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Introduction. In the following all semigroups are of finite order. One semi-

group Si is said to divide another semigroup S2, written Si|S2, if Si is a

homomorphic image of a subsemigroup of S2. The semidirect product of S2

by Si, with connecting homomorphism Y, is written S2 Xy Si. See Definition

1.6. A semigroup S is called irreducible if for all finite semigroups S2 and Si

and all connecting homomorphisms Y, S\(S2Xy Si) implies S|S2 or S|Si.

It is shown that S is irreducible if and only if either:

(i) S is a nontrivial simple group, in which case S is called a prime; or

(ii) S is one of the four divisors of a certain three element semigroup U3

(see Definition 2.1) in which case S is called a unit.

We remark that an anti-isomorphism of a unit need not be a unit. Thus

the theory is not symmetric. The explanation is that semidirect product can

be written from the left or from the right.

Let be a collection of finite semigroups. We define K(Sf) as the clo-

sure of Sunder the operations of division and semidirect product. See Def-

inition 3.2. Then it is proved that SG K{Sf U {U3\) if and only if

PRIMES (S) C PRIMES (SS). Here PRIMES (S) = {P\ P is a nontrivial
simple group and P divides S\ and PRIMES (SS) =(J {PRIMES (S)\S
G Sf ). In particular, Se#(PRIMES (S) U {U3\). A counterexample to

the conjecture that SG 7/f(IRR(S)) justifies the distinction between primes

and units as well as the inclusion of U3 in the above formulas.

A novel feature of this paper is the use of functions on free semigroups,

i.e. machines, to prove facts about finite semigroups.

These above results are obtained as an immediate corollary of a more

general theorem (proved here) which finds application as the basis for a

prime decomposition theorem for finite state sequential machines. Further,

by applying this theorem together with the powerful solvability criteria of

Feit and Thompson and of Burnside, we find that Corollary 4.1 answers

in important cases the question "What machines can be constructed by

series-parallel from counters, delays and units?" See §4. A heuristic dis-

cussion of this paper occurs in [6].
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1. Elementary properties of machines.

Notation 1.1. In this paper A, B, C, • • • will denote nonempty sets. ZA

denotes the free noncommutative semigroup without identity on the gener-

ators A. A machine will be any mapping /:£A —> Bi2). The natural "exten-

sion" f: £A->£ß is defined by f(au • •-,an) = (/(a,), • ••>/foi, •••,«•))* We

also write / as (/)'.

Let h: A —> B. Then h is the unique extension of A to a homomorphism of

£A into£ß. Thus h(au-..,an) = (h(ai), ■ ■ ■,h(an)).

Definition 1.1. Let /: £ A —> B and g: £ C—> D. Then f\g, read / divides

g, if and only if there exists a homomorphism H: ^ A —C and a function

h: D—>B so that/= hgH.
Definition 1.2. Let /: £A->P. Then S/ is the semigroup given by the

congruence =/ on zZ^- Here t = fr if and only if f(atß) = f(arß) for all

a,ß in Z A or a,/3 empty. The equivalence class containing t will be denoted

by [t\. The mapping jf. S/—>B sending [t]f to f(t) induces the partition

P( on Sf and (S,, Py) is termed the normal form of /. NF(/) = (Sf,Pf).

Definition 1.3. Let (Si, Pi) and (S2, P2) be two semigroups with parti-

tions. Then (Si, Px) | (S2, P2), read (Si.PO divides (S2, P2), if and only if

there exists a subsemigroup SQS2 and a homomorphism <t> of S onto Si so

that s = s' (modP2) implies #(s) = a>(s') (modPi). Si|S2 if and only if Si is

a homomorphic image of a subsemigroup S c S2-

Definition 1.4. Let S be a semigroup. Then /s: £ (S) —>S, read the ma-

chine of S, is defined by /s(si, • ■ ->sn) = IT"=isi- Let ^ be a collection of

semigroups. Then fy ={fs\S G ^ }•

Proposition 1.1. Lei /: £A —B <md 5: £C-+.D. 77iera

(a) f\jffsfandjffSf\f, and
(b) /|g i/ and onZy if NF(/) |NF(g).

Proof. To prove (a) we define fy: A —>S/ by hf(a) = [a\. Then

(1.1) f = jffs,h,

showing / divides jffSf. Further, we define the homomorphism Hf.

—»ZA by Hf(s) = (oi, • • -,a„). Here (au ■■•,an) is any fixed sequence of ^ A

such that [(au---,an)]f= s. Then jffsf = fHf showing jffSf divides / and

proving (a).

We next show that f\g implies NF(/) |NF(g). Suppose hgH = f and con-

sider S'g = j [PT(r)]gG Sg\t G^ZA I- S« is a subsemigroup of Sg since BT is a

homomorphism. Then [H(f)]«—>[t]/ is a well-defined homomorphism of S'g

(2) See references [3], [4], [6], and [7], and §4 of this paper for a discussion of machines

and automata. See reference [ 5] for group theory and references [ l] and [ 8] for semigroup theory.
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onto Sf satisfying the conditions of Definition 1.3. This last assertion is

proved by direct verification.

We now show that NF(/)|NF(g) implies f\g. Let S'g be a subsemigroup

of Se and <f> a homomorphism of Sg onto Sf satisfying the conditions of Defini-

tion 1.3. Now by (a) it is sufficient to show that jffsf\jgfsg-

Let j'g be jg restricted to S'e. And let H: ZS/—be a homomophism

such that for each s£S/, H(s) = i~with <p(s) = s. Also there exists a func-

tion h so that jf<p = hjg since <p carries the partitions as is required in Defi-

nition 1.3. Then jffSf = jf(<t>fsgH) m hjgfsgH. So jffsfMtfsgMifa,- This proves
(b) and Proposition 1.1.

Definition 1.5. Let /: £A^B and g: £C^D. Then fXg: £(A X Q
—>BxD, called the direct sum of / and g, is defined by /X^((a1,c1),

• • •, (an,c„)) = (/(a1( • ■ -,an),g(cu • • - ,cn)). The direct sum of any finite num-

ber of machines is defined in a similar fashion. We introduce the notation

(/i X • • • XfnV for F where the /, for i = 1, • • •, n are machines and F = fi

X • • • X /„.
Let H be a homomorphism of £ B into C. Then gHf is termed the

composition of / followed by g with connecting homomorphism H. We now

wish to compute NF(gHf) in terms of Sg and Sf, forgetting H so far as is

possible. Towards this end we require the following definitions.

Definition 1.6. Let Si and S2 be semigroups and let Y be a homomor-

phism of Si into endomorphisms of S2. Then the semigroup S2 XySi is the

semidirect product of Si by S2 with connecting homomorphism Y. S2 Xy Si

has elements S2 X Si and multiplication given by

(s2,Sl) ■ (s'2,s'i) = (si{Y(81)\sO),»1sO.

Definition 1.7. The wreath product of Si by S2, written S2wSi, is

F((Si)\S2) XySi. Here (Si)1, as throughout this paper, is Si with a two-

sided identity added if Si has none and otherwise Si. F((Si)1,S2) is the

semigroup of all functions / of (Sx)' into S2 under pointwise multiplication.

Also Y(*i)(0(sö = Ks'iSi). Thus in S2wSi, (Zi,s,) . (i{,gQ = (La^Q with l(x)

= li(x)l'i(xSl).

By convention Si w • • • w S„ = Rn is defined inductively by Ri = Si and

Rn = i?„_iwS„. Notice the reversal of indices.

Proposition 1.2. There exists a partition P so that NF(g/Y/) | (SgwSf, P).

In particular SgHj\Sgv/Sf.

Proof. By equation (1.1) we have gHf = jgfsg(hgHjf)fSfhf = jgfSg ifSfh, where
i: Sf^>Sg and i(s) = fSghgHff(s).

Now let t = (tu ■■■,tn) GT,A and let hfa) = sk G Sf for k -1, •••,». Then

define (2(f), \t)) GSgv/S, by :(r) =LlZ_i«* and 2(r): (Sf)1 -Sa with 2(()(s)

= i(ssi)i(ssiS2) • • • i(«Si •••«„). Then <—* (2(i), '(r)) is a homomorphism of

23A onto the subsemigroup 7/ of Sgv/Sf. Further gHf(t) = jg(2(t)(l)).
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Now let P be the partition induced on SevfSf by the mapping (l,s)

-*jg(l(D) and let F = gHf. Then it follows that (2(i), ̂ »-»[«Jfib a well-
defined homomorphism of (//, P) onto N¥(gHf) which preserves the parti-

tions in the sense that (2(f), \t)) = (2(t'), (modP) if and only if

[tJF= [f']F (modPf). This proves Proposition 1.2.

2. Statement of the theorem.

Notation 2.1. In the remainder of this paper A,B, ■■• will be finite non-

empty sets. S, T,U,V, ■■• with various superscripts and subscripts will

denote finite semigroups. G,H and P will denote finite groups. Sf will

denote a collection of finite semigroups and 9 will denote a collection of

machines.

The following semigroups and machines will play a special and important

role.

Definition 2.1. PRIMES will denote the collection of all nontrivial finite

simple groups. PRIMES (S) = {P G PRIMES | P divides S}. PRIMES (Sf)

= U {PRIMES(S)\SE X }.
RA(LA) denotes the semigroup with elements A and multiplication a • a'

= a'(a.a' = a). U3= {R{^nl)\

UNITS = {S\S divides U3). The UNITS are U0=[l), U, = R{^n\,
U2= jroPand U3.

The delay machine DA: £ A —»(A U ( * }) is defined by DA(au ■ ■ -,an)

= a„_! for n ?2 2 and Da(oi) = *• ^i denotes DA with A = {ro,^} and * = 1.

We now wish to combine machines by composition and direct sums.

Definition 2.2. SP(j^), read series-parallel closure of 9, is defined

inductively as follows: SP,( 9) - and 8PI+1( 9) = {/2X/i, f2fhfu jhh\fx
and f2 lie in SP;( 9) and m, n and j are functions so tn and n are length pre-

serving homomorphisms (. SP(>) = \J{S?i(J?), t = 1,2,---}.

Remark 2.1. (a) Let fUl G 9. Then since fUx is the identity map on

zZ\r0' ri( it follows that for each finite set A there exists an /GSP(J^) so

that / is the identity map on^A. From this the reader may easily verify

that /t/j G 9 implies that SP( 3?) equals the set of all machines g: £ C—> D

such that

(2.1) g = hn+lgnnngn_l---h2glhl

where each g, is a finite direct sum of members of 3* and each A, for i = 1,

■ •■,n + 1 isa function. Hereg;: ^A^—>Ai2 for i = 1,• • •,and Aj: C—»An,

A2: Au-*Ati, •••,*»: A„_i2->A„i and An+1: An2->D. Each A; for i = 1,

is a length preserving homomorphism.

(b) We cannot infer /, G SP( 9) from /, | f2 and f2 G SP( 9). For example,

it can be shown that L\ divides a member of SP(j/i/3j) (see equations (3.1))

but does not lie in SP({/u3 [). However, the theorem of this paper implies that

SP(/v U \fu3,Di}) is closed under division.
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Definition 2.3. Let S have the property that for all Si,S2 and Y,

S\S2 XySi implies S\S2 or S|Si. Then S is said to be irreducible. IRR de-
notes the set of all irreducible semigroups.

Theorem, (i) Let f: J^A^> B be a machine with Sf of finite order. Then

/eSP(/vU{/Ji,/[/3|) if and only if PRIMES (Sf) C PRIMES ($S). In
particular

(2.2) /£ SP(/primes(S/) U {DufU3)).

(ii) PRIMES U UNITS = IRR.

3. Proof of the theorem. In this section we write F(A,B) for the set of all

mappings of A into B.

The proof proceeds via several lemmas. First we give a converse to Prop-

osition 1.2.

Lemma 3.1. Let S, and S2 be semigroups. Then fS2vSl £ SP({ fSv f^, Dufa}).

Proof. One shows by direct computation that fs2ws1 equals

ht((bh X • • • X (6)„ X d)h3(g X DSl X d)°h~2(g X fSl)%.

Here Si = {«i, • • •, s„} and g = fRX •■■ X fR (taken n times) and R = Rf\Si,s2)-

RX--XR (taken n times) is R". Further, b = fa and (6); = b. Also
d = fRl with Ri = RSv Here kt: S2wSi->RnxSi and hi(l,s) = (I, ■ ■ -,l,s).

Further h2: R" X Si -»R" X Si X Si and h2(lu •■■,ln,s) = (lu s, s). Fur-

ther h3:RnX(Si\j{*\)XSi—> (S2)n X Si with

A3(/i, • • •, /„, s, s') = (li(sis), • • •, ln(sns), s')

and *=1. Finally A4: S2" X Si->S2wSi and M*i, ••',*»») - (*»*) with

Ks.) = h
Now for any finite set A,RA is a subsemigroup of a suitably large finite

direct sum of Ux with itself. Further a restriction of a suitably large finite

direct sum of Dx with itself yields DA. Thus the above expression lies in

SP({fsvfs2,Di,fUl}) and Lemma 3.1 is proved.

Lemma 3.2. PRIMES U UNITS C IRR.

Proof. We first show that PRIMES c IRR. Let G' £ PRIMES and
G'|S2XySi. Thus there exists a subsemigroup S QS2Xy Si and a homo-

morphism <b of S onto G'. Let G be a subsemigroup of S of smallest order so

that 0(G) = G'. Then <p(g • G) = <t>(g) ■ G' = G' and similarly <j>(G-g) = G'

for all g £ G. Thus g • G = G • g = G for all g £ G and so G is a subgroup of

S2 Xy Si. Let Pi(s2,Si) = S! and set Pi(G) = G:. Then Pi is a homomorphism

and thus Gi is a subgroup of Si. Let / = (/2, h) be the identity of G. Set

G2 = I (s2,h) £ G}. Then iA(s2Ji) = Y(/i)(s2) is a homomorphism of G2 into
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S2and is 1:1 since Hs2,lx) = i(s'2,li) implies

(s2,h) = (l2,lx)(s2,lx) = (k(Ydi)(ih)),li) = (l2(Y(lx)(s'2)),lx) = (l2,h)(s2,h)

= (sUi).

Setting G2 = ^(G2) we have that G is an extension of the subgroup G2 of S2

by the subgroup Gi of Si. Since G' is a homomorphic image of G under <fi

and G' is simple, ^ {1}, it follows that K the kernel of <f> is a maximal normal

subgroup of G and that G'IGjCSi or G'\G2QS2 depending on whether

K ■ G'2 equals K or G. This proves PRIMES C IRR.
We now prove UNITS Q IRR. We shall prove irreducibility for U3. The

proofs for the remaining units are analogous and easier. We first show U3\S

implies U3 C S. Let S' cS and let ^ be a homomorphism of S' onto fJ3.

Let x' G S' and <p(x') = 1. Then some power e of x' is an idempotent and

<t>(e) = 1. Then <p(eS' e) = U3 and e is an identity for eS' e. Let Sx be a

subsemigroup of eS' e of smallest order so that <b(Sx) = Ux. Then for each

Si G S! we have <t>(sx ■ Sx) = (p(sx) • <t>(Sx) = <p(sx) • Ux= Ux since Ux is right

simple. Thus sx ■ Sx = Si for all sx G S, and so Si is right simple. Then by a

well-known theorem (see [ l]) Si is isomorphic to G X Rb- B must contain at

least two distinct members 61 and b2 since iVi is not a group. Then

U3 a* {e, (1,61), (l,/j2) ( c Si CS.

Suppose now that U3\S2XySx. By the above U3= {(b^a,), (b0,a0),

(bx,ax) \ Q S2 Xy Si. As before, let px be the homomorphism Pi(i,a) = a.

Pi(G3) = ja/.Oo.a!} = Si. If a0 9* ax, then Pi(f/3) cz Si is isomorphic to U3

and G3|S!. This is so because for i = 0 or i = 1, 0/ = a; implies 20/ = 2a,

which implies 2 = a; for all 2G {o/,a0,ai}. Therefore we may assume that

a0 = ax. Necessarily b0^bx. Let p2: U3-*S2 with p2(6,a) = Y(a0)(6). By

examining the nine possibilities and noting that Y(a/) • Y(a0) = Y(a0) • Y(a7)

= Y(a0) one easily sees that p2 is a homomorphism. Further, p2 is 1:1 since

assuming otherwise leads to b0 = bx. This follows since Y(a0) (b0) = Y(a0) (6X)

implies (bx,a0) = (b0,a0)(bx,a0) = (60 • (Y(a0) (öi)),ao) = (60 • (Y(a0)(60)),a0)

= (&o, <*o)(b0, a0) — (60, ao) so 60 = V Also Y(a0)(i0) = Y(a0)(6/) implies

(b0,a0) = (6b a0)(60, a0) = (bx(Y(a0)(b0)),a0) = (6i(Y(a0)(6/)),a0) so 60

= 6,. (Y(a0)(67)). But (6lfa0)(o/,a/) = (bx ■ (Y(a0)(6/)),a0) = (6ltOo). Thus

also 61 = 6i(Y(a0)(6/)) which when compared with the above gives Co — b\.

Similarly we find Y(a0)(bx) ̂  Y(a0)(6/). Therefore, in this case, p2(t/3) is

isomorphic to U3 and p2(U3) Q S2 and so U3\S2. This completes the proof

of lemma 3.2.

We next prove equation (2.2) via Lemmas 3.3—3.8. From equation (2.2)

and Lemma 3.2, the entire theorem follows relatively easily.

We prove equation (2.2) by induction on the order of Sf. The critical in-

duction step separates into three cases.
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Lemma 3.3. Let S be a finite semigroup. Then either:

(i) S is a cyclic semigroup,

(ii) S is left simple so S = Gx LA, or

(iii) There exists a proper left ideal T C S, T ^ S, and a proper subsemigroup

VC S, W S, so that S = Tu V.

Proof. Let S = 10}. Then (i) holds, so we may assume S ^ {0}. Let TV be a

maximal proper two-sided ideal of S and if S has none let N be empty. Let

F = S/N(3). As is well known, either F is the two point zero semigroup or F

is simple or F is 0-simple.

Assume the first case arises so F is the two point zero semigroup. Then N

is not empty. Let V equal the cyclic semigroup generated by q where

S-N= {x£S|x£iV} = {q} and T = N. If V = S, then (i) holds. If
VCS, WS, then (iii) holds.

Now assume F is either simple or 0-simple. Then either: (1) F has no

proper left ideals except possibly zero, or (2) F has a proper left ideal H

different from zero.
Let case (1) hold. Then N being empty implies F is left simple which

implies by the well known result that (ii) holds. See [l].

If xV is not empty and (1) holds, then the theorem of Rees applied to F

(see [l] or [8]) implies S — N is a proper subsemigroup of F and hence

S — iVis a proper subsemigroup of S. In this case (iii) holds with T = N and

V = S — N.
Now assume case (2) holds so F has a proper left ideal H different from

zero. Let V = (F - H) U N and T = (H - {0}) U N. Then the theorem of

Rees applies to F implies V is a proper left ideal of S and T is a proper

left ideal of S. Now V*U T = S, so (iii) holds in this case.

This completes the proof of Lemma 3.3.

Lemma 3.4. Let f: £A—>B and let Sf be left simple. Then equation (2.2)

holds for f.

Proof. As is well known, S, = Gx LA, see f l]. From equation (1.1) it is

sufficient to show equation (2.2) holds for fsf-

Let G have a normal subgroup G2 and factor group Gi and let [g~i\gi £ Gi}

be a set of representatives of the cosets of G2 in G. Assume 1 = 1 and let N

be the natural homomorphism of G onto Gi with kernel G2. Then, as is well

known, Hg) = (fg, N(g)) £ G2 w G, with fg{gL) =gi-g-(r)_1 where r =

gi ■ N(g) is a 1:1 homomorphism of G into G2 w G,.

By induction we can obtain the following. Let G = G0 D Gi D G2 • • O G„

= {1} be a composition series of G with simple factors Hi = G^/G, for

(3) S/<f = S. If N is not empty let S/N = (S - N) U 10) = j s G S\s £ 7V| U 101. Here 0
is a zero of S/N and for S],s2 E S - N, «i • s2 in S/N is «i s2 when this lies in S - N and

otherwise 0. In this proof we follow exactly the notation of [ l].
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i = 1, • • •, n. Then there exists a 1:1 homomorphism ^ of G into Hn w • • • w Hi.

However, PRIMES (G) = PRIMES ({H„, •••,H1|). Thus utilizing Lem-
ma 3.1 and an obvious induction argument, we see that equation (2.2) holds

for fa ■

Now let L = L|0,i|. Then fL equals m3fu3m2(Dx X fux)°mi- Here mx: (0,11

-» Ux X Ux with mi(t) = (r„ r,); m2: i/3 X Ux -> U3 with m2(l, x) = x and

m^x) = 1; finally m3: U3-> {0,1 ( with m3(r;) = i for i = 0 or 1 and m3(l)

= 1. Thus/LESP({Di,/t/3})- Now a restriction of a sufficiently large finite

direct sum of fL with itself yields fLA. Thus equation (2.2) holds for fiA.

This completes the proof of Lemma 3.4.

In considering case (iii) of Lemma 3.3 we require the following definitions.

Definition 3.1. Let /: £ A -»B and let c(£A\jB. If t E £ (A U {c})

let ic be that member of (Z^)1 given by striking out all members of t oc-

curring before the last c and this last c itself. Then PP/: £ (A U \c\)

—>(B\j\c\), read partial-product /, is defined by PP/(0 = f(tc) with the

convention that /(l) equals c.

Let/: £A-+Band \ete<£AUB. If fGZ(AU|e}) let fe be that mem-

ber of (2Z A)1 given by striking out all occurences of e in t Then

e/:Z(AU|e()-BUje)

is defined by e/(0 = f(te) with the convention that /(l) equals c.

Both PP/ and e/ are extensions of /.

Lemma 3.5. Let S, T and V be as in (iii) of Lemma 3.3. Then

/s£SP({e/r,PP/v,D1, /„,}).

Proof. By direct computation we verify that fs= m3(efTX fRX)rh2(2~A)

(/syXPP/v)**!. Here 2A = (DA X fRA)m where mJ-»AxA with m(a)

= (a,a). Also y=Ä,= Tu(e|, fi2=X=VU|c) and A = i?i X R2.

Further mx: S—»i?i X ß2 with mx(s) = (s,c) if s£T and m^s) = (e,s)

if sGS- T= {xES\xE T\. Also m2: (A U j * () X A -»A with
^((xi.Vi), (x2,y2)) = (yiX2,y2) if Vi ^ c and y2 = c and m2((xi,yi))(x2,y2))

= (x2,y2) otherwise. Finally m3: RXX R2—>S is defined by m3(xi,Vi) = x^

where e and c are ignored (left out). Notice (e,c) will not occur.

Lemma 3.6. Let equation (2.2) hold for f. Then PP/ and ef E SP( /primes up

U{A,/i^}).

Proof. The proof is given via the following string of statements (a)-(g).

(a) Dx and fVl in SP(^) implies PPD,ESP( J*)..
Proof of (a). PPDX equals p(DxX DXX fux)m where m:(Ux\j{c})

-*UXX UXXUX with m(c) = (r0,r!,ri) and m(r,) = (r„ro,r0) for i equaling

Oorl. Alsop: U3XU3X Ux^ U3\J \c\ withp(x,y,r,) = c for all x,yE t/3.

Further, p(r0,r1,r0) = 1, p(r0,r0,r0) = r0 and p(ri,r0,r0) = rt. Finally

p(l, l,r0) = 1 and p(l,l,ri) = c. Notice (rx,rx,r0) will never occur.
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(b) fG and fUs in SP(^) implies PP/GG SP( J*)

Proof of (b). PP/G equals m3(fRc X fs X /*,,_., )m2(/G X /ä(gu|c|))'/"i with

S = (fie)1. Here mt: GUjch Gx (Gljfc[) with m^c) = (lG,c) and mi(x)
= (x, x) for x 5* c. Here 1G is the identity of G. Further m2: Gx (G\J {c})

-GX (GU (1}) X {c,*| with 1 the identity of S and m2(g,c) = (g,g,c)

while m2(g,Ä') = te.l,*). Further, m3: Gx (GU U)) X {c, * }-» GU {c}
where m3(a,6,c) = c for all a and 6 and m3(a,b, *) = 6_1a for 6^1 and

m3(a,b, *) = a when 6 = 1.

Now since a restriction of a suitably large finite direct sum of fu^fu^) with

itself yields fs(füA) the proof of (b) is complete.

(c) Let U be a unit. Then fv and fVl in SP(&) implies PFfuESP(&).

Proof of (c). We give the proof only for U = U3. The other cases are easier.

PP/u3 equals m2(fsX fuxX fujrhi with S=(i?A)1 and A = [ro,rur2\.

Here m^. U3\J |c}—»S X Ui X G, with m^c) = (r^r^rj and m^r,)

-♦(>•;. r0, r0) for i' = 0 and 1 and ml(l) = (l,rur0). Also m2: SxfiiXt/i

—*G3(j{c} with m2 being mj inverse on the image of mi and m2(rj, ri, r0)

= r, for i = 0 and 1 and m2(r2, rlf r0) = 1. Otherwise m2 is arbitrary. This

proves (c).

(d) L€i{PP/|/G ^|CSP(_^). Then /G SP( J^) implies PP/G SP( J^).
Proof of (d). By hypothesis j PP/|/G SPi(&) ) C SP( J^). Assuming that

|PP/|/GSPn(^)}cSP(^) we will show that {PP/|/G SPn+i(^) j
CSP(JF) which by induction will complete the proof of (d).

Let /GSPn+i(^). Then by Definition 2.2 either: (i) f = f2mfu (ii)

/ = /i X /2, or (iii) / = ;'/ift with /i,/2GSPn( J7). By assumption, PP/, and

PP/2 lie in SP( ^). Thus in case (i) we find PP/ equal to PP/2 mc(PP/i)' where

mc is m extended to c by mc(c) = c. Cases (ii) and (iii) are also handled in the

obvious manner and (d) is proved.

(e) Let S equal (S^)1. Then fsE SP(j A./rjJ).

Proof of (e). We first see that

(3.1) D^f^Mf^Xfu^H.

Here H: £ Gi—»Z (G3 X G^ and ff is a homomorphism with H(x)

= ((l,r0), (x.n)). Further m: t73 X Gj->G3 with m(y,r0) =y and m(y,ri)

= 1 for all y G G3.

Now by applying Propositions 1.1 and 1.2 to equation (3.1) we find

(3.2) SflJ G3w (G3 X Gi) I G3w (G3 X G3) = T.

Further since T is a monoid (S^)1 = S\T. Now applying Lemma 3.1 to fT

we complete the proof of (e).

(f) Let f: £ A -> £• and g: J^C-*D. Then
(i) g = jffi implies eg = j,efh~e for suitable functions je and he.

(ii) Let S be a monoid and let fu2 and /SGSP(.^). Then e/sGSP(^).
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(iii) Let U be any unit and G any group. Then eDuefu and efG all lie in

SP({Dufc,fu3}).
Proof of (f). We see that (i) is trivial by taking j, to be the extension of j

to e given by je(e) = e and he to be the extension of h to e given by he(e) = e.

To prove (ii) we have that efs equals p(fsXfu2)m where m: S\j{e\

— Sx £/2withm(e) = (1,1) and m(s) = (s,r0). Further, p: Sx U2->Sujej

with p(x, 1) = e and p(x,r0) = x.

We now prove (iii). The assertions for efG and efu3 follow from (ii). The

assertion for efv follows from (i) and the assertion for efUs.

Let S equal (S^)1. Then, that efs lies in SP({ A,/u3}) follows from (e)

and (ii) of (f) above. Now the assertion for eDx follows from equation (1.1)

and (i) of (f) above.

This proves (f).

(g) Let \ef\fE&}QSP(&). Then f£SP(&) implies c/ESP(Jr).
Proof of (g). We proceed as in the proof of (d). In case (i) we have ef

= e(f2mfx) = ef2m2(efx X fRR)°rhx with /,: ]£A,—for i = 1 and 2 and

R = Ax\j[e}. Here mx: (Ax U\e\) -»(A! U {<?() X (A, U {<?}) with m^x)

= (x,x). Also m2: (BjU{e)) X (A1U{e})-^(A2lj{e}) with m2(x, y) == e

when y = e and m2(x,y) = m(x) if y ^ e. Case (iii) is given by (i) of (f). Case

(ii) is handled in the obvious fashion and (g) is proved.

Now (a)-(d) implies the first assertion of Lemma 3.6 and (e)-(g) imply

the second assertion. This proves Lemma 3.6.

Lemma 3.7. Let S be a cyclic semigroup. Then equation (2.2) holds for fs.

Proof. Let Tn= U2v/---wU2 with n factors. Then T„ contains as a

subsemigroup a cyclic semigroup C(n, x) with index n and period 1. C(„d

= \qn = qWn, ■•■,qnn) where qn^qi for 1 £ i *jIf n and qnn+l = qnn. This is

established by induction on n. CUil, = {0} C U2. Now suppose C(n_U) C Tn_x.

Let qn = (1,0) e Tn_lWU2 = Tn. Here /: U2— Tn_x with l(r0) = qn_x £ Tn_x

and Z(l) = l. Then o„* = (l,0)K = (/K,0) where i*: U2->Tn_x with ZK(r0)

- and ZK(1) = g^Tj1. Thus qn generates C(n,x) C Tn.

Let Zm be the additive integers modm. Then C(n m)|ZmX C(n l). Now by

Lemma 3.4 equation (2.2) holds for fZm. Further, by Lemma 3.1 it follows

that equation (2.2) holds for fT„ with PRIMES (T„) empty and thus for fc

with C = C(n,i,. Thus equation (2.2) is valid for CM since PRIMES (C(n,m))

= PRIMES (ZJ. This proves Lemma 3.7.

Lemma 3.8. Equation (2.2) is valid.

Proof. By equation (1.1) / = jifsfh~f. Thus it is sufficient to prove equation

(2.2) for fs where 5 is a finite semigroup.

We proceed by induction on the order of S. The case | S | = 1 is trivial.

Now assume equation (2.2) holds for all /s- with |S'| g n. Let |S| = n + 1

and apply Lemma 3.3 to S. In case (i), Lemma 3.7 applies and we are done.
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In case (ii), Lemma 3.4 applies and we are done. In case (in), Lemma 3.5

and Lemma 3.6 apply and we are done. This proves Lemma 3.8.

To complete the proof of the theorem we require the following definition.

Definition 3.2. K(Sf ), read the semidirect and divisor closure of Sf, is

defined inductively as follows: K^Sf ) = Sf &nd Ki+1(Sf) = \ S'\S' divides

S for some S G *M Sf)} U {S2 X y S, | S2 and S, belong to Kt( Sf)}. See Defi-

nition 1.6. K(Sf) = \J{Ki(SS)\i=l,2,-..\.

Lemma 3.9. (a) Let S G IRR andSEK(Sf ). Then S\S' for some S' G Sf.

(b) \Sf\fESP(^)\QK({Sf\fe^\).

Proof. The proof of (a) follows by an obvious induction on i of and the

definition of irreducible as given in Definition 2.3.

The proof of (b) follows by obvious induction on i of SP, as the proof of

Lemma 3.6(d). In case (i) we use Proposition 1.2. We remark that

F((Si)1, S2) is isomorphic with the direct sum of S2 taken | («Si)11 times. For

(ii) we remark that SfXg\Sf X Sg. In the case (iii) we use Proposition 1.1. This

proves Lemma 3.9.

Proof of the theorem. We first prove part (i) of the theorem. Lemma 3.8

proves equation (2.2). Thus

PRIMES (Sf) C PRIMES (Sf) implies/G SP(/y U {A,A/3})-

Now assume /GSP(/y U {A,/u3})- Then by Lemma 3.9(b)

S,EK(S/ UjG3,SDl})cX(^ U{U3\)

with the last inclusion following from equation (3.2). Thus P E PRIMES (S/)

lies in K{ ¥ U { t73}) and thus by Lemmas 3.2 and 3.9(a) P divides S for

some S G & or P divides U3. P divides U3 is impossible so P divides S.

Thus PRIMES (Sf) C PRIMES (S/ ). Thus proves part (i) of the theorem.

PRIMES U UNITS C IRR

is proved by Lemma 3.2. To prove the opposite inclusion let S G IRR.

Then by equation (2.2) for /s and (b) and (a) of Lemma 3.9 either S divides

PGPRIMES (S), S divides U3, or S divides S^. In the first case S
G PRIMES or S = {1) in which case S is a unit and in the second case

SG UNITS. Since by equation (3.2) SDl E K(\ U3}), we find in the third

case that SEK(\U3\). Thus by Lemma 3.9(a) S divides U3 and S

G UNITS. This proves the theorem.

Corollary 3.1. (a) SEK(Sf U \ U3)) if and only if PRIMES (S)
c PRIMES (Sf),

(b) SG ^(PRIMES (S)u{t/3|).

Proof. Let S(5^ ) = j S/|/GSP(/y U | A,/t/3D I- Now the theorem im-

plies that TES(S/ ) if PRIMES (T) CPRIMES (£/ ). Thus to prove
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the corollary it is sufficient to show K(9> U ( U3 j) = S(SS).

That S(y)CK(y u ( Ua\) follows from Lemma 3.9(b) and equation

(3.2). On the other hand TG K(Sf U j U3\) implies, by the irreducibility

of the PRIMES and Lemma 3.9(a), that PRIMES (T) C PRIMES (St*).
Thus TE.S(Sf) and the corollary is proved.

Remark 3.1. SEK(Sf) iff IRR (S) c IRR (5/) is seen to be false by
taking S = L|0,i|.

Remark 3.2 (a) Let W(Sf) be the closure of Sf under division and

wreath product. Then the statement and the proof of Corollary 3.1 holds

if K is replaced throughout by W.

(b) Let E(Sf) be the closure of 3^ under division and Schreier exten-

sions adapted to monoids. Thus Sx and S2EE(SA) implies all Schreier

extensions of S\ by S2 lie in E(S^). Then, again, the statement and the proof

of Corollary 3.1 hold if K is replaced throughout by E. This is so since any

extension of S\ by S\ is a subsemigroup of S2wSl(4) and conversely S2wSj

is a Schreier extension of a finite direct sum of S2 by S\.

Thus each P G PRIMES is irreducible with respect to E.

Corollary 3.2. (a) S | Si w S2 w • • • w Sq w • • • w S„ for some sequence

Si, • • •, Sn where Sq G PRIMES (S) U UNITS,
(b) SIT for some monoid T which is constructed by successive Schreier exten-

sions adapted to monoids with factors Su ■ ■ - ,Sn. Here each S, may be taken to

be U3 or a Jordan-Holder factor of maximal subgroup of S.

Proof. Statement (a) follows from Remark 3.2 (a) since one may verify

that W(PRIMES (S) U { U3\) consists of all divisors of Siw • • • wS„ where

Si G PRIMES (S)U UNITS.
To prove (b) we first remark that PRIMES (S) = PRIMES ({P|P is a

Jordan-Holder factor of a maximal subgroup of S}). This follows from ele-

mentary group theory. Also T,|Si for i = l,---,n implies TiW---wT„|

Si w • • • w S„. Thus (b) follows from (a).

4. Application to sequential machines. We first give a quick review of some

well-known elementary results on sequential machines. See [3], [4], [6],

and [ 7]. M = (A, B, Q, X, 8), with A, B and Q finite nonempty sets, X: Q X A

—»Q and ö: Q X A —»5, is called a finite state sequential machine. Q is the

set of states.
For each q G Q, Mq: ̂  A —> P is defined inductively by Mq(a) = 8(q, a) and

Mq(au ■ --.aj = MM,,0l) (a2, • • -,a„) for n 2t 2. M is said to be reduced if

q—>Mq is 1: 1.

Let/:£A^P and define M(f) = (A,B, \fLt\tG (2>)M. x,6). Here
L is the left regular representation so Lt: 22 A —»2^ with L,(r) = t ■ r. Fur-

ther, \(fLt,a) = fLtLa = fLt.a and 8(fLt,a) = fLt(a). Then M(f),u = fLt and,

( )The proof is similar to the group extension case as is given in the proof of Lemma 3.4.
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up to isomorphism, M(f) is the unique smallest reduced machine realizing /

as some Mq.

Let M = (A,B,Q,\,b) be a machine. For each *g£A defme Q->Q

inductively as follows: (Xf^Mg) = X(q,a1) for ax E A, and (X(ai, • • -,a„))(g)

= X(an)[x(a1,-..,an_1)(o)jfor n ^ 2.

Let FC(Q,Q) be a semigroup under the composition (f°g)(q) = g(f(a)).

Then <—»X(*) is a homomorphism of 23 A into FC(Q,Q). Let Q, =

{o' G Q|X(f)(g) = q' or g' = g}. Let i(t) = X(0 restricted to Q,.Then ^ is a

homomorphism of £ A into Fc(Qq, Qq). We set ^-(^A) equal to Sq.

Now let Mq = f and assume M is reduced. Then it is easy to verify that

the left regular representation of Sf is isomorphic with Sq. In particular the

maximal subgroups of Sf and Sq are isomorphic so

PRIMES (Sf) = PRIMES (Sq).

Let fG]£A. We say g,, • • -.g^gn+i = g, is a Moop of length n ^ 1 of

M iff g, G Q for i = 1, • • •, n and g, ̂  g; for 1 ^ i ^ yn, and \(t) (g;) = gi+1

for i = 1,

Definition 4.1. Prime loop (M) = (p|p is a prime integer and there

exists a t G Z A so that M has a Moop of length p).

M G SP( -F) if and only if Mq G SP( ̂ ) for all g.
Zp denotes the integers under addition mod p.

Corollary 4.1 (Constructability from counters). Let M be a reduced

finite state sequential machine. Then

I. ME SP({/i/3, A}) if and only if prime loop (M) is empty.

II. M GSP({/{/3, Dufzp}) for p one fixed prime if and only if prime loop

(M)Q\p}.
III. (Burnside) MG SP({/(/3, A,/zp,/z,}) for p and q two fixed primes

if and only if prime loop (M) c |p,g(.

IV. (Feit, Thompson) MESV(\fu3, A( u {fzp\p G*}) where * is a set of

odd primes if and only if prime bop (M) C t.

Proof. By utilizing the well-known fact that a prime p divides the order

of G if and only if G has an element of order p and canonical facts concerning

mapping representations of Zp, see [5], we find that prime loop (M) is

exactly that set of primes which divide the order of some (maximal) sub-

group of SMq for some qEQ-

Now equation (2.2) implies fE SP({/V3, A) u\fzp\p E *}) for a set of
primes * if and only if the (maximal) subgroups of Sf are solvable and the

prime divisors of their orders are among the primes ir. This is so since by

elementary group theory the (maximal) subgroups of S are solvable

iff PRIMES (S) = \Zp\p divides the order of a (maximal) subgroup of S

andp is prime}.
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Now I immediately follows. II follows from the well-known theorem that

p-groups are solvable. See [5].

Ill follows from Burnside's theorem of the solvability of groups of order
p"(f. See [5].

Feit and Thompson in [2] have proved solvability of groups of odd order,

proving IV and Corollary 4.1.

Definition 4.2. Let 3*k be the collection of all /: 22 A —►B so that / = M,

for some finite state sequential machine M with k or less states. We remark

that /G     for some k if and only if Sf is finite.

Let /: 22 -A —* B with Sf of finite order. Then size (f) is the smallest

integer k so that fESP(9k).

Corollary 4.2. Let g: 22C—>D with Sg of finite order and size (g) 2t 2.

Then size (g) is the maximum of {size (fP) |PG PRIMES (Sg)} and 2.

Proof. Clearly size (fu2) and size (fVl) are both 2. Further it can be shown

that size (fUs) = 2 and AGSP^,/^}). Thus size (A) = size Uu) - 2

for all units U 9* jlj.

Let sg equal the maximum of {size (/>) IP G PRIMES (Sg)} and 2. Then

the above plus equation (2.2) implies size (g) ^ sg.

By assumption, size (g) ?i 2 and trivially sg ?t 2. Thus if sg = 2 we have

sg=size (g). Suppose sg>2. Then PRIMES (Sg) is nonempty. So let

PG PRIMES (Sg). We will show if g has any decomposition as in (2.1) with

gi = fnX ■•• X fini then some /y is such that the number of states of M(fij)

S; size (fP).

Let Sf = {Sftjlfij occurs as a summand in gi for i= !,•••,»}. Then

PG#(-^) since equation (1.1) applied to each /y yields gGSP(/>) and

thus Lemma 3.9 (b) applies. Thus by Lemma 3.9 (a) and the irreducibility

of P we have P|<S/y for some /y.

Let m be the number of states of M(/v). We will show size (fP) ^ m. From

the proof of Lemma 3.2 there exists a subgroup G of S/0 so that P is a homo-

morphic image of G. The left regular representation of Sfij, and hence G, is

faithfully represented by mappings on m letters. Thus G is faithfully repre-

sented by permutations on m(1) ̂  m letters by restricting the representation

to those mll) letters fixed by the identity of G. Now write G as a subdirect

product of its transitive components. See [5]. Now P, being irreducible,

must divide one of the components and thus P divides a group G, which has

a faithful transitive permutation representation on m(2) ̂  m(1) ̂  m letters.

Now choose G/ to be a subgroup of G, which has P as a homomorphic image.

Then G[ has a faithful permutation representation on m(2) letters which is

not necessarily transitive. By continuing the above process we finally obtain

a group G(1) which has a faithful transitive permutation representation on
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m(3) j£ m letters and P is a homomorphic image of Gll). Now from the ele-

mentary theory of such representations, see [5], we find that P itself has a

faithful transitive representation on m(4) letters with m(4) dividing m(3) and

thus m(4) ̂  m. The corollary now follows from the following lemma.

Lemma 4.1. Let G be a simple group and let f:^A—*B with S = G. Then

size (f) = size (/g) = n. Further, n equals the smallest number of letters on which

G has a faithful transitive permutation representation.

Proof. Let ^ be a faithful transitive permutation representation of G on

the smallest number of letters L. fJonsider the machine M = (G,L,L,<j>,(p).

Let f = Me for some e G L. Then / = jfa and Sf=G and thus size (/) equals

the minimum of {size (/') |S/- = G(, which is the order of L.

Now, by equation (1.1) it is sufficient to prove size (f) = size (fa). Let

NF(/) = (G,P). Then xgxy = xg2y (modP) for all x and y in G implies

g, = g2. Now for each (gug2) G G X G let /telig2) = ;'(/cLft)Affi. Here G-> G

withÄfö(g) = g2gg2l andLft: ^G^E0 with Lgl(g[,---,g'n) - (gi,gi, • • -,g'n).

Let /' be the direct sum of /teljÄ2) for all (gi,g2) G G X G. Then by the prop-

erty of the NF given above there must exist a function jv so that j' f = /g-

This proves size (/g) = size (/) = | L | = n proving the lemma and hence the

corollary.
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