
ON THE SUM OF TWO SOLID

ALEXANDER HORNED SPHERES

BY

B. G. CASLER(1)

1. Introduction. We use En to denote Euclidean n-space, S" to denote

an n-sphere in En+l, i.e., the set of all points in En+1 at a distance of 1

from the origin. In+1 is the closure of the bounded complementary domain
of Sn in En+l.

A set U in En is simply connected if each closed curve J in Ü can be

shrunk to a point in U. That is, if g is a continuous function from Bd(/2)

onto J, then g may be extended to take all of '/2 into U. Each comple-

mentary domain of Sn in En+l is simply connected.

Alexander [l] described a simple surface, M (a set homeomorphic to

S2), in S3 such that one complementary domain, U, of M in S3 was not

simply connected. Bing in [3] described a solid horned sphere as M+ U;

that is, Alexander's horned sphere, M, together with the nonsimply con-

nected complementary domain, U, of M.

Bing proved in [3] that if two solid horned spheres were sewn together

along the boundary of each with the identity homeomorphism, then the

resulting continuum is homeomorphic to S3.

Ball in [2] modified Alexander's example to obtain a horned sphere such

that if two of Ball's solid horned spheres were sewn together in a particu-

lar way, the resulting continuum is not S3. This was done as a partial

answer to the question raised by Bing in [3], which may be roughly stated

as follows: if two solid horned spheres are sewn together with an arbitrary

homeomorphism, is the resultant continuum S3? The theorem in §3 states

that this question has an affirmative answer if the horned sphere in question

is the Alexander example.

We shall adopt the following notation. Suppose b is a positive integer

with n digits, and each digit in b is either a 1 or a 2. Then we let b = na.

(At times it will be necessary to distinguish two or more such positive

integers. In this case we shall use na, nß, etc.) It follows that la is 1 or

2 and 2a is either 11, 12, 21, or 22. Suppose some na is given and we wish

to express the positive integer such that the first n digits are exactly the
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same as na and the last digit is a 1. We call this integer rial. If the last

digit were a 2, then it would be represented by na2. For example let na

= 12112, then nal = 121121 and na2 = 121122. The positive integer n con-

tained in na is' important in the argument.

Further we shall assume that ZAn« means the union of all A„ where

A^, denotes a set and na runs through the set of all positive integers con-

taining n digits and each digit is a 1 or a 2. In the same way {A^j is

the collection of all A^ where na takes on all values.

While this notation is unfamiliar, it avoids double subscripts and some

of the confusion resulting from notation.

Further if A is a set, C1(A) is the closure of A, Int(A) is the interior

of A, and Bd(A) is the boundary of A. We let d be the Euclidean metric

for E3. For t real, let a g t g 6 be [a,b], a <t<b be (a, b), a g t < b be

[a, 6), and a < t iS b be (a, 6].

2. The horned sphere. The following definition of a solid horned sphere

is due to Bing in [3]. The notation used in describing the horned sphere

will be used in describing a homeomorphism of the sum of two solid horned

spheres onto S3.

Suppose C is a right circular cylinder in E3 with bases A and D2. Two

mutually exclusive discs in Du are replaced by the surfaces of tubes TXal

and Tla2 and discs Dul and Dla2 as shown in Figure 1 where DU1 and

are the bases of a right circular cylinder Ci„ and Dx + Tn + Cj + Tx2

is hooked to D2 + T21 + C2 4- T22 as shown.

Discs in the bases of the cylinder Cla are replaced by the surfaces of

tubes Tun, Tlal2, Tla21, and Tu22 and discs DlaU, Dlal2, and Dla22 as before.

The process is continued to get the horned sphere M. We use Mi to denote

the part of M which is the closure of the part of M on the exterior of

d + C2, Mi = C - Z (discs cut from A + D2) + £ T^. Likewise, Mn de-

notes the closure of the part of M on the exterior of Z It ^ topologi-

caliy equivalent to S2 minus 2n+1 open discs. Let M0 be the Cantor set

M-Zn^Mn.

Although M is homeomorphic to S2, its interior U is not simply con-

nected [4]. We call this complementary domain of M which is not simply

connected the bad complementary domain of M. A horned sphere plus its

bad complementary domain is called a solid horned sphere. The part of U

which is on the exterior of is denoted by Un.

3. The sum of two solid horned spheres. We now state our main result

in the following theorem, which shows the effect of sewing two solid horned

spheres together.

Theorem. A continuum is homeomorphic with S3 if it is the sum of three

mutually exclusive sets M, U1, and U2 such that there is a homeomorphism
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Figure 1

of M -f IP, i = 1,2, onto a solid horned sphere that carries M onto a horned

sphere.

We defer the proof of the Theorem until §5.

4. A decomposition of E3. Suppose g is any homeomorphism of M onto

M. There is a continuum (M + IP1 + lP2)e and homeomorphisms gx and

g2 such that gi takes M + IP, t = 1,2, onto a solid horned sphere and

such that {g2\M)(gl\M)~1 = g. Now suppose ft is a homeomorphism from

M onto M and (M + fJ1 + f/2),, is defined as above. Further suppose that

there is a topological 2-cell W containing M0 + g(M0) contained in M such

that g I W = h I W. It is easy to see that (M + IP1 + l7% is homeomorphic

to (M+ 17'+ I/2),.

As M0 + g{M0) is a Cantor set in M, a topological 2-sphere, there is

a point y contained in M — (M0 + g(M0)) such that g(y) is contained in

Af — (M0 + g(M0)). There is a topological 2-cell W contained in M con-

taining M0 + g(M0) such that the pointsy andg(y) are contained in M — W.

As C1(M — W) is a topological 2-cell, there is a homeomorphism ft of M

onto M such that ft(y) = y and g| W = ft | W. It follows that we may assume

without loss of generality that g has a fixed point, y, in M — M0.

We now slightly modify the procedure of Bing in [3]. Suppose P is the



138 b. g. casler [April

xy plane in E\ i.e., P= \x,y,zEE3\z = 0}. Suppose C\(AX) and CILAs)

are two solid tori contained in E3 as used by Bing, such that each is sym-

metric with respect to P and the boundary, C1(A;) - A„ of A, is a 2-

dimensional torus which intersects P in two circles. We use L to denote

that part of E3 where z is positive, i.e., \x,y,zEE3\z > 0), and R to

denote that part of E3 where z is negative, i.e., {x.y.zE E3\z < 0}.

We shall now describe a decomposition of E3. As we describe that part

of the decomposition that intersects C1(L) we shall describe a homeomor-

phism from M + U - (Af0 + y) into C1(L). The notation is the same as

used in §2.~

There is a homeomorphism Ft of C1(l7j) onto C1(L) - {Ax +A2) such

that F1(M1-y) = P-(A1 + A2) and ^(CKLO • CJ = C1(L) • (Cl(Alo)

- Alo). Let LAlo = Cl(Ala) . C1(L), as shown in Figure 2.

Figure 2

Consider A,. Following Bing's procedure [3], put a cham of two sohd

tori, Cl(Alal) + Cl(Alo2), in Au so that each is symmetric with P- There

is a homeomorphism F2 of Cl(L/2) onto C1(L) - £ A„ that preserves Fx

on Cl(L/2) such that F2(C1(L/2) • CJ = C1(L) • (C1(AJ - AJ. Let LA,.
= C1(L) -CKAJ, as shown in Figure 3.
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The process is continued. We get more solid tori, more F,'s, and more

LAJs. We use LA0 to denote Yl^iZ^A^.
The tori could have been defined so that each component of LA0 is an

arc which intersects no plane parallel to P in two points and so that part

of LAia between P and a plane parallel to P one unit from P in L is the

union of two perpendicular solid cylinders, as shown in Figures 2 and 3.

We therefore assume this was done and that each component of LA0 is

an arc intersecting P in an end point.

The sequence FUF2,--- describes a homeomorphism F between M + U

— (M0 + y) and C1(L) — LA0. There is a homeomorphism / of M — y onto

P such that f\ M - M0 = F\ M - M0.
Let 0 be a homeomorphism of C1(L) onto Cl(fi) such that <p(x,y,z)

= (fgf~l(x,y), — z), for z ^ 0, where (x,y) denotes the point of E3, (x,y, 0).

The homeomorphism <p is well defined as fgf'1 is a homeomorphism of

Ponto itself. The homeomorphism <t> maps any ray in Cl(L) perpendicular

to P and with end point in P onto a ray in Cl(R) perpendicular to P and

with end point in P. Let RAia = <b(LAla), and RA0 = Yl^iZ R>« = <t>(LA0).
Let G = <t>F. The homeomorphism G describes a homeomorphism from

M+ U- (M0 + y) into C1(Ä).
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Now consider (M +[/'+ U2)g and the functions gx and g2 defined in

the first paragraph of this section. We now define a homeomorphism S

as follows. Let Fg,\ U1 = S\ U1 and Gg2\ U2 = S\ Iß. As F, G, gu and g2 are

homeomorphisms and U1 and U2 are disjoint open sets, S is a homeomor-

phism of U1 + U2 onto L + R — (LA0+ RA0). Let {u,| be any sequence

of points in U1 + U2 converging to a point uj^y contained in (M + U1 + lß)g.

Let S(u) = LimS(u,). It follows that S is a homeomorphism from

(M U1 + lß)g — y onto the decomposition space X whose points are

the points of E3 — (LA0 + RA0) and the components of LA0 + RA0.

5. The shrinking of the components of LA0 + RA0. If S could have been

been defined so that S(M0 + g(M0)) is a Cantor set of points rather than

a Cantor set of arcs, then S would be a homeomorphism from (M + Ul + lT2)^

— y onto F3 and with the one point compactification of E3 the proof of the

Theorem would be complete. One way to prove the Theorem is to define

a continuous function, T, from E3 onto E3 such that T shrinks each distinct

component of LA0 + RA0 onto a distinct point of E3 and is a homeomor-

phism of E'3 — (LA0 + RA0). It follows that S composed with T is a homeo-

morphism of (M + U1 + U2)g — y onto E3. We shall not define the func-

tion T directly but define a sequence of homeomorphisms, T„ that will

eventually shrink the components of LA0 + RA0.

The following lemma will allow us to define the T's. However before

stating the lemma let us make the following definition. Suppose e is a

positive number. Let ^LA,„(t) = (£LA„„) • P X [ - e,0] where [ - «,0] is

an interval on the z axis of E3. In the same way let £ RAna{t) = (£ RAaa)

• Px[0,e]. The set £LA„„(c) is a small extension of £LA„„ into R.

Lemma 1. For each e > 0 and each pair of positive integers p and q there

is a pair of positive integers r and s and a homeomorphism V of E3 onto

E3 fixed on E3 - (ZLA^+ZRA^ + XLApAt) +ZRAJt)) and taking
each component of £LAr„ + £/fASo into a set of diameter less than t.

Proof. The proof of this lemma will be simplified if we make the fol-

lowing assumptions. We will show that these assumptions are valid in §6.

A(l) For each pair of positive integers p and q there is a pair of positive

integers p* and q*, p g p*, q ^ q*, such that:

(i) each component of (£LAp.„ +£/?A,.J • P is of diameter c/5.

(ii) each component of £LA(p.+i)a + £-fL4(,.+1)o contains at most one

component of £ LA(p.+1)„.

A(2) For each pair of positive integers p and q there is a pair of positive

integers p' and q', p' > p + 1, q' > q+ 1, and a finite set of disks, Bu

B2,---,Bk contained in P such that,

(i) (£LApa + £ßA, J • P is contained in Int(XXi£,),

(ii) at most one component of £LAP„ intersects Bit i= 1,2, •••,k,
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(iii) no component of J]LAP<„ or ^PA,<a intersects more than one of

the disks BUB2, ...,Bk,

(iv) if Bi intersects both ^LApa and Z^? «' tnen B> *s contained in

Zlnt((RAiq+2)a) ■ P),

(v) if Bi intersects both Z^p'« and H^?«' then Bi is contained in

£lnt((LA(p+1,.).P).

A(3) (2) For each e > 0 and each pair of positive integers p and q there

is a homeomorphism, H0, of E3 onto E3 and a finite sequence of planes,

Pu P2, ■ ■ ■, Pm, such that:

(i) the distance from P to P, is less than 1, i = 1,2, •••,m,

(ii) Pi is parallel to P, i = 1,2, ■■■,m,

(iii) Pi and P2 are in L,

(iv) P(m_d and Pm are in Ä,

(v) Pi is between Py_M and P(1+d, i = 2,3, • • •, (m — 1),

(vi) H0 is fixed on E3 - (XLAP„ + £äA,J,

(vii) the diameter of each component of

H0(ZLA{p+1)a + ZRA(q+i)a - Z™=iP)

is less than c/5.

A(4) Suppose p and p' are the positive integers described in A(2), Pi

and P2 are the planes described in A(3), and LApa is contained in LAfj,+i)a.

There is a homeomorphism Hu of E3 onto E3 such that:

(i) Hj is fixed on that part of LA(p+i)a that is between P2 and P,

(ii) Hi is fixed on that part of LApa that is between Pi and P,

(iii) Hi is fixed on E3 — LA(P+i)a,

(iv) ifj takes each LAp.ß a^ß, contained in LA(p+1)o into a set that

does not intersect Px.

A(5) Suppose q is the positive integer of A(2), Pm and P(m_u are the

planes of A(3), and RA^+X)a is given. Then there is a homeomorphism H2

of E3 onto £3 such that:

(i) H2 is fixed on that part of RA{q+i)a between P(m_d and P,

(ii) H2 is fixed on that part of PA(?+1M between Pm and P,

(iii) i72 is fixed on E3 — PA((J+1)„,

(iv) H2(RA{q+x)a2) does not intersect Pm.

Suppose that there is a homeomorphism 7" of E3 onto E3 fixed on i?3

-(ZLAp'« + ZRAq.a + ZLAp.aU)+ZRAq.a(t)). If P*^P andg*^o,
then T' is fixed on E3 - (£Z,AP(, + £/?A,« + ZLApa(e) + £i?A?<t(e)).

(2) We note that the procedure at this point differs from Bing's construction in [3] in

the following way. Bing used the planes Pi ■■■ Pm to partition his sets into "small" pieces

whereas the author used H0(Y^T=.i Pi) to partition his sets. It will be noted that there

are some large components of (^LApa + J^RAqa) — Y^iLiPi but there are no large com-

ponents of flo((£ iA(p+i)„ + X RA(q+i)a) -^2i = iPi>-
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It follows that we may assume without loss of generality that p = p* and

q = q* where p* and q* are the positive integers promised by A(l).

Now suppose that there is a homeomorphism H of E3 onto E3 fixed on

E3 - (£LA(p+x)a + £PA(9+1)a + £LA(p+1)a(t) + £PA(?+1)o(£)) taking

each component of £LAra + £PASa into a set that intersects at most five

components of (£LA(p+1)a + £ÄA(,+1)a) - £™ iP, where Px,--,Pm are

the planes of A (3). By the properties of H0 given in A (3), the homeomor-

phism H0H is the required homeomorphism 7".

We shall now construct the homeomorphism H inductively using the

number of planes in A (3). Let m = 4, Pi and P2 be in L and P3 and P4 be

in R. Let p', 17' and Bx, ■ • - ,Bk be the positive integers and disks promised

by A(2). Let BX,B2, ••■,Bnbe the disks in Bx,---,Bk that intersect £LAP<,

and £äA9V By A(2) (iv) and A(2) (v), £?=15, is a subset of ZLA^+d,,

+ £iZA(,+1)a. Let KX,K2,---,KU be the components of £LA(p+1)o

+ £PA(,+1)a and Qu, Qh2, ■ ■ ■, 02,1, • • •. Qu,u be the components of £LApa

+ £PA^„+ £"=1Pi where Q,j is a subset of if,.

Note that the set (£LAp<a + £PA,J -P may be a very complicated

set. We use the disks Bx,B2,---,Bn to expand (£LAP<„ + £ÄA,J • P

into a more manageable set.

If a component LAP(I of £LAP>„ does not intersect a B,, i ^ n, then

LApo does not intersect £PA,„. There is a natural method to shrink

LAP'a leaving E3 — (£LAP(, -f £LApa(t)) fixed. In the same way if RAqa

does not intersect a S,, i ^ n, then PA9 may be shrunk. With this note

we ignore sets of this type as they give no difficulty in the shrinking process.

So we may assume Qu contains a component of £LAp<a, say LApa.

There is a homeomorphism Hx as defined in A (4). By A(l) (ii), Kx con-

tains exactly one component of £LA(p+1)„. Hence Lfi(Qi,i) intersects Px

and Hi(Qij), j^l, does not intersect Px.

By A(2) (iii), Qu contains exactly one disk B,, i ^ n. By A(2) (iv), P,

is contained in Int((PA(,+2)„) • P), where RAiq+2)a is a component of

(q+2)a- Let PA(,+2)„ — RAiq+i)a2. By construction (Qi,i) • R is a subset

of RA (9+i)a2- There is a homeomorphism P2 as defined in A (5). Note Hi

is fixed on R and H2 is fixed on L. Further H2(R{q+x)a2) does not intersect

P4 and (Qi.i) • P is contained in RA(q+l)a2. It follows that for each integer

H2Hx(Qu) intersects at most three of the four planes Pi, P2, P3, and P4.

Further by A(4) and A(5), H2HX is a homeomorphism of E3 onto F3 fixed

on F3 — (£LA(p+1)o + £PA(,+i)a).

Without loss of generality we may assume that Hx and H2 have been

defined for each Kit i= 1,2, • • -,u, and that H2Hx{QtJ) intersects at most

three of the four planes Pi, P2, P3, P4 for each      In this case let H = H2HX.

To complete the proof of this case we must show that no component

of H(£LApa + £PA,.J   intersects  more  than  five  components of
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(LLAu> »„ + Z^(,+dJ -HUP, By A(2) (iv) we know that
is contained in £Int((i?A(,+2)„) • P) and hence each component

Qij intersects at most one component of (Z^(p+»«) • P- By A (2) (v)

Z"-iB' is contained in Int((LA(p+1)a) • P). Hence each component Q,j

intersects at most one component of (^,LA{p+1)a) ■ P.

Conditions A(2) (iv) and A(2) (v) together imply that B;X[-l,l],

i^n, is contained in Int(LA(p+i)(, + RA(q+1)a). By A(4) and A(5), H is

fixed between the planes P2 and P3. As H is fixed between the planes P2

and P3, no component of H(ZLApa + Z-RA^J can intersect more than

one component of YjLA{p+i)a — (Pi + P2) that intersects P or more than

one component of Z,RAiq+1)a — (P3 4- P4) that intersects P. Further for

each H(Qij) there is a pair of components LA(p+l)a and AA(4+1)a such that

H(Qij) is contained in LA{p+l)a 4- i?A(g+1)„. As H(Qij) can intersect either

at most Pi, P2, and P3 or at most P2, P3, and P4 it follows that H(Qij)

can intersect at most five components of (LA(P+1)„ + fiA(?+1)„) — Z?=iP,

as is shown in Figure 4, and the lemma follows from this case.

Figure 4

We proceed to the case where the number of planes is five, Pi and P2

are contained in L, P4 and P5 are contained in R and P3 ^ P. Let us proceed
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as above where there are four planes by first choosing integers p' and q',

constructing the B,'s and defining a homeomorphism Hi and a homeomor-

phism H2 using P4 in place of P3 and Pb in place of P4.

By A(2) for the pair of positive integers p' and q' there is a pair of

positive integers p" and q" and a finite set of disks B[,B2 • ■ • B'v with

the properties given in A (2) with appropriate changes in notation. Let

Q be any component of H2Hi(^LApa + £PA^J that intersects four of

the five planes Pu ••■,P5. As Q is connected either Q intersects PuP2,P3,

and P4 or Q intersects P2, P3, P4, and P5.

Suppose J5 intersects Pi, P2, P3, and P4 and P3 is between P and P4. By

A(4) (i) and A(4) (ii) there are exactly two components Pi and R2 of

Q — (Pi + P) whose closures intersect both Pi and P. By construction

Cl(Äi), i = 1,2, is a right circular cylinder. In §6 we shall show that under

this condition we may define a homeomorphism H[ similar to Hi and with

the properties of Hi given in A (4) with appropriate changes in notation.

Further by A(5) (i) each component of Q — (P4+P) whose closure

intersects both P and P4 is a right cylinder. As P3 is between P and P4,

P3 cuts each component of Q — (P4 — P) in a disk. In §6 we shall show

that under these conditions we may define a homeomorphism, H2, similar

to H2 and with the properties of H2 given in A (5) with appropriate changes

in notation. It follows that each component of

H2H[((HiH2(ZLAp.tt + j:RAra)) . Q)

intersects at most three of the five planes Pu • • P5.

Now suppose Q intersects P2, P3, P4, and P5 and P3 is between P2 and P.

We note that the closure of the two components of Q — (P2 + P) whose

closures intersect both P2 and P are right circular cylinders, and P3 cuts

each of these components in a disk. Further we note that the closure of

each component of Q — (P 4- P3) whose closures intersect both P and P5

is a right cylinder. It follows by the remarks above that we may define a

homeomorphism, H[ and a homeomorphism H2 such that

H2H[((H2Hi(ZLAp,a + ZPA,.J) • (?)

intersects at most three of the five planes Pi,---, P&.

Now P3 can not be both between P and P2 and between P and P4. But

actually all of P which we use here is P • Q. The obvious procedure is to

move P- Q between the "right" two planes and keep the geometry which

will allow us to define H[ and H'2.

Suppose Q ■ (H2Hi(LApa)) ̂ 0 and Q ■ (H2Hi(RAq J) * 0. (The proce-
dure in the contrary case is obvious.) Then P • Q is contained in BJ, ig n.

By construction ß,'X [tuts] is contained in Int(^LA(p+i)(I 4 ZfiA(,+1)J

where ti is the distance from P to Pi and - tb is the distance from P to P5.
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As P ■ Q is -ontained in Int B[ there is a polyhedral disk Y, contained

in Int(B?) such that (B- - Y,) • (£LApa + £i?A,.J = 0. Let y be the

least integer such that Q intersects Py and n be the greatest integer such

that Q intersects P„. (In this case y is either 1 or 2 and v is either 4 or 5.)

Let tj be a real number such that P X [tj] is a plane between PT+1 and

P„_i. There is a piece-wise linear homeomorphism, P3, from F3 onto F3

such that:

(i) H3 is fixed on P3 — (P,- X K, £,]) where ty is the distance of Py from

P and — t, is the distance from P, to P,

(ii) if P3(x) 5^ x, then the line through P3(x) and x is perpendicular to P,

(iii) P3(Y,X [t]), t a real number, is contained in a plane parallel to P,

(iv) P/3(Y,) = Y,xfo].
Suppose H2Hl(LApa) is contained in Q. Then (H3H2Hi(LApJ)

(P, X K,<J) = P3((LAP J • P) X [ty,tj]. If H2HARAQ,J is contained

in Q then {H3H2HARAqa)) • (P, X MJ) = P3((FA,J .Px[(„4 Hence
as H3{P ■ Q) is between the "right" planes and the geometry of H3(Q) is

essentially the same as Q, it follows that a homeomorphism P{ with the

properties of Hi and a homeomorphism H2 with the properties of H2 may

be defined on H3(Q).

Further it follows that there is a homeomorphism, H3H2HU of P3 onto

itself fixed on

P3- (ZLA(p+i)a + £fiA„+i)a + £LA(p+i)a(f) +

taking each component of £ LAp a + £ PA,-„ into a set that intersects at

most four of the five planes Pi,---,Pb. There is a homeomorphism, H'2H[,

fixed on P3 - (P3P2Pi(XlLAp„ + £PA,.J) together with an e/2 neighbor-

hood of H3{(£LApa) • P + (£RAqa) • P) taking each component of

H3H2Hi(ZLAp~„ + ^PA,-„) into a set intersecting at most three of the

five planes Plt...,Pe. Let P = P^PIPsP^Pi- It follows that each compo-

nent of HoH(£LAp,a + ^PA,»J is of diameter less than t.

The general case follows exactly in the same way as the case where k = 5.

First we find p' and o' and define H3H2Hl so that each component of

P3P2Pi(^LApo + X]PA9„) intersects at most m - 1 of the m planes

Px,...,Pm. Then we find p" and o" and define H'3H2H[ such that each

component of H'3H2H{H3H2Hl(£LAp~a + ^^„.J intersects at most m — 2

of the planes Pu ■ ■ ■, Pm. We then continue finding more p's and o's and

defining H3's and P2's and HL's until H(£ LAra + £ RAsa) intersects

at most three of the m planes Pi, • • •, Pm, where H is the composition of

the P3's, P2's, and Pi's in proper order and r is the last p chosen and s

is the last q chosen. We find that we have proven the lemma modulo A(l),

A(2), A(3), A(4), and A(5).
Lemma 1 is a restatement of Bing's Lemma in [3]. Following Bing we

now prove the theorem.
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Proof of theorem. We find from Lemma 1 that there is a pair of positive

integers r(l) and s(l) and a homeomorphism T{ of E3 onto Es that leaves

each point of E3 - (£ LAla + Z RAi° + Z LAla(l/2) + Z RAla(l/2)) fixed
and takes each component of ^LAr(1|, + ^ßA,(1)„ into a set of diameter

less than 1/2.

There is a positive integer e such that for each set A of diameter less

than t, T\(A) is of diameter less than 1/22. By Lemma 1 there is a pair

of positive integers r(2) and s(2) and a homeomorphism T2 of E3 onto

E3 that leaves each point of

E3- (ZLAra)a + ZRAsWa + ZLAril)a(t) +ZRAsauU))

fixed and takes each component of Z LAr(2)a 4- ZRAS(2)a into a set of di-

ameter less than «. Let T2 = TXT2. T2 is a homeomorphism of E3 onto itself

that takes each component of ZLAr(2)a 4- ZRAS(2)<, into a set of diameter

less than 1/22 and T2 = T, on

E3 - (ZLAra)a + ZRAsWa + ZLArWa(l/2) + ZEAs(1)„(l/2)).

Continuing the process we obtain a sequence of homeomorphisms 7\,

...,Tn,... such that Tn+1 = Tn on

E3 — (ZLAr{n)a + ZRAs(n)a + ZLAr(n)a{l/2n) + ZRAS(n)a(1-/2n)),

and the diameter of each component of Tn+1(ZLArin+1)a + Z RAS(n+i)«) is

less than l/2n+1.

It follows that T = Lim Tu T2, ■ ■ ■, Tn,... is a continuous function of E3

onto E3 such that the image of each distinct component of LA0 + RA0 is

a distinct point of E3. Hence T is a homeomorphism taking the decomposi-

tion space X onto E3. As S is the function, defined at the end of §4, from

(M + U1 4- U2)g — y onto X, it follows that TS is a homeomorphism from

(M 4- (71 4- il/2)^ — y onto E3 and the theorem follows with the one point

compactification of E3.

6. The details of Lemma 1. By construction Y[*=i(ZLAnJ ■ P is a Cantor

set of points in P. Hence for each t > 0 there is a positive integer n such

that the diameter of each component of (^LA„J • P is of diameter less

than t.

We use this to find the pair of positive integers p* and g*, given the pair

of positive integers p and q and an t > 0, as required in A(l). There is a

positive integer p* > p such that the diameter of each component of

(ZLAp-J ■ P is of diameter less that e/15. Let 5 be the minimum of t/15

and the distances between pairs of components of (Z LAp*a) ■ P. There is

a positive integer q* > q + 1 such that the diameter of each component of

(ZRA(q'-i)J ■ P is less than 5. It follows that each component of

(ZLAP'a) ■ P+ (ZRAq-a) ■ P is of diameter less that e/5. For let

RAq.a be a component of ZRAt%«- Now (BA,.J -P is contained on the
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interior < p some component of (£ RAiq._1)a) ■ P). As 8 was chosen so

small that no component of (£ BA((7._1|a) • P intersects more than one

component of (^LAp.J- P, PA,.„ can intersect at most one component

of ^LAp.a. Therefore each component of £ LAP'a + ]T RAq.a can contain

at most one component of ^LAp.0. It follows that we may choose p* and

q* with the desired properties given in A(l).

The positive integers p' and q' of A (2) are chosen in approximately

the same way. Let bx be the minimum of the distance from (£FA(,+3)J ' P

to P — CJ^RA{q+2)a) ■ P and the distances between pairs of components

of (]T Ft"A«+3>J ' P- There is a positive integeT r> p such that the diam-

eter of each component of C2^LArJ • P is less than <5i. Note that if a

component, K, of CJ^LAra) -P intersects ^2RAiq+3)a tnen K Is contained

inInt((XÄA(fl+2)a).P).
Let 52 be the minimum of the distance from (^LA(r+1)a) • P to

P — (]TLAra) • P and the distance between pairs of components of

(^LA(r+1)a) • P. There is a positive integer s such that each component

of (£ RASa) • P is of diameter less than S2.

We shall now choose the P;'s. Let the components of (£ LAra) ■ P be

called Vu V2, ■ • •, V„. We note that each Vk contains two components, Uk,i

and Uk,2, of (^LA^+dJ ■ P. Further b2 was chosen so small that no com-

ponent of (X RASJ • P can intersect more than one of the three sets P — Vk,

Uk,\ and Uk,2, k = 1,2, ■ ■ -,n. Hence for each Uk,h there is a polyhedral

simple closed curve JKh in (£LArJ • p - ((£LA(r+1)a) • P+ (£PAto) • P)

such that the Jk,h's are pair-wise disjoint, and Jk,h separates Uk,h from

(^LA(r+i)o) -P — Uk,h- Let Pi, •••,B2n be the polyhedral disks contained

in P whose boundaries are J \,\, J\,2,J2,u-•• ,Jn,2- Let P^+i be a disk in

P — ̂ iiiP, such that if Z is a component of (£BASJ • P that does not

intersect a P, then Z is contained in Int(P2n+i)-

We note that each B; contains at most one Uh,k. As each component of

2^LA(r+2)„ intersects P in the interior of some U„ik, each P; intersects at

most one component of LA(r+2)„ for i ig 2n. Further each component of

^LA,,+21o can intersect at most one P;. We let p' = r + 2 and q' = s + 1,

and we find that:

(i) (£LAp.a + £ÄA,„) • P is contained in Int(£?,iB,),

(ii) at most one component of £ LApa intersects P,, i = 1,2, • • •, (2re + 1),

(iii) no component of £ LAP'a or of £ RAqa intersects more than one of

the disks Pi, • ■■,Bi-in+l).

Suppose P, intersects £LApa and P, intersects 2]PA,„. Let Ukfk be

the component of C2^LA(r+1)a) -P contained by F,. It follows that P, is

contained in Vi, a component of (£LAra) • P that intersects RA(q+3)a.

Therefore:

(iv) if B, intersects both £LAP<„ and £RAqa, then P, is contained in

£lnt((ÄA(7+2)J . P),
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(v) if Bt intersects both ^LAP„ and Z,RAqa, then P, is contained in

£lnt((LA(p+11J .p).

Hence the positive integers p' and q' and the disks Bu B2, ■ ■ ■, Bk may

be found with the properties given in A (2).

Before we construct H0, Hu and H2, we note that each LA„„ is the homeo-

morphic image of the corresponding Cna. As Cna is a solid right circular

cylinder, there is a natural homeomorphism from I2 X [0, l] onto Cna. This

implies that there is a natural homeomorphism from I2 X [0,1 ] onto LAna

where (I2X [0] + (J2X [l]) is taken into (LA„J • P. We may now define

a new metric, p, on LA„a induced by the natural homeomorphism. That is,

if ^ is the natural homeomorphism and x and y are two points in LAna,

then p(x,y) = d{\p~1{x),\l'^l(y)) where d is the Euclidean metric for I2

X [0,1]. Therefore, it is meaningful to speak of a piecewise linear homeo-

morphism of LAna onto itself with respect to the induced metric p. In fact

the following lemma may be applied to any LAna using the induced metric p.

Lemma 2. Suppose A is a closed subset of I2X [0, l] such that Bd(P)

X [0, l] does not intersect A, and  fi, t2,t%, t4,su and s2 are six real numbers,

0 = ti < t2 < t3 < t4 g 1, <! < sx < s2 < t4. Then there is a piece-wise linear

homeomorphism of I2 X [0, l] onto itself fixed on Bd(/2) X [0, l] + I2

X [0,*,] + I2 X [U, 1] such that:

(i) the image of (x,t) is (x,s) where xE/2 and, t and s£[0, l],

(ii) theimageofil2 X [t]) ■ A is a subset of I2 X [s], 0 g t g 1, and 0g«|l,

(iii) the image of (72 X [t2]) ■ A is contained in I2 X [si] and the image of

(I2X [t3]) • A is contained in I2X [s2].

Indication of proof. There is a disk D contained on the interior of I2 such

that A is contained in D X [0, l]. At this point the proof follows by writing

out the proper linear homeomorphism on the sets I2 X [0, fj, I2 X [^,l],

D X [tut2], D X [t2,t3], D X [t3,t4], (I2 - Int(D)) X [h,t2], (I2 - Int(Z)))

X [t2,t3], and (72 - Int(D)) X [t3,t4].

The homeomorphism promised by Lemma 2 will be called a Basic Homeo-

morphism. If 0 is a Basic Homeomorphism of a 3-cell, C*, contained in E3,

then 0 is a homeomorphism of C* onto itself and 0 is fixed on Bd(C*).

Hence 0 can be extended to a homeomorphism of E3 onto itself where

0| (E3 - Int(C*)) is the identity.

We may now define H0 as promised in A(3). By A(l) we may assume

that the diameter of each component of (]TLAP£, + £ RAqa) ■ P is less than

t/5. Choose any plane P' in L parallel to P and at a distance of less than

1 from P. Choose any component of ZLApa, say LApa. Let 0 be a homeo-

morphism from 72X [0,1] onto LApa such that 0((/2X [0]) + (Z2X [l]))

- (LAPJ • P and 0((/2 X [r2]) + (I2 X [f3])) = (LAPJ • P'. As LA0 is a

Cantor set of arcs and each component of (LApa) ■ P is of diameter less

than t/5, we may assume that the diameter of <j>(I2 X [t]) is less than
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e/5 for 0 s; t S. 1. Let <0 = 0 and t4 = 1. We have now defined the positive

i itegers ti,t2J3, and i4 of Lemma 2. As the diameter of <b(I2X [t]) is less

than e/5 for 0 ^ * ̂  1 there is a pair of positive numbers Si and s2, 0 < <2

< Si < s2 < t3 < 1, such that the diameter of <t>(I2 X [«i,s2]) is less than e/5.

Let the closed set of Lemma 2 be LApal + LAP„2. Hence we apply Lemma 2

and the construction of H0 is obvious when we note that the Basic Homeo-

morphism is uniformly continuous.

We shall now define Hi as promised in A (4). Suppose LA(P+i)a is any

component of^LA(p+lla and LApa is a component of (J]LAP J • (LA(p+dJ.

Let Pi and P2 be defined as in A(3). Let Pi and P2 be the closure of the

two components of LA(p+i)a — Pi that intersects both Pi and P. As Pi(

t = 1,2, is a right cylinder, there is a homeomorphism </>i of 72 X [0, l]

such that:

(i) 0,(/2x[O,*i] = fii,

(ii) <M/2x M]) = P2,
(iii) 0i(/2 X [t]), 0 < t < tu t3<t<l, is a disk contained in a plane par-

allel to P which irreducibly separates LApa.

It follows that P2 • (LA(p+i)J = <t>i(I2 X [ts]) + <t>i( I2 X [t4]) for some r5

and t4, 0 < ts < ti < t3 < t4 < 1. We may assume without loss of generality

that LApa = LA(P+1)„ i i... 11. Let Pi - (LA(p+1)al) ^ 0. There is a pair of posi-

tive numbers st and s2 such that t3 < Si < s2 < t4. By construction

(<t>i(I2 X [ti])) • (LAip+i)a2) ^ 0. Hence there is a positive number f2, ̂ i

< t2 < t3 such that (0i(P X [<2])) • (LA(p+1)o2) = 0. We have chosen the six

positive numbers h,t2,t3,t4,Si, and s2. Hence there is a Basic Homeo-

morphism \pi as defined in Lemma 2 such that:

(i) 0i is fixed on the closure of the two components of LA(p+1)ol — Pi

that intersect both Pt and P,

(ii) \pi is fixed on that part of LA(p+1)„ between P2 and P,

(iii) 0i is fixed on P3 — LA(p+i)a,

(iv) 0i(LA(P+i)a2) does not intersect Pi.

If LApa = LA(p+1)al let 0i = Hi.

Suppose LAP'„ ^ LA(P+i)„i. By (i) in the above paragraph we note that

the closure of the two components of 0i(LA(p+1)al) — Px that intersect both

P and Pi are right cylinders. We also note that the only condition for the

definition of 0i was that Pi and P2 be right cylinders. It follows that a

homeomorphism 02 with properties given for 0i in the above paragraph

may be defined by substituting 0i(LA(p+iM) for LA(p+i,„. If LApo
= LA(p+iM.i lßt Hi = 0201- If LAp-a ̂  LA(P+i)<,i,i, then there is a homeo-

morphism 03. It follows that in a finite number of steps the homeomor-

phism Pi will be defined with the properties of A (4). Further as the

homeomorphism H3Hi takes the closure of the two components of LA„„ — Pi

that intersects both P and Pi into right cylinders the homeomorphism

H'i may be defined.
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The homeomorphism H2 given in A (5) is defined in exactly the same way

as \pi where LAip+1)a is replaced by RAiq+1)a, Px is replaced by Pn, and

P2 is replaced by P(n_i).

We have supplied the details of Lemma 1 and have completed the proof

of the theorem.
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