g (ae(g2 — g))~l. There

is a k = i and an interval J e I"", J <= Kk.

Proof. Choose k Ï; 1 satisfying

(20) («g(g -i)gk+1yl< Kfí = Kfe - i)s )" ' •

We are going to construct an interval J* cl t~\Kkoi length l(J*) ^ agl(I).

Kk consists of intervals of length (g - l)~1g~k, the complement of Kk of inter-

vals of length (g — 2) (g — 1)~1 g~k. The worst situation is when the midpoint c

of / coincides with the midpoint of one of the intervals of the complement of

Kk. In this case / contains all numbers x in

c^x = c + \l(I),

and Kk contains all x in

c + ^(g-2)(g-l)-1g-^x^c + i(g-2)(g-l)-1g-t+(g-l)-1g-1

= c + ±(g-l)-1gl-k.

Let J* consist of all x in

c +~2(g - 2)(g -\)'lg-kúx = c + min(^(/),^(g - lr'g1 ~*).

Obviously J* dC\Kk. Furthermore,

l(J*)-ael(!)

= min(i|(J),i(g-l)-V"*) -\{g-2)(g-\y'g-k-agl(I)

= min ( Q - ag ) /(/) - \(g - 2)(g - IF1 g~k,(g - l)"1 g~k ~ «gl(I) j

= min (^g(g-2)agl(I) - |fe - 2)(g - 1) ~V \o) ^ 0

by (20).
Proof of Theorem 5.  Let ng k = c0 + ctg   1 H-h ckg  k where c0,Cj, ■•■,ck

are integers, O^Cj^g — I (j = i,---,k). The interval /fc(n) now consists of all x

satisfying

Co + cog'1 + ■■■ + ckg'k = x ^ c0 + Clg_1 + ••• + Cjk£-* + g-"'1 + g-k~2 + - .
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Hence if x is in the interior of Ik(n), at least one of the digits ck+l, ck+2, ••• of x

is zero. In fact if x is in a closed subset C of the interior of Ik(n), then at least

one of the digits ck+1,---,ck+m of x is zero, where m = m(C).

We now are going to show that Sg is a^-winning. Let 0 < ß < 1. In the (ag,ß)-

game white plays arbitrarily until a ball Byi, with 2p(BJ]) ^ (ag(g2 — g))-1 occurs.

Now by the lemma, white can pick W}i czKk¡, say W}i cz I^n^). At his next move

white can enforce that WJl + l is in the interior of Ztl(n,). There is anm, such that

every xg WJi + i has at least one of the digits ctl + 1,—,ctl+mi equal to zero. White

can play arbitrarily again until 2p(BJl) _ ag i(g — 1)_1 g~*'~"". By the lemma,

white can pick WJ2 cz Kkl for some k2, and obviously /c2 _ fc, 4- m,. At his next

move white chooses WJl + 1 in the interior of some Ik,(n2), and so on.

This proves the first part of the theorem.

Let a > ag. Choose m integral and so large that

(21) a>(l+2(g-l)g3-"X,

and let ß = a ~ lg ~m. We are going to show that Sg is (a, /?)-losing.

Black can adopt the following strategy. First he picks the ball B, to consist

of all x in

g"1 + g~2 ^x<2g~1 +g~3 +g_4+-=2g-1+g-2(g-l)-1.

B, has length g"1 - g~2 + g~\g - l)"1 = a,-V2ig-1)"1 •

For   u = 0,l,-,(g-l)2 + l   put   yu = g~l + g-2 +u(g-lYl g ~2 .The

numbers yu are at distances (g — l)~l g~2, they are contained in  B,, and y0,

y(e-i)2 + i are the endpoints of B,.

Wx will have length

/(IF,) = a/(B,) = aa/^-2^ - l)"1 > g~2(g - 1)-'(1 + 2(g - l)g3"m)

= g~\g-vrl +2g1-m

by (21). Let IF, be the closed interval of length g~2(g — 1)_1 and with the same

midpoint as IF,. IF, will contain one of the points yu, l = u = (g — l)2; sayyuoe WY.

Hence IF, will contain the interval

(22) y»a-gx-mûxûyU0 + gl-m.

First consider the case (a) where g — 1 divides w0, say u0 = /(g — 1). Now

yuo = g~1+g~2 + lg~1' where láíáf-1. If/<f-l, yuo=0,l(/+1)000- when

written as a decimal in scale g, and yuo — g~m = 0, l/(g — 1) — (g — 1)000•••,

that is, yuo — g~m will have the digits 1,/, then m — 2 times g - 1, then zeros.

If I = g - 1, yB0 = 0.2000 ... and yuo - g "m= 0,l(g - l)-(g - 1)000-, that is,

it will have digits l, m — 1 times g— 1, then zeros. Hence any x in the interval
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yUo — g~m = x < yUo has its first m digits different from zero. Now black picks

B2 to be the interval

ym - g~m + g'^g'1 +g~2) = x = yU0-g~m + g-m(2g-' + g~3+g-*+ ■■■).

B2 is contained in (22), hence in Wu it has length

l(B2) = g-mHflù = «" V"W) - ßKWU,

and every x e B2 has its first m digits different from zero.

Next take the case (b) where w0 is not a multiple of g — 1, say u0 = l(g — 1) + r,

lgrgg-2,l|g-2. Now

yua = g~l + g~2+lg-2+rg-2(g-iy1 - g-*+ (l + l)g-2+ r(g-3 + g-* +•••),

hence   yuo = 0, 1(1 + l)rrr •■•.   Put   y = yUo + g~m - g~m_1 - g"m"2-

= JV. + i?""-•?""(*-I)""1- y = 0,l(Z + l)rr-r(r + l)000--, that is, y has
digits 1,Z + l,m —3 times r, r + 1, then zeros. Any xin the interval y=x<y+g~m

has its first m digits different from zero. Now black picks B2 to consist of all x

satisfying

y + g'^g'1 + g'2) ^x = y + g_m(2g-1 + g-3 +g~* + •••).

B2is in (22) hence in Wu its length is ßl(Wx), and every x e B2 has its first m digits

different from zero.

Black does not have to worry over the first m digits any more. Since B2 is

congruent to g~mBt modulo g~m, black can apply the same strategy to ensure

that the next m digits of any xe£3 again are all different from zero. Continuing

in this way black can enforce that x = Ç\ B„ has no zeros among its digits.

10. fl*-winning sets. Let a > 1 be integral. A set of reals is called a*-winning

if it is (a*b)-winning for every integer b > 1.

Lemma 17. Let a'b' = ab, and a divides a'. Then every (a*b)-winning set is

(a'*b')-winning.

Proof. Just as for Lemma 8.

Lemma 18. Every (a*b)-winning set is (a(ba)k*b)-winning for every integer

fc = 0.

Proof. Just as for Lemma 9.

Lemma  19. Let abe a divisor of a'. Then every a*-winning set is a'*-winning.

Proof. This follows from Lemma 17.

Combining Lemma 2 and Theorem 3 one finds that the set of badly approxi-

mable numbers is a*-winning for a = 4. A direct examination of the proof of
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Theorem 3 shows this set to be a*-winning for every a = 2. A similar remark

applies to anormal numbers.

11. The Hausdorff dimension of winning sets. The Hausdorff dimension of a

set S in a metrical space M is defined as follows. S has Hausdorff dimension

oo if for some n > 0 S cannot be covered by countably many balls of radius < m.

Otherwise put {S,r]Y for the greatest lower bound (possibly oo) of all the sums

00

(23) S p(BlY,
1 = 1

whereB1,B2, ••• is a covering of S by balls B, of radius < n. {S, n}" is a decreasing

function of r\.

{S}' = lim {S,nf

(possibly oo) is called a-dimensional measure of S. Either {S}x = oo for every a,

in which case S again has Hausdorff dimension oo. Or there is a unique ô = 0

such that {S}' = cofor a < ¿and {S}" = Ofor a > ô, and in this case one defines

the Hausdorff dimension of S to be <5.

Theorem 6. Let M be a Hilbertspace, and let 0 < a < 1, 0 < ß < 1. Assume

there are integers t,m with the following property. Given h1,h2,---,h, with

h¡eF¡(i = 1,—,0 and givena ball C,, there are m functions g(0),g(1\—,g(n,_1)

ofF{ such that, i/C20), -,C^uD^\--,Dtu\0 £j£m- 1) are balls defined by

(24) CP = g°W\) (K i = t + 1),

(25) B,ü) = UCu C2J), -, Cp>)   (1 á i g i).

then C++1,'•**€$!  * have pairwise disjoint interiors.

Under these assumptions, every (a,ß)-winning set S cz M has Hausdorff

dimension at least

logml\tiogaß\.

Corollary 1. LetN(ß)be such that every ball B contains a set of N(ß) balls

ofBß with pairwise disjoint interiors. Then every (a, ß)-winning set has Hausdorff

dimension at least

logJV(/3)/[loga/3|.

For example on the real line one may put N(ß) = [jS-1]. (That is, the integral

part of ß~\)

Proof. One may use the theorem with t = 1, m = N(ß).

Corollary 2. .4n a-winning set in n-dimensional Euclidean space E„ has

Hausdorff dimension n.
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Proof. One has N(ß) = cß~" for some c> 0. This gives the lower bound

(loge + n|log/?|)(|loga| + |log/?|)_1, which tends to n when ß tends to zero.

Corollary 3. Let 1 + aß > 2ß. Then every (a, ß)-winning set in E„ has positive

Hausdorff dimension, and an (a,ß)-winning set in infinite-dimensional Hilbert-

space has infinite Hausdorff dimension.

Proof. We first take the n-dimensional case. Write y = 1 + aß — 2ß > 0, and

let the integer t > 1 be so large that (aß)' < y/3.

Let gi+, g*~ (i = 1, ••-,») be the functions of £? which assign to a ball B of

radius p and center (cu •••, c„) the ball of radius ßp and center

(c1,---,Ci-1,Cl + p(l - ß),Ci+1,---,C„), (C!,---,^-!,^- p(l -ß),ci+1,---,c„),

respectively.

Let b^F",--•,«,££/, and let Cy have center c = (cl,---,cn) and radius p.

Let 1 = j = n and let k denote + or - . Define Cf, •■•, C£t ; of, •••,£>/* by

Cf = ^(D/ix) (2giáí+l),

D{k = hiCuCik,-,Cjk) (ISiút).

Denote the center of CJk by (cfu ■■■,c/k). Then

c#  = cj + p(l-ß- ß(l - a)) = cj + py> cj,

ci+ij= Cj + py.

Hence C{+u which has radius p(«ß)' < py/3, is contained in the halfplane

Xj = Cj + 2py/3. Similarly, C/^ is contained in x¡ ^ c¡ — 2py/3.

Let I = l(u,ß) be an integer with (/ + l)y2/9 > 1. We claim that any ball Cjk+1

has nonempty intersection with at most I of the balls CJt+1(j = !,•••,n;k= +, — ).

To show this it suffices to see that C}*i can intersect at most I of these balls

(including itself). By what has already been shown it cannot at the same time

intersect C/*t and C¡+t. Thus it remains to show that C)ti cannot intersect all the

balls Ct\\, ■■■,Ct'+11+, say. If these intersections were nonempty, c,1^ j = c¡ + py/3

(j=2, •••, I + 1), and the center of C,1^ would have distance from the center c of

Ctat least pj(y2 + ly2/9) > PJ((l + l)y2/9) > p.

Thus there exist

(26) m = max(2,2n/0

of the balls C}k+l (j = 1, •••,n; k = +, — ) which are pairwise disjoint. We can

pick m of the functions g'k, say g(0), •••,g(m_1), which satisfy the conditions of the

theorem. Therefore S has Hausdorff dimension at least log m\ 11 log aß | > 0.

In the case of a Hilbertspace of infinite dimension the argument leading to (26)

in the previous case shows that now one may take m arbitrarily large.
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Remark. The results of this section are in contrast to Folgerung 1 of Satz 3

of [8] where a different game is studied.

12. Proof of Theorem 6.

Lemma 20. Put œ = 2/^/3 — 1. Let D,Dl,--,Debe balls in a Hilbertspace

such that p(D) <cop(D1)= — = cop(De). Let D¡,Dj have disjoint interiors for

i ± j, and let D,D¡ have nonempty intersections for i = 1,2, —,e.

Then e = 2.

Proof. We may assume p(D1) = — =p(De) = 1. We have to show that the

assumptions of the Lemma with e = 3 lead to a contradiction.

Let D have center 0, D¡ center x¡(i = 1,2,3). Then |x¡| < 1 + co, | x¡ — x¡\ 2ï 2

for i#/ One obtains |x1|2<(l+ cu)2=4/3, A^\xi-Xj\2=\xl\2+\x]\2-2xixj

( = inner product) < 8/3 — 2x¡Xj, hence x¡Xj < — 2/3 (/ # j). This gives

x,(x2 + x3) < — 4/3. On the other hand, |x,(x2 + x3)|2 g |x, |2|x2 + x3|2

< (4/3)(8/3 + 2x2x3) < 16/9, which gives a contradiction.

Let S be (a,ß)-mnning, and let a winning strategy /,,/2,--- be given. Call a

sequence of balls EUE2, — a t —/,,/2, "-chain, if there is an /,,/2-chain

B^B^-- such that E1=B1, E2 = B1+t, E3 = B, + 2„ —. Finite i-chains are

defined similarly. In other words a f-chain consists of every ith element of a

chain.

Lemma 21. Let all the hypotheses of the theorem be satisfied. Let EuE2,---,Ek

be a t — fi,f2, ■■-chain. Then there are m balls £[+),,---,Zi/+71) w'th pairwise

disjoint interiors such that each of the sequences El,---,Ek,EkJl1(j = 0,l,---,m — l)

is a finite t — fi,f2,---chain.

Proof. Let B,,—,B1+(jt_1)( be a /,,/2,----chain with £,=B,,-",Et = B1+(t_,),.

Define h^C,,-, C¡) (i = 1,-, t) by ht(Cu -.Q = /•+(t_1)((ß1, -,B(t_1)t,

CUC2,--,C¡). Put Ct = B1+ik_1)t = Ek. Now let g(0),—,g(m-,)be the functions

of the theorem, and define C2j),-;Ct(i\,D(/\--,DtJ)(0 £j = m - 1) by (24)

and (25). Put E$t = Ct({\. Then obviously Eu-,Ek, E¡¡i¡1 is a i-/,,/2,-

-chainfor 0 ^; = m — 1, and the m balls ZJ^, have pairwise disjoint interiors.

Lemma 22. Let all the hypotheses of the theorem be satisfied. There are

balls CjO,), C2(it, i2), —, defined for digits ij = 0,1, —, m — 1, such that

Ctih), C2(iu i2), C3(iit i2, i3), -

is a t — fx,f2, ••-chain for every sequence of digits iui2,---, and where for given

k the mk balls Ck(iu •■■, ik) have pairwise disjoint interiors and radius (aß)kt.

Proof. Let C,(i'i) be any m disjoint balls of radius (aß)'. The construction of

C2(i,, i2), C3(iit i2, i3), ••• is by induction, using the previous lemma.
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Proof of Theorem 6. Given a sequence of digits ilti2t ••• there is a unique

point x = x(iui2,•••) contained in all the balls Ck(iu---,ik), k = 1,2, ••• of Lemma

22. Obviously xeS. The set of all points x so obtained will be denoted by S*.

Define a possibly many-valued function / from S* onto the unit-interval

U:0 = y = 1, as follows. Given x e S*, let f(x) consist of all numbers y = 0, ij2 •••

(written in scale m) such that x = x(z'x, z2, ■••). For a set T c S* let f(T) be the

union of all sets f(x) where xeT. For a general set R define f(R) = f(R n S*).

Now if balls B, (Z = 1,2, •••) cover S, the sets B,nS* cover S*, and the sets

/(B,) =/(£, OS*) cover I/. Hence the exterior Lebesgue measures p. of /(B¡)

satisfy

00

(27) £ p(/(B,)) = 1.
z = i

Let B have radius p, and put

(28) j = [log(2poj-1)/(iloga)3)].

For small p, j is positive, and

p < co(aß),J.

Hence by Lemma 20, B has nonempty intersection with at most two of the balls

C/i»-,ij), say with C/i,(l),-,i/l)) and C,(zi(2),--,z/2)). f(B) contains only

numbers whose first / digits are either ijLl), •••,zJ(l) or i1(2), --•, ij(2). Thus f(B)

is contained in two intervals of length m~j, and p(f(B)) ■=2m~K

Now suppose the balls BUB2, ••• of radius piyp2,--- cover S. By (27),

CO

1^2Z m-",
z = i

where j, is defined by a formula like (28). This implies

00

l=2m I, (2co-1p/),oem/l"oga'" •

z = i

We obtain {S}" > 0 with a = logm\ 11logaß\, and the theorem is proved.

Lemma 23. Let 2ß < 1 + aß and let S be (a, ß)-winning in a Hilbertspace M

of positive dimension. The intersection of S with any ball contains continuum-

many points.

Proof. The proof of Corollary 3 of Theorem 6 shows that this theorem is

applicable with some m > h and with C¡1\,---,C,(+íl) disjoint. Under this

assumption the mJ balls Cj(iu---,i¡) of Lemma 22 will be pairwise disjoint.

One may also require that all the balls C/z-!, •••,/,), j = 1,2, •••, be contained

in an arbitrary fixed ball B if one drops the inessential requirement on the radii
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of these balls. The points x(i1,i2,■■■) will now be continuum—many distinct

points of S O B.

13. Positional winning strategies.

Theorem 7. Let S cz M be an (¡5,©)-wi'nning set. Then there exists a positional

(2f, © ; S)-winning strategy.

Proof. Introduce a well-ordering -< into the set fi. Let /,,/2, ••• be an (5,©;S)-

winning strategy. We are going to define / e Fx as follows.

Let BeQ. If B does not occur in any /,,/2, •• -chain, define f(B) arbitrarily.

Now assume B does occur in /,,/2, ■•-chains

BUB2, ••,Bk = B.

Of all the B, which occur in such chains, there is one which is smallest with regard

to «<. Denote it by B^B). There are chains

Bi(B),B2,---,Bh = B.

Of all the B2 which occur in such chains, there is a smallest one, B2(B), and so on.

Now either

(a) there is a k with Bk(B) = B. Then

B1(B),-,Bk(B) = B

is an/,,/;;,—chain.

(aa) There is no /,,/2-chain C,,C2,--- where each C¡ is one of the elements

B,(B), •••,Bfc(B). If for every m there were a finite /„/2, •• -chain C,,---,Cm with

this property, then because of Lemma 1 there would also be an infinite such

chain C,,C2, •••. Let B1(B),---,Bk(B),Cl,--,Ch he an /,,/2-chain with each C¡

among the Bi(B),"-,BkiB), such that there is no longer such chain. Set

f(B) = fk^B(B,(B),-, Bk(B), C„ -, Ci0).

If B' g ©(/(B)), B' differs from B^Bl-^B^B).
(ab) There is an/1,/2,---chain C,,C2,---with each C¡ among B^B),-^^).

In this case (~)k=la(B¡(B)) czf]na(Cn) cz S. Hence a(B) = a(Bk(B)) cz S, and /(B)

can be any element of $(B).

(b) There is no k having Bk(B) = B. Then B,(B),B2(B),- is an /,,/2-chain,

and a(B) cz f) a(B„) c S. Again /(B) can be arbitrary in 3f(B).

We are going to show that the functions /„(B,,—,Bn) defined by /„(B,,— ,B„)

= /(B„) (n = 1,2, •••) are a winning strategy. Let B, g ÍF,

Bne%(Wn_,)     (n = 2,3,-),

IF„ =/(B„) (n = l,2,-).
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If for some B„, case (ab) or (b) happens, a(B„) c S, and we are through. Thus

for every B„, assume (aa) holds.

Bi(B„),-,Bk(Bn), Cu---,Cio, B„+1

is an /i,/2, ---chain, and £„+1 differs from B^BJ, •••,Bk(B,,).

(29) B^B^.XB^)       (n = l,2,-).

There is an iy where B¡(Bh) is smallest with regard to -<. By (29), By(B¡)

= By(Bh) = By, say , if i = z\. Now for i > iu B¡ differs from B1(Bl_1) = By

= B^Bi). Thus B2(£;) is defined. There is an i2 > z, such that B2(Bh) = B2(B¡)

for i g i2. In this fashion one finds fj <i2< ■■• such that Bt(B¡) is defined for

i>z,_j and B,(B¡) = Bt(Bit) = Bt for i = it. BUB2,■■■ is an /1;/2,•• -chain by

Lemma 1.

f)a(Bd<=f)om^S
i=l i=l

gives the desired conclusion.
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