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Introduction. A theory, 2, (formalized in the first order predicate cal-

culus) is categorical in power k if it has exactly one isomorphism type of

models of power k. This notion was introduced by Los [9] and Vaught [ 16]

in 1954. At that time they pointed out that a theory (e.g., the theory of

dense linearly ordered sets without end points) may be categorical in power

X0 and fail to be categorical in any higher power. Conversely, a theory may

be categorical in every uncountable power and fail to be categorical in

power K0 (e.g., the theory of algebraically closed fields of characteristic

0). Los then raised the following question.

7s a theory categorical in one uncountable power necessarily categorical in

every uncountable power?

The principal result of this paper is an affirmative answer to that question.

We actually prove a stronger result, namely: If a theory is categorical in

some uncountable power then every uncountable model of that theory is

saturated. (Terminology used in the Introduction will be defined in the

body of the paper; roughly speaking, a model is saturated, or universal-

homogeneous, if it contains an element of every possible elementary type

relative to its subsystems of strictly smaller power.) It is known(2) that a

theory can have (up to isomorphism) at most one saturated model in each

power. It is interesting to note that our results depend essentially on an

analogue of the usual analysis of topological spaces in terms of their derived

spaces and the Cantor-Bendixson theorem.

The paper is divided into five sections.

In §1 terminology and some meta-mathematical results are summarized.

In particular, for each theory, 2, there is described a theory, 2*, which

has essentially the same models as 2 but is "neater" to work with.

In §2 is defined a topological space, S(A), corresponding to each sub-

system, A, of a model of a theory, 2; the points of S(A) being the "isomor-

phism types" of elements with respect to A. With each monomorphism

(=isomorphic imbedding), f:A—*B, is associated a "dual" continuous

map, /*:S(77)—>S(A). Then there is defined for each S(A) a decreasing

sequence {S°(A)J of subspaces which is analogous to (but different from)

Presented to the Society, March 28, 1962; received by the August 5, 1963.

( ) Except for minor emendations this paper is identical with the author's doctoral dis-

sertation submitted to the University of Chicago in August  1962.

( ) Cf. [10] where the result was shown to follow from the more general result of [5].
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the usual sequence of derived spaces in a topological space(3). The basic

difference is that for us the definition of "derived space" will involve not

only S(A) but all of its inverse images under maps of the type, /* : S(B)

—>S(A); that is, not only A but every system A can be imbedded into.

It is well known that those topological spaces whose ath derived space

vanishes at some ordinal a have particularly simple properties. Similarly,

those theories, 2, such that for some ordinal a, Sa(A) vanishes for every

A which is a subsystem of a model of 2 have particularly simple properties.

We have chosen to call such theories totally transcendental. Theorem 2.8,

which is an analogue of the Cantor-Bendixson theorem, states that totally

transcendental theories are characterized by a certain countability condition.

§3 gathers together some results depending on Ramsey's theorem. In

particular, Theorem 3.8 states that any theory categorical in an uncount-

able power is totally transcendental. Much of §3 is related to the results

of Ehrenfeucht and Mostowski [3] and Ehrenfeucht [l] and [2].

Some properties of models of totally transcendental theories are estab-

lished in §4. These have to do with the existence of prime models and the

existence of sets of indiscernible elements.

Finally §5 applies the results of the preceding sections to solve the pro-

blem of Los.

This paper was written while the author was at the University of Cali-

fornia at Berkeley. It is a pleasant duty to acknowledge the more than

usual debt he owes for the advice and encouragement of Professor S.

MacLane of the University of Chicago and Professor R. L. Vaught of the

University of California.

1. Preliminaries. Ordinals are defined so that each ordinal is equal to the

set of smaller ordinals. Cardinals are those ordinals not set-theoretically

equivalent to any preceding ordinal. We use the Greek letters a,ß,y, •••

to denote ordinals, reserving 5 for limit ordinals; X and k will always denote

cardinals and m and re non-negative integers. 3 denotes the least cardinal

> k. The cardinality of a set X is denoted by k(X). An infinite cardinal k

is regular if for every ß < k and every well-ordered set [ X„; a < ß] of cardi-

nals with each X„ < K,^a<ß\a < k. In much that follows finite cardinals

will present anomalous cases; therefore, we shall use the notation k = *'

(modulo N0) to mean k + X0 = *' + X0.

A relational system, A = (|A|,Pf),e/ is a set |A| together with an

indexed set jPf },G/ of finitary relations on |A|. Then |A| is the universe

of A,k(A) = x(|A|), the power of A,Rf the ¿th relation of A, and / the

index set of A. If iGw; and each Rf is a r(i)-ary relation, then t is the

similarity type of A. Suppose A and B are systems of similarity type t.

Then a map /: | A | —>|B| is a monomorphism   if / is one-one, and, for each

( ) As defined, for example, in [ 7, pp. 126-134].
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iEl and ax,---,aAi)E A,Rfax,---,aj(t) if and only if R? f(ax) ,■■■, f(a,{i)).

If a monomorphism maps A onto B it is an isomorphism and A is isomor-

phic to B(A ^ B). If |A| C|B| and the identity map is a monomorphism

of A into B then A is a subsystem of B(A CJ3). Corresponding to each

X Q | A |, there is a unique subsystem of A with universe X, denoted

byA|X.
In certain auxiliary constructions it is convenient to consider generalized

relation systems which have in addition to finitary relations, a set of dis-

tinguished elements and a set of finitary operations. The preceding concepts

may be extended to generalized relation systems in an obvious fashion.

In particular, a subsystem will always contain all the distinguished ele-

ments and be closed under all the operations.

Corresponding to each similarity type r is a first order (with identity)

language, LT. The symbols of LT are the usual logical connectives: ~,

V, A,—*,*-*] quantifiers: 3, V; an equality sign: = ; a denumerable set of

variables: v0, vx, • ••; and a t (i)-ary relation symbol, 7Í¿, for each i £ 7.

(Corresponding to generalized relation systems we have generalized lan-

guages which have, in addition to the preceding symbols, individual con-

stants and operation symbols.) The language, LT is countable if it has only

a countable number of symbols. The reader is assumed familiar with the

notion of term and formula in such a language. An open formula is a formula

containing no quantifiers. A sentence is a formula with no free variables.

A universal sentence is a sentence in prenex form containing no existential

quantifiers. If 0 is a formula of LT with no free variables other than v0,

•••,u„_i, A is a system of type r, and o0, • - -,an_xE A; then |-a lAteo, •••,a„_i)

means that a0, ■ ■■,an_x satisfies 0 in A (in the usual sense) when vm denotes

am. If t(vx, •••,(;„) is a term of L, and V Aao = t(ax, •■■,an), then we say a0

is the value of the term t when vm denotes am(m S n) and write a0 =

tA(ax, ■■-,an). A consistent set, 2, of sentences of L is a theory of Lr. A

system, A (of similarity type r), is a model of 2 if for every oE 2, \-a°- If

0 is a sentence of LT, f-z0 means that for every model A of 2, 1-^0. The

theory 2 is complete if for every sentence 0 of L, either hzf or |-i ~ 0. If

2 is a theory having an infinite model and k is an infinite cardinal then 2

is categorical in power k («-categorical) if all models of 2 of power k are

isomorphic. By a result of Vaught [16] and Los [9], if 2 is «-categorical

and has no finite models then 2 is complete.

If A is a system of type r and XC|A| we may form a new system

(A,a)aGX by taking each element of X as a distinguished element. We

denote by L(A) the language corresponding to the similarity type of

(A,a)a&Al. (The symbols of L(A) are the symbols of L together with a new

individual constant a for each aEA(4).) The diagram of A,3>(A), is the

O To avoid all ambiguities one should write a rather than a; however, in our uses the A

will always be clear from context.
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set of all open sentences (i.e., formulas without variables) of L(A) which

are valid in iA,a)ae\Al. If A and B are systems of type r then A is elementary

equivalent to B if A and B are models of the same complete theory of L,

iA = B). If X Ç | A | and / is a mapping of X into | B | then / is an elementary

monomorphism ( (A, x) xGX = (B, /(x) ) xex) if for every x0, • • •, x„ E X and

every formula, i, of L>, ht#fc& •••,£*) implies h^(/(x0), • • -JixJ).

Suppose A = (A, R?)i<=i is a relation system of type t. For each formula 4>

of LT, if rei is the smallest number such that the free variables of ^ are among

Vo, • • -.iV-i, then we denote by ^4 the rei-ary relation on |A| such that

\j/Aa0, •■•,am_1 if and only if l-A^(a0, • • -,am-X).  Then define

A * = (A, 4>A) +e       formulas of L r.

Let t* be similarity type of A*. If 2 is a theory in Lr define 2* as those

sentences \p of Lp. such that (- A.\p for every model A of 2. The next lemma

follows easily from these definitions.

Lemma 1.1. (a) A' is a model of 2* if and only if there is a model A of 2

suchthat A* = A'.

(b) A s B if and only if A*^B*.

(c) // A and B are models of 2, X ç | A \, and f a map of X into B, then

iA,x)xeX = iB,fix))xex if and only if the map f:A*\X—>B* is a monomor-

phism.

id) 2 is K-categorical if and only if 2* is K-categorical.

(e) If I, is a theory in L, and ty is a formula in L,> having no free variables

other than v0,---,vn_x, then there is a relation symbol R of degree re in LT.

such that rrtivo, ■■■,vn_x) <->B(u0, •• -,ü„_i).

For the case that 2 is a complete theory the following results were

established in [ 10].

Lemma 1.2. Suppose 2 is a complete theory in L,. Denote by .^(2*) fAe

class of subsystems of models of 2*.

(a) 2* is a complete theory in LT..

(b) If \Aa;a<ô} is an increasing chain of members of -^(2*) fAere

U„<iAaG-^/(2*). // eacA Aa is a model of 2* fAere fAe union is a model

o/2*.

(c) B/ Ax,A2E-3/i%*) then there is an A3G-^(2*) and monomorphisms

fx:Ax—>A3 and f2:A2—>A3.

(d) // A0.Aj.A2G-^(2*) and gx:A0^>Ax and g2: A0—> A2 are monomor-

phisms, then there is an A3E^i^*) and monomorphisms fx:Ax-^>A3 and

f2 : A2-> A3 sucA fAaf fxgx = /¡¡fti6)-

O In [5] Jónsson considered classes of relation systems satisfying certain condition which

he numbered I-VI. In order to apply Jónsson's result to an arbitrary complete theory, [ 10]

devised the 2* theory and showed that ^2*) satisfied Jósson's conditions. In Theorem 1.2,

(b), (c) and (d) assert respectively that yr\z*) satisfies Jónsson's conditions V, III, and IV.
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A notion that we shall find convenient is that of a category of maps.

If Sf is a class of mathematical objects(6) then a category which object

class .S^is a class, Sf, of triples called maps (denoted by f:A—>B) where

A,BE Sf, f is a function of |A| into \B\, and such that (i) (identity:

A^A)ESf for each A E Sf and (ii) if (/:A-+77) and (g:B^C)ESf
then (gf: A—>C)E Sf. A is the domain and B the co-domain of /: A —> B(7).

2. Transcendence in rank. We shall be interested in elementary mono-

morphisms among subsystems of a complete theory 2. By 1.1(c) it is there-

fore convenient to consider 2* instead of 2. Throughout the rest of this

paper we shall adopt the following convention: T will always denote a com-

plete theory in a countable language, L, T has an infinite model, and there

is a theory 2 such that T= 2*. We will denote the class of subsystems

of models of Thy J^(T).
If AEJY(T) it follows from 1.1(e) that T(A) = T\J 2)(A) is a com-

plete theory in L(A)(S). We denote by F(A) the set of formulas of L(A)

which have no free variable other than v0. If the formulas of F(A) which

are equivalent in the theory T(A) are identified (i.e., 0 is identified with

0' if h tvdÍVk))*«-*^')^ then F(A) may be considered as a Boolean algebra

with A, V, and ~ as Pi, U, and complementation respectively (10). A maxi-

mally consistent set of formulas in F(A) will be a dual prime ideal (ultra-

filter) in F(A) considered as a Boolean algebra. The set of such dual

prime ideals is the Stone space of F(A) and will be denoted by S(A).

S(A) is a Boolean space with a basis consisting of the sets.

U,= [pES(A);*Ep]       (tEF(A)).

It follows that S(A) has a basis of power = k(A) (modulo N0).

The space S(A) may be thought of as the ways of extending T(A) to a

complete theory in a language having one more individual constant than

L(A) has. Suppose A,BE-3^(T),B~Q. A,bE B, and b is the constant in

the 7/(7?) corresponding to b. We denote by pkyB the unique p E S(B) con-

O A "mathematical object," A, is a set |A| with some associated structure. In every case

in this paper an object is either a relational system or a topological space.

( ) It is more usual to abstract the composition properties of the maps and define a category

as a class of elements with a binary operation defined for some pairs of elements and which

satisfies certain axioms. Since we are interested not in categories, per se, but in certain in-

stances of them, the definition we have given is more convenient.

O We could have chosen to present this entire section "syntactically" by considering,

instead of the class -MT), the class of all complete extensions of T in languages which are

extensions of L by the addition of new individual constants.

O It follows from 1.1(e) that we would get the same Boolean algebra if we assumed that

F(A) contained only open formulas. Notice that for open formulas \-a is equivalent to \-T(Ä),

but for formulas in general the two are not equivalent unless A is a model of T.

( ) The close relationship between the properties of the various Boolean algebras of formulas

of the language L and the model-theoretic properties of T has been observed by several authors.

See especially [13] and [18].
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taining the formula: v0 = b. Let pbB,A = Pb.ßH FÍA). If q £S(A) we say

A realizes q in B if q = pb,B.A- Clearly, every AGB realizes some point of

S(A). By the Completeness Theorem every pESiA) is realized in some

extension of A. Suppose Bx,B2E-^iT),BxB2^ A and AíGB^GBü;

then the map: A U j Ai j —> A U ) b2} which is the identity on A and maps

Ai to A2 is a monomorphism if and only if bx and A2 realize the same point

in S(A). Thus, S(A) is the set of "isomorphism types of elements with

respect to A."

Lemma 2.1. If A E~3iT) then there is a model of T,B,B^>A such that

each p E S(A) is realized in B.

Proof. Let jp„;<* < 7¡ be a well-ordered list of the points of S(A). We

assert there exists an increasing chain j Ba; a < y \ of models of T such that

each Ba^DA and each pß with ß < a is realized in B„. The proof is by

induction on a. Assume the sequence exists for all ß < a. If a is a limit

ordinal let B„ = U ß<aBß and the result follows from 1.2(b). Suppose

a = ß + 1. By the Completeness Theorem there is a model of T,C,C^A

such that pß is realized in C. By 1.2(d) there is a model of T, D, and mono-

morphisms /1 : C—>D and f2: Bß—>D such that fx = f2 on A. If we identify

Bß with f2iB¡¡) then D may be taken as B„. By is the B satisfying the

theorem.

Suppose that A,BE-^iT) and f:A^>B is a monomorphism. Then /

induces a monomorphism /:F(A)—>F(P) defined by: fit) is the formula

obtained by substituting (for each aEA) fia) for each occurrence of a

in rp. In turn, / induces a map /* : S(B) —>S(A) defined by /*(p) = /_1(p).

The map /* is continuous (cf. [14]), indeed f*~liU+) = (7^; the map /*

is onto S i A), for if q E S i A) there is some p G S(B) with p D /(ç). If, in

particular, B~DA and ¿ab :A—>B is the identity map(n) and p G S(B)

then Hdp)=pnF(A).

Let 3iT) = {SiA); A E3iT)\ and ^(P) = {(/* :S(B) ->S(A)); A,B
G--^(T) and f:A—*B a monomorphism). Then ^(T) is a category of

continuous onto maps with object class 3iT). It is "dual" to the cate-

gory of monomorphisms between members of -3(T). Therefore, corre-

sponding to each of 1.2(b), (c) and (d) there is a dual statement which

holds in the category SfiT). It should be especially noted that since a

formula, \p, involves only a finite number of individual constants, for each

U+ in the basis of S(A) there is some finite Bç. A such that Ut is the

inverse image under í%a of a member of the basis of SiB).

The next definition is a generalization of the usual definition of derived

spaces to a definition involving a class of spaces and a category of maps

between them.  Though we shall deal explicitly only with the category

(   ) Henceforth, whenever AQB the identity map of A into B will be denoted by i ab-
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So(T), it will be obvious that Definition 2.2 and many of the following

results and proofs remain valid in many other categories of continuous

onto maps betweem compact spaces.

Definition 2.2. For each ordinal a and each S(A) E Sf(T), subspaces

Sa(A) and Tr"(A) are defined inductively by:

(1) S°(A) = S(A) - l) ß<aTAA)
(2) p E Tr"(A) if (i) p G Sa(A) and (ii) for every map (/* : S(B) -^S(A))

ESf(T),f*-l(p) nSa(B) is a set of isolated points in S"(B).

pES(A) is algebraic if pGTru(A); p is transcendental in rank a if

peTr"(A)(12).

Theorem 2.3. (a) Sa(A) is a closed and hence compact subspace of S(A).

(b)   If  (f*:S(B)^S(A))ESf(T)   then   (i)   f*(Sa(B)) = S°(A), and (ii)
if p ES" (A)  then pGTr"(A)   if and  only  if f*~Ap) f]S'(B) Q Tr"(5).

Proof, (a) The proof is by induction on a. Suppose a = ß + 1. Then

S"(A) = Se(A) - Tr^A). Tr"(A) is a set of isolated points in S^A) and

is therefore open in S"(A). So S"(A) is closed.

Suppose a = ô. Then SS(A) = fl^iS^A) and is closed since it is the

intersection of closed sets.

(b) Notice first that, since Tr"(A) = S°(A) - S°+1(A), (b) (ii) will follow

immediately from (b) (i). We shall use the following topological result.

Proposition. Suppose G is a compact space, 77 a Hausdorff space, f:

G—>H a continuous onto map, and p G 77, a limit point of 77; íAere /_1(p)

contains a limit point of G.

Proof of proposition.   If f~x(p)  contained only   isolated  points  then   G

— f~1(p) would be closed and hence  compact.   Then f(G — f~l(p)) = H

— [p] would be compact and hence closed, so p would not be a limit

point of 77.

The proof of (b)(i) is by induction on a. Assume result for all ß <a.

We first show that f*(S°(B)) ç S°(A); that is, we show for each ß <a that

if qESa(B) then f*(q) = p <£Tr3(A). Since q^Trß(B) there is some

(g*:S(C)->S(B))ESf(T) such that g*~'(q) 0^(0 contains a limit

point, say r. Then (f*g* :S(Q -^S(A)) ESé(T) and rE(f*g*)'(p) so

pGTr^A).
Finally, to prove that f*(Sa(ß)) 3 S"(A) we must show for each p G Sa(A)

that f*~\p) r\S"(B) 9¿ 0. Suppose the contrary for some pES"(A).

Since /* is onto, /*_1(p) is closed and compact and therefore there is a

largest ß (necessarily   < a)  such that f*~l(p) D S"(B) ^ 0.   Then f*~l(p)

( ) The terminology algebraic and transcendental are suggested by the theory of algebraically

closed fields of characteristic 0, see Example I below. Our notion of algebraic is also related to a

generalized notion of algebraic extension considered by Jónsson [6].
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nSßiB)QTrßiB). Since p£TV(A) there is some (g*:S(C)-»S(A))

ESfiT) such that g*~lip) PlSfl(C) contains a limit point of S"(C), say r.

By 1.2(d) there is a DE-^iT) and monomorphisms hx:B—>D and A2:

C—>D such that At/= A^. By the induction assumption, A2* maps SßiD)

onto SS(C). By the proposition above, A2*_1C) contains a limit point of

S"(D) say s. Then Af(«) 6S"(B) f|/*_1(p) but A?(«) G Tr'(B) from 2.2.
This contradicts /* '(p) Pi S"(B) Ç Tr^B)  and the  result  is established.

Corollary 2.4. If p(£ Tr"(A) fAere freer« is a finite FQA such that

ihip)eTr"iF).

Proof. SiA) has a neighborhood U such that S"(A) fï U= {p\. As

remarked earlier, since U is determined by some formula there is some

finite FQA such that S(F) has a neighborhood V with U= íPaÍV). By

2.3 (b)(i), ihip) = ihiUdS'iA)) = VnS°iF). Therefore, ihip) GTra(F).

Theorem 2.5. (a) If p E Tr"(A) fAere is an integer re sucA fAaf for every

if*:SiB)^SiA)) ESfiT) the set f*'ip) C)S"iB) has power ^ re. The

least such integer will be called the degree of pi13)

(b) If p E Tra(A) and if*:SiB) -* SiA)) ESfiT) then degree p =

£, degree q(qef*~l(p) f|Tr-(B)).

Proof, (a) Suppose the opposite for some pGTr°(A). Then there would

be, for each re G co, a Bn E-3iT) and monomorphisms /„ : A^>Bn such that

f*~lip) H S°(B„) has power > re. By iterative applications of 1.2(d) to these

B„'s there is a sequence AQAXQA2--- such that iAn,ip) HS"iAn) has

power greater than re. Let A'=UnG„A„. Then i%Â}(p) O Sa(A') is in-

finite and since it is compact, has a limit point. So p ^ Tr°(A) contradict-

ing the assumption.

(b) For each oGTr°(B) n/*"Hp) there is some CqE^iT) and a

monomorphism gq : B —» Cq such that gq~liq) C\S"iCq) has power degree q.

Similarly there is some CpE-3iT) and a monomorphism gp:A->Cp such

that gp~xip) nS'iCp) has power degree p. By repeated applications of

1.2(d) there is a CE-3ÍT) and a monomorphism g:B^>C such that

g*-1(g)nSa(0 has power degree o (for each qEf*'lip) C\S"(B)) and

if*g*) _1(p) nS°(0 has power degree p.  But

(/***) _1(p) ns«(Q = Ug*-liq)ns°iQ  (?e/*-1(p)ns'(B))

and the result follows.

Lemma 2.6. (a) FAere is an ordinal aT < (2*°)+ which is the least ordinal

( ) It is possible to combine the rank and degree into a single new rank by varying the

Definition 2.2 slightly. To do so replace in 2.2(2) the words "set of isolated points" by "a
single point."
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such that for all A E-^(T) and all ß > ar, S"T(A) = S"(A).

(b) If S"T(A) = 0 for some A E^(T), then aT is not a limit ordinal and

for every B E-*(T), S"T(B) = 0 and SAB) = 0 for any ß < aT.

Proof, (a) From 2.4 it follows that Tr°(A) is empty for every AE*(T)

if it is empty for every finite AE^(T). There are at most 2Nu isomor-

phism types of finite systems E-^(T) and for each such finite system

k(S(A)) ^ 2Ko.

(b) Suppose A,BE^(T) and S\A) = 0 Then by 1.2(c) and 2.3(b)
SAB) = 0. That the least ordinal at which this occurs cannot be a limit

ordinal follows from 2.3(a) and the compactness of S(A).

We say T is totally transcendental if S"T(A) = 0 for some (and hence

every) AE^(T).

Theorem 2.7. If T is totally transcendental then k(S(A)) = k(A)

(modulo N0) for every AE-^(T).

Proof. For every p G Tr°(A) we may choose a member U(p) of the basis

of S(A) such that U(p) C)Sa(A) = [p]. Clearly if p ^p' then U(p)

9¿ U(p'). Since T is totally transcendental, every pG«S(A) is transcen-

dental in some rank. Thus the correspondence of p to U(p) is a one-one

correspondence between S(A) and a subset of the basis of S(A). So k(S(A))

^ k(A) + N0. On the other hand, the formula: v0 =a, determines for each

aE A a unique element of S(A); so k(S(A)) ^ k(A).

The next theorem is an analogue of the Cantor-Bendixson theorem and

the proof is similar to proofs of that theorem.

Theorem 2.8. T is totally transcendental if and only if S(A) is countable

for every countable A E JY(T).

Proof. If T is totally transcendental then S(A) is countable for countable

A by Theorem 2.7.

Conversely, suppose T is not totally transcendental. Then for every A

E^(T),SaT(A) ¿¿0. There is some AE^(T) such that S"T(A) has

more than one point; for otherwise, every p G S"T(A) would be transcen-

dental in rank aT, and by definition, there are no points transcendental in

rank aT. Thus, there is some AXE-^(T) such that S°r(Ai) may be divided

into two disjoint nonempty components (closed-open sets), say U0 and C7i.

As remarked earlier, U0 and Ux are determined by finite subsets of Ax.

Hence, without loss of generality we take Ax to be finite. There must be

some BE-^(T),B^AX, such that i*~B\UQ) DS"T(B) has more than one

point; for otherwise, each pEU0 would be transcendental in rank aT

Similarly for Ux. By 1.2(d) we may find an A2Z)AX such that itXA2(Uo)

nS'^Ai) and il~A\ (Ux) nS"T(A2) both have more than one point. Thus

we may decompose S"T(A2) into four disjoint nonempty components, fJoo,
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l/oi, l/io, £/u such that ij&(i/;) nS^Uj) = l/joUt/í 0 = 0,1). As be-
fore we may take A2 to be finite. We proceed inductively to find an in-

creasing chain of systems {A„;re <co] such that each AnE-3^iT), is finite,

each S"TiAn) may be decomposed into 2" disjoint nonempty components

Uj0...jn_xijk = 0,l) and

itiJuJ0..,n_1)nsrriAn+l) = uJ0..,n_l0uujQ..,n_lX.

LetA = UnA„. For each f G 2W, Let Vt= H.iJÇiiU'i». -10.-1)) H SMA).
Then V, 5¿ 0 since it is the intersection of closed nonempty sets. Obviously,

ii p* t2 implies Vh n Vt2 = 0. Thus S"T(A) has power 2*° though A is

countable.

We shall conclude this section with three examples. In each case we

shall describe the theory 2 such that T = 2*. We shall then describe SiA)

for each AE-3^iT). To do this it is convenient to know when a con-

sistent set of formulas of FiA) is contained in a unique pESiA). We

give the following sufficient condition:

A consistent set of formulas, Q Q FiA), is contained in a unique p E SiA)

if whenever B is a model of T,BQ\A, and b,b' EB satisfy every formula

of Q, then there is an automorphism of B carrying b to b' and leaving each

element of A fixedi14).

For suppose p and p' were points of SiA) which contain Q. By 2.1

there is a model of T,B,BQ\A, and with A,b'EB realizing p and p'

respectively. Our condition then asserts that there is an automorphism of

B having A fixed and carrying A to A'. Therefore A and A' realize the same

point of SiA), that is p = p'.

Example I. Let 2 be the theory of algebraically closed fields of charac-

teristic 0(15). As mentioned earlier this theory is categorical in very un-

countable power but not in power N0. Suppose AE-3ÍT), let A(A) be

the field generated by A. Suppose Qiv0) is a polynomial with coefficients

in A(A) and irreducible over A(A). By the condition above the formula:

Qiv0) = 0 determines a unique point of SiA). Since this point is determined

by a single formula it is an isolated point of SiA). Let P be the set of all

formulas: QivQ) ¿¿0 where Qiv0) is a polynomial with coefficients in A(A).

Then all the formulas of P are satisfied precisely by those elements trans-

cendental (in the usual field-theoretical sense) over A(A). Therefore, by

our condition and the Steinitz theorems P is included in a unique p G SiA).

Obviously, the above are all the points of SiA). Since SiA) is infinite

and compact it must have a limit point which can only be the point deter-

( ) If we weaken this condition to assert that there is a model of T,C^B, such that C has an

automorphism carrying 0 to b' and leaving each element of A fixed, then this condition is also

necessary; cf. [10].

( ) For a more detailed discussion of this case see Abraham Robinson, Complete theories,

North-Holland, Amsterdam, 1956.
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mined by P. Thus S (A) consists of: (1) isolated points corresponding to

the distinct elements of A(A) and to the algebraic extensions of A(A),

and (2) a single limit point corresponding to the transcendental extensions

of A(A). If B3 A then any element algebraic over A(A) is a fortiori alge-

braic over A(77). So if pES(A) is an isolated point, then iAE1(p) is a set

of isolated points; hence pGTr°(A). For each AE-^CH^AA) is then

a single point so SX(A) = Tr*(A). Thus T is totally transcendental and

aT = 2.

Example II. Suppose there are two relation symbols: R0, a one-ary

relation symbol, and Rx, an (re + l)-ary relation symbol and let the formulas

of 2 assert that in any model of 2 A = (|A\,Rt,R\ Y-

(1) |A| is infinite, and

(2) the set of pairs (a0, (ax, • • -,a„)) such that Rfa0,ax, ■ ■ -,an is a one-one

correspondence between \A\ — Ro and the re-tuples of distinct elements

of fío4.

This theory is obviously categorical in every infinite power.

For each re-tuple of distinct elements of Ro,ax, ■■■,an, let (ax, •■-,an)

denote the unique a0 such that Rf,a0,ax, ■ ■-,an. Suppose BE-^(T).

By 2.1 there is a model of T, A 3 B, such that every p G S(B) is realized

in A. Denote by 73 the closure of B in A; more precisely, 73 is the smallest

subsystem such that BQÊQA, and (ax, ■ ■ -,an) G 73 if and only if ax,

• • •, an E 73. It is easy to see that every a E B is characterized by a unique

formula of F(B), and so each a G 73 realizes an isolated point of S(B).

Notice that every one-one map of Ro — 73 onto itself induces an auto-

morphism of A which leaves 73 fixed. So every element of fío — B realizes

the same point of S(B). Similarly, two elements (ax, ■ ■ -,an) and (a'x, ■•■,a'n)

realizes the same point of S(B) if and only if for all l^i^¡n,a¡ — a\ when-

ever a¿ or a-E 73. Call a point p G S(B) of type m if it is realized by an

element (ax, ■■ -,an) and exactly m of the a¡'s G 73;

Suppose CE-^CT), A^C^B, (ax,---,an)EA,m of the a/sG-B,

and m + 1 of the a¿'sGC\ Then (ax,---,an) realizes a point of type m

in S(B) and of type m + 1 in S(C). Thus, for every BE-^(T) we can

find aC^fi such that for every p GS(B) of type m < re,ißc1(p) contains

an infinite set of points of type m + 1.

From the above considerations it is easy to show that: (1) the points of

S(B) realized by elements of 73 G Tr°(ß), (2) the point of S(B) realized by

the elements of fío — 73 is transcendental in rank 1, and (3) the points of

S(B) of type m are transcendental in rank re — m. Therefore, T is totally

transcendental and aT= re + 1.

Example III. Consider the Cantor set, i.e., 2" with the product topology.

Let Y be a closed nonempty subset of 2". There will be a denumerable set

Rn (n E oi)  of singulary relation symbols  and  the  theory  2  will  assert
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that for any model of 2, A, and any two finite sets K0, Kx Q w, C\ „eKlRA

H 11 nGKo ( I -A | — RA) is empty or infinite depending on whether

jfG Y; A tin) = 1A A f(re) = o)

is empty or nonempty. Thus the points of Y correspond to the isomor-

phism types of single element subsystems of models of 2. If A E-^iT),

then the points of SiA) realized by elements of A are isolated, indeed

algebraic points; while the points realized by elements not in A form a

space homeomorphic to Y. None of the latter points can be algebraic

since each one could be realized by an infinite set of elements in some

BQ\A. So S\A) is homeomorphic to Y, and, if BQ\A,í%b maps S1iB)

homeomorphically onto S^A). A point pES1iA) will be in S1+"(A) if

and only if the corresponding point of Y is in Y(o), the ath derived set of

Y. The theory is totally transcendental if and only if Y has a vanishing

perfect kernel, that is, if Y is countable. If aY is the least ordinal such that

y(„)= yfa+l)   then   ar=1 + ay._

3. Results depending on Ramsey's theorem. In this section we have

gathered together some results depending on the following theorem of

Ramsey [12].

Theorem 3.1 (Ramsey). Suppose Y is an infinite set and Y(n) fAe set of

subsets of Y having exactly re elements. If Yw = CXU • • • U Cm is a partition

of Y(n> info a finite number of mutually disjoint sets, then there is a j ¿,m and

an infinite set YXQY such that Yj"> Q Cr

Much of this section is related to results of Ehrenfeucht and Mostowski

[3] and Ehrenfeucht [l], [2]. In particular, Theorems 3.2, 3.4 and 3.5

below are only slight variants of the results of [3].

Theorem 3.2. Suppose 2 is a igeneralized) theory in a language L, 2 Aas

are infinite model, and iX, <) is an arbitary linearly ordered set. Then there

is a model of 2, A, sucA fAaf |A| 3X and whenever reGco,x0< ••• < x„_!

and x'q < • ■ ■ < x£_! are contained in X and \p is a formula of L with no free

variables   other   than    v0, • • •, vn-U   then    \-A^ixo, ■ ■■• xn-X) «-* tix'o, ■ ■ ■, x'n-X).

Proof. Suppose there is added to L a new constant, x, for each xEX,

and there is added to 2 the sentence

(I) "xl^x?

for each pair xx, x2 of distinct elements of X. Suppose further that whenever

n E co, x0 < • • • < xn_! and %¿ < • • • < x£_¡ and \p is a formula of L with free

variables among v0, •■■,vn-X, there is added to 2 the formula

(ID 'V(^"-,^)^(xo,---,<~i).''
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The result is a set of sentences, say 2, extending 2_¡_

To prove the theorem it is sufficient to prove 2 consistent. Suppose 2

is inconsistent. Then there is an inconsistent 2! ç 2 such that 2X = 1 to-

gether with a finite number of sentences of type (I) and (II). Let the

sentences of type (II) appearing in 2i be:

«Vi[ x] i «- 0i[ x] Í,", ■ • • ,"0m [ Ï] m <- 0m[ *] 'm"

where the notation  [3c] is an abbreviation for a sequence of constants

Xq, ' ' ", Xn-X. _

Consider first the case where each [x\¡ has the same number of elements,

say re. Let A be an infinite model of 2 and " < *" a linear ordering of

|A| (in general, having nothing to do with any of the original relations

of A). If [a] and [a]' are re-tuples of |A| which are properly ordered

by < * then we say

[a] «[a]'    if   \-A A0;[a]~0,[a]'.

This equivalence —♦ partitions | ̂ 4 |(™* into (at most) 2m equivalence classes.

Applying Ramsey's theorem, we may find some infinite subset Y C | A \

such that Y(n) lies entirely within one equivalence class. That is, if [a]

and [a]' are properly ordered re-tuples of Y then [a] «[a]'. Since 2

contains only a finite number of sentences of type (I) and (II), it contains

of the new constants added to L, only those corresponding to some finite

subset of X, say Xx. We may now pick in Y a finite subset, Yx, which is

order-isomorphic to Xx. Then (A,a)a€Yx is a model of 2i, contradicting

its inconsistency.

Consider the general case where all the [x]/s do not necessarily have

the same number of elements. Notice that it is sufficient to prove the

theorem for X, a linearly ordered set without maximal elements, since any

linearly ordered set can be imbedded in such a one. Now, let TV be the

maximum number of elements in any [x]¡ (j^m). Then a properly

ordered [x] = (x0, ■ ■ -,x„_i) may be imbedded in a properly ordered set

(xq, • •-,*„-i,xn, ■ ■ .,Xív-i). The general result then follows from the first

considered case.

The next theorem expresses the well-known fact that one can eliminate

existential quantifiers by the use of operation symbols. A proof may be

found in the first chapter of [4].

Theorem 3.3. Suppose 2 is a theory in a countable language, L; then

there is a countable generalized language, L* 3 7, and a theory 2* of L* such

that:

(i) every a E 2* is a universal sentence, and

(ii) for every sentence, 0 of L,\-/ 0 if and only if \--¡.^.
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Thus, if A is a model of 2*, then A 1 L (A restricted to the relations

corresponding to symbols of L) is a model of 2.

Suppose A is a model of 2# and X Q\A|. The set of elements aEA

such that there is a term, t(vx,---,vn) in L* and xx, ■•-,xnEX with a =

t^ixy • • -,x„) is by 3.3(i) the universe of a model of 2#, denoted by MiX,A).

Theorem 3.4. If 2 is a theory of L, has an infinite model, and (X, <)

is are arbitrary linearly ordered set; then there is a model of 2#, A, with X Q \ A \

such that if: (i) f0(i>0, •••,%),•••,tm(v0, ■■-,vnJ are terms in L*, (ii) xjk

and x']k ij ¿¡ m, A ̂  n¡) are elements of X and the mapping of xjk to x']k is an

order isomorphism between them, and (hi) \p is a formula of L* with free

variables among v0, • • ■, vm; then

\~At(to(Xf¡07 • ' • > *0no) ) * - " j hn(XmO, •••> Xmnm))

<-> ̂(fy(xóo, ■ --.^Óno)» - - -Mix'mO, " •, X'mnj) ■

Proof. Apply Theorem 3.2 to 2*.

Theorem 3.5. Suppose 2 is a theory with an infinite model and (X, <)

is an arbitrary linearly ordered set. Then there is a model of 2, B,|B| 3X,

sucA fAaf any order endomorphism (automorphism) of X may be extended

to an endomorphism (automorphism) of B.

Proof. Extend 2 to 2# and apply Theorem 3.4 to get a model of 2* con-

taining X.   Take  B = M(X,A) ] L.   If f:X^X  is  an  order  endomor-

phism, define/: M(X,A)-+M(X,A) by /V(*o, • ••>*»)) = ^ifi x0), ■ ■ ■, fixn)).
By 3.4 / is well defined and is a monomorphism; it is obviously onto if

/ is onto.

The preceding two theorems may be strengthened by extending 2 to

2 *# rather than 2#. Using 1.1(c) this will then prove:

Theorem 3.6. (a) For formulas, \p, of L, Theorem 3.4 remains valid if

in the last line \-A is replaced by \-m(x,a)-

(b) Under the hypothesis of Theorem 3.5 fAere is a model of 2,B,|B| Z)X,

sucA fAaf any order endomorphism iautomorphism) of X may be extended to

an elementary endomorphism (automorphism) of B.

Suppose A is a model of 2,XC|A|, and a,a'EA. We say a is ele-

mentarily equivalent over X with respect of A to a' if the map :X\j{a]

—>X(J \a' ¡ which is the identity on X and maps a to a' is an elementary

monomorphism.

Theorem 3.7. Suppose 2 is a theory in a countable language, L, and 2

has an infinite model. Then for every infinite k there is a model of 2,A,k(A)

= k, such that for every countable X Q | A \, A contains only a countable

number of elementary equivalence classes over X.
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Proof(1B). Let (X„ <) be a linearly ordered set having the order type of

initial ordinal k. Apply Theorem 3.4 to 2*#to get B and let A = M(X„ B) 1 L.

Suppose Y is a countable subset of | A\. Then YçA7(X0, A) for some

countable subset X0QX,. For each aGA there is some term t(v0,---,vn)

in L** and elements x0, •■•,i„GX, such that a = tA(x0, ■■■,xn). By 3.6(a)

the elementary equivalence class of a over Y is determined by t(v0, ••■,vn)

and the ordering relations between x0,---,xn and X0. L** is a countable

language and has only a countable number of distinct terms. X0 is a count-

able well-ordered set and so there are only a countable number of ways

of interpolating a finite set into it. Therefore A has only a countable

number of equivalence classes over Y.

Theorem 3.8. If T is categorical in some power * > X0 then T is totally

transcendental.

Proof(17). Suppose T were not totally transcendental. Then by 2.8 there

would be a countable CE-^(T) with k(S(Q) > K0. So we could certainly

have a model of T, B, such that k(B) = k, B 3 C, and an uncountable num-

ber of points of S(Q are realized in B. This B is clearly not isomorphic

to the model of power k proven to exist in Theorem 3.7.

A theory T may be categorical in power N0 and not be totally transcen-

dental. For example, consider the theory of dense linearly ordered sets

without end points. Let A be a linearly ordered set having the order type

of the rationals. It can be shown that distinct Dedekind cuts in A corre-

spond to distinct points in S(A) so k(S(A)) = 2k°. By 2.8 the theory can-

not be totally transcendental. Theorem 3.9, below, is proved by a gener-

alization of this argument.

Suppose A is a model of T,R a relation of degree re of A,XQ\A\, and

Sn the permutation group on (0, • • ■, re — 1). Following Ehrenfeucht [ 1 ]

we define fí to be connected over X if for every sequence of re distinct ele-

ments x0, -...Xn-i of X there is an sESn such that \-AR(xs(o), ■ ■ ■, x^-d) .

R is anti-symmetric over X if for every sequence of re distinct elements

Xo, •••,xn-X   of X  there  is  an  s ES*  such   that  \-A ~ R(xsioj,-• •, x^^y).

Theorem 3.9. If T is totally transcendental and A a model of T, then no

relation of A is connected and anti-symmetric over any infinite Xc|A|(18).

( 1 For the case X=0, this result was obtained by Ehrenfeucht [2]. Indeed, he showed that

if equivalence of two elements of A is defined to mean that there is an automorphism of A

mapping one to the other, there is still a model of 2 of power * which has only a countable num-

ber of equivalence classes. The proof is similar to that of 3.7 but X must be taken as a somewhat

more complicated linear ordering.

( ) The crux of this proof, that S(Q is countable for every countable CEi-^CT), was estab-

lished by Vaught [10] for the case where T is categorical in power «=/cN).

(18) For the case where T is categorical in power 2", this result was obtained by Ehrenfeucht

[l]. Dana Scott (unpublished), by a different and simpler proof, extended the result to theories

categorical in power «"o.
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Proof. Suppose some relation of degree re of A, say P, were connected

and anti-symmetric over an infinite set X Ç | A \. Impose an arbitrary

linear order on X and say that two properly ordered re-tuples of X are

equivalent, (x0, • • •, x„_i) « (xó, • • •, x'n_x) if

h/4 A  P(XS(0), • • •, Xjót-y) <-> P(Xs(0), • • •, Xs(n_!) .
»es«

Then "«•" partitions the properly ordered re-tuples of X into a finite number

of equivalence classes. By Ramsey's theorem we may find an infinite Y ç X

such that every properly ordered ra-tuple of Y is in the same equivalence

class. That is, Sn may be decomposed into two sets S„ and Sñ such that

for any y0 < • • • < y*-i G Y

(I) \-a A P(vs(0), • • •,ys(n-i)) A A ~ P(ys(o), • • •, ys(n_i>).
«es„ sesn

R is connected and anti-symmetric on Y so neither S¿ nor Sn is empty.

Hence there exists an sxES¿, s2ESn, and a cycle (reí — l,m) such that

sx = s2 • im — l,rei).

Using the Completeness Theorem one easily shows that the existence of

Y implies that for any arbitrary order type, y, there is a model of T, B,

containing an ordered set, Y, of type y and such that any y0 < • • ■ < yn-i

G Y satisfies (I). In particular, let Y have the order type of the real num-

bers and let Z Q Y be a countable dense subset. We assert that distinct

elements in Y realize distinct points in S(Z). For suppose y<y'EY.

Pick re — 1 elements of Z,z0, ■ ••,zm-i,zm+i, ■■■,zn_l such that

z0 < • • ■ < 2m_2 < y < zm_! < y' < zm+x < ■■■ < 2„_!.

Then iz0, ■■•,zm_x,y',zm+x, •■■,zn_x) will, after permutation by sx, satisfy

P. But (20, •••,2m_i,y,2m+i, •••,2„_1) will, after permutation by sx, not

satisfy P, since its proper order will now be permuted by s2. So k(S(Z))

= 2*° and T cannot be totally transcendental.

4. Models of totally transcendental theories. A neat characterization of

models of a theory T is given by the following lemma.

Lemma 4.1. A G -3iT) is a model of T if and only if the points of SiA)

which are realized in A form a dense subset of SiA).

Proof. By 2.1 there is a B 3 A such that B is a model of T which realizes

every point in SiA). By 1.1(c) a necessary condition for A to be a model

of T is that i ab be an elementary monomorphism. Trivially, this is also a

sufficient condition. By a theorem of Tarski(19) a necessary and sufficient

condition that iAB be an elementary monomorphism is that every formula

of FiA) which is satisfied by some A G B be also satisfied by some aEA.

(19) Theorem 1.10 of [15].
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But every 0 G F(A) and consistent with T(A) (i.e., ^ U in the Boolean

algebra F(A)) is satisfied in B. Hence, a necessary and sufficient condition

that A be a model of T is that every 0 ^ 0 in F(A) be satisfied in A, which

is equivalent to the condition that some point in each of the sets Ut

= [pES(A);iEp] is realized in A. But the sets U+(iEF(A)) form

a basis for S(A), and the lemma is proved.

Lemma 4.2. If T is totally transcendental then for every A E -^(T) the

isolated points are dense in S(A); indeed if U is an open set of S(A) and

p EU is a point of the minimal transcendental rank of the points of U, then

p is an isolated point in S(A).

Proof. Suppose p G U is of the minimal transcendental rank, say a, of

the points of U. By definition there is a neighborhood  V of p such that

vnsa(A) = [p]. Butuns°(A) = u. so vns°(A)nu= vnu=[P],
and p is isolated.

Suppose A,BE -^\T),B 3 A, and B is a model of T. B is prime over A

if for every model of T,B', and monomorphism f:A—>B', there is a

monomorphism g : B —> 7T with f = g on A.

Theorem 4.3. Suppose T is such that for every AE^(T) the isolated

points are dense in S(A), then every A E-3^(T) has a model of T prime

overitO.

Proof. Let AE-^(T) and * = k(A) + N0. Then S (A) has at most x

isolated points. Let j pa; a < k ] be a listing (possibly with repetitions) of

the isolated points of S(A). Choose some increasing chain jAa;a < k] of

members of ^(T) such that: (1) A0 = A, (2) A¡ = U^ Ab, (3) Aa+i = Aa

if pa is realized in A„, and (4) if pa is not realized in Aa, then Aa+X — Aa

has a single element, a„, which realizes some isolated point q in S(Aa)

such that q 3 p„.

If C is a model of T and f0 : A —> C is a monomorphism then there is a

sequence of monomorphisms j (/„: A„—> C);a < k] such that for a'> a,

fa- extends /„. This is proved by induction on a. The induction is trivial

in cases (1), (2), and (3) above. In case (4) suppose /„ : Aa —> C is a monomor-

phism and aaEAa+x — Aa satisfies the isolated point q in S(Aa). Then

f*~x(q) is an open set in S(C) and by hypothesis contains an isolated

point, say q'. By 4.1 there is a c G C realizing q'. Let fa+Aaa) =c and

the monomorphism is extended.

-A» = U„<, Aa then realizes every isolated point in S(A) and every

monomorphism of A into a model of T can be extended to a monomor-

phism of A,. We may now list the isolated points of S(AK) and repeat the

above process to get an A,.2 realizing every isolated point in S (A.)   and

O For the case where A is countable the existence of a prime model over A was proved under

a somewhat weaker hypothesis in [18].
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such that every monomorphism of A into a model of T may be extended

to a monomorphism of A„.2. Iterating co times we obtain

A,.w = \J AK.n

such that any monomorphism of A into a model of T can be extended

to a monomorphism of A,.u, and A,.„ realizes every isolated point in SiAK.n)

for each re G co. But the topology on SiA,. J is that induced by the S(A,.„)'s;

for each formula \pE FiAt.J must be already in some FiAt.n), hence the

neighborhood Ut of S(A,.J is the inverse image of the corresponding

neighborhood in S(A,.„). So, A„.„ realizes every isolated point in S(A,.J

and is by 4.1 a model of T.

For the next theorem we shall need some results about increasing se-

quences of systems and the corresponding sequence of Boolean spaces. We

summarize these in the next lemma.

Lemma 4.4. Suppose T is totally transcendental, (a) If {Aa;a <y\ is an

increasing sequence of members of JYiT), A = \Ja<y Aa, and {pa;a <y\

a sequence such that pa E SiAJ and iAaAßipß) = p„ (a ^ ß <y) then:

(i) fAere is an a0 < y such that for all a, if a0 :£ a <y then transcendental

rank and degree of pa equal the transcendental rank and degree of paQ, and

(ii) there is a unique p E SiA) such that

peHiVip*)-

This point will have transcendental rank and degree equal to that of the p^

defined in (i).

(b) // ¡Aa;a <y} is an increasing sequence of members of ' J^iT) and p is

an isolated point in SiA0), then there is a sequence \pa; a < y [ of points such

that pa E SiAJ ia<y),p0 = p, iAaAßipß) = pa (a < ß < y) and each pa is

isolated in SiAJ.

Proof, (a) If y = ß + 1 then A = Aß and the result is trivial. Suppose

7 = a limit ordinal 5. By 2.3, ß ^ a implies transcendental rank pß £5 trans-

cendental rank pa. Since there can be no infinite decreasing sequence of

ordinal numbers, the transcendental rank must remain constant from some

a on. By a similar argument (now using 2.5), the transcendental rank

and degree must remain constant from some a0 on. Let paQ have trans-

cendental rank v and degree re. By 2.3, iL^i^HPa) can have no point

of rank > v, and ¿^(pj D S'iA) is not empty; but by 2.5(b) iX^iPa,)

nS'(AJ = jp„} (for a ^ a0)  and so

H i*AjiPa)ns\A) = i*A;oAÍPa<) ns'iA).
a<ô

We assert that ÍL^ij^HpJ  can contain only one point.   For suppose
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it contained distinct points Pi and p2. Then there would be a formula

0GF(A) such that 0GPi and "0GP2- There is some a<5 such that

0GF(AJ and so \l>Epa and 0G pa which is impossible. (Topologically,

this argument amounts to the statement that S(A) is a Hausdorff space

with its topology determined by that of the S(A„)'s.) By 2.5 this unique

p G S(A) must have degree equal to the degree of paQ and (a) is proved.

(b) There is no loss of generality in assuming that for limit ordinals

5, As= U a<sAa; for whenever it is not so for some 5 we may interpolate

U„<¡ Aa into the sequence. Consider a sequence [pa',a < y] such that for

each a,Pa E S(Aa) and p„ is a point of minimal transcendental rank in

l'fl<0iJL11(Pii). We show inductively that such a sequence exists and

that it satisfies (b). Assume a sequence defined and satisfying (b) for

ß < a. If a — ß -\- 1, then by 4.2 any point of minimal transcendental rank

in i%~Aa(Pß) is isolated.

If a = b then by (a) and its proof

ß<i

and is a single point, say p¡. The point p^ is isolated in S(Aao) so iA Ai(Pao)

is an open set in S(A¿). Thus to prove p6 isolated in S(A¡) it will suffice

to show that Ía^aÍPoq) C\S'(Ad = iî^SPj- Suppose this equality did

not hold. Then there would be a p' E iX~À4(P«o) with transcendental

rank of p' < v. By the argument used in the proof of (a) there would be a

ß,a0 ^ ß < 5, such that íX^aAp') ^ Ía^APs) = Pß- Since pß has transcendental

rank and degree the same as pao and iAßAAp') E i£T^(p«o), by 2.5 trans-

cendental rank of iAßAAp') < transcendental rank (p„0) = transcendental

rank (pg). This contradicts the assumption that pe is of minimal rank in

\\ß'<ßiAß-Aa(Pß')

Theorem 4.5. Suppose T is totally transcendental and [Aa;a <y] is an

increasing chain of members of3V(T) such that for each limit ordinal ô <y,

Aä=U0<äAa. TAere there is an increasing chain [Ba;a<y] of models

of T such that Ba is prime over Aa (for each a < y) and for each limit ordinal

*<7,B,-\Jm<tBjh.

Proof. Let A = U0<TA0. We shall show inductively that there exists

an increasing sequence of systems j Ca; a < y ] and of models of T, [ Ba; a < y ]

suchthat (i) Ca = A U Ba, (ii) Ba 2 K, (üi) 73ó = UßJ,Bß (for limit ordinals

Ô <y), and (iv) if D is a model of T, a = ß + 1, «' ^ a and /: Aa-\J Bß-^ D

is a monomorphism then there is a monomorphism g: Aa-(J Ba—> D with

g 2 /.  The sequence  j Ba; a < y \ will then satisfy the theorem.

( ) It may be shown by example that the assumption that T is totally transcendental is

stronger than the assumption that the isolated points are dense in S(A) for every A^yf^T).

Theorem 4.3 was proved under the weaker assumption but we have been unable to do the same

for Theorem 4.5.
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Assume the sequence {Cß;ß<a\ satisfying (i)-(iv). If a = 5 let C¡

= U $<tC, and B6 = U ß<6Bß.
If a = ß -\- 1 we proceed as in the proof of Theorem 4.3. Let ¡p„; v < k j

be a list of the isolated points of S(Aa (J BJ. By 4.4 we may find a se-

quence of points ¡Po,,; « Ú v < y] such that Po,« = Po,Po,, is an isolated

point of S(A,\JBJ and v'> v implies p0,,'3Po,,- Let q0 = U,<7p0,r

If there is an element of Cß realizing q0 denote it by a0; otherwise add an

element satisfying g0 to Cß and denote it by a0. By the method of the proof

of 4.3 we may iterate this process k • co times and find a sequence j a,; v < k • co}

such that Aa(J BßU \a„;v < k • coj is a model of T, and for each a'

(a ;£ a < y) a, realizes an isolated point in SiAa' (J Bß\J {a,; v' < i>\).

This latter condition implies (by the same argument used in the proof

of 4.3) that (iv) holds for a.

Let   CQ= Cß\j{ar;v < k -coj   and  Ba = Bß\J [a/,v < x -co).

Using condition (iv), above, a simple induction shows that any monomor-

phism of Aa into a model of T may be extended to a monomorphism of

Ba into the same model, i.e., B„ is prime over Aa. Theorem 4.5 is proved.

Suppose A, B G ~3iT), A QB, andXç|P| -|A|. X is a set of elements

indiscernible over A if every one-one map of

\A\\JX—\A\\JX

which is the identity on | A | is a monomorphism. That is, for any open

formula, \p, of L, any ax, ■ ■ -,amEA, and any two sets of distinct elements

X!,...,xnand x[,---,x'n E X; tiax, ■ ■ -,am, xx,---,xj if and only if

tiax, ■■■,am,x'x,---,x'J.

Theorem 4.6. Suppose T is totally transcendental, A,BE-3(T),AQB,

and k(A) < k(B) = k. Then (i) if k is a regular uncountable cardinal, there

is an Xç|P| — |A| sucA fAaf k(X) = k and X is a set of elements indis-

cernible over A; (ii) if k is uncountable but not regular there is still for each

X < k a set Xç|P| —|A| sucA fAaf k(X) > X and X is a set of elements

indiscernible over A.

Proof. Since for every infinite X,X+ is regular, (ii) will follow immediately

from (i) by choosing some C,AQCQB and k(Q regular.

So assume k regular. Suppose CE-3(T),k(C) <k and ACCÇP. By

2.7 k(S(C)) < k, and from the regularity of k it follows that there is some

P G S(C) which is realized by k distinct elements of B. From the set of all

pairs (C,p) satisfying the above conditions we pick one, say (C0,p0), such

that transcendental rank of p0 is the minimum, say v, and the degree of

Po is the minimum, say ra, among those having rank v.

Suppose C'E~3(T), k(C') < k and CuQC'QB. Then i'^c!(p0) has

power < k and hence must contain some point, p', which is realized by k

elements of B. Since v is the minimal transcendental rank of such points,
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transcendental rank (p') ^ v. But by 2.3 transcendental rank (p') ¿¡ trans-

cendental rank (p0) = v. A similar argument may be made for degree, so

transcendental rank (p0) = transcendental rank (p') and degree (p0)

= degree(p')- By 2.5 there is only one such point in ic~¿(Po)- Thus,

icociPo) has exactly one point realized by k elements and that point has

transcendental rank v and degree re.

We show that inductively that there exists a set of k distinct elements

[xa;a <k]Q\B\ — | C0| suchthat, letting Ca = C0U [xß;ß < a] and pa

ES(Ca) the point realized by xa,pa is the unique point of rank v and

degree re in iq,c^(Po). For if [xß;ß <a] is defined, then by the discussion

of the preceding paragraph there are k elements of B which realize pa and

we pick xa to be one of these. Notice that ß < a implies i*ßca(pa) = Pß

and hence xa realizes p¡¡ for all ß ^ a.

Suppose ßx < ■■■ <ßm and ß'x < • • • < ß'm. Denote by Dm and D'm the sys-

tems having universe |C0| U [xßv • • -,xßm] and |C0| U[xßXi---,xß^] respec-

tively. We assert that the map fm:Dm—>D'm which is the identity on C0

and carries xßi to x^ (i ^ m) is an isomorphism. Then proof is by induction

on m. Assume fm-X: Dm_x—>D'm_x is an isomorphism. Let q be the point

of S(Dm_x) realized by xßm and q' the point of S(D'm_x) realized by xßin.

To prove fm to be an isomorphism it is sufficient to show that fm-Aç') = Q-

Since xßm realizes a point (namely p0) of transcendental rank v and degree

re in S (C0) and a point (namely pßm) of transcendental rank v and degree

re in S(Cßm) and C0QDm^xQCßm, it follows from 2.3 and 2.5 that q is of

transcendental rank ¡> and degree re. As proved above, there is a unique

point of transcendental rank v and degree re in iq^^ipo), and q must be

this point. Similary, q' must be the unique point of rank v and degree re

in ¿Q)£>L-i(Po). Since/m_i is the identity on C0,

/m-ld'oA-l^o))  - ¿Q)Í-l(Po).

Therefore fmAq') = q and fm is an isomorphism.

Finally, we assert that X is indiscernible over A, indeed over C0.

Consider an open formula 0 of L,ax, • ■ -,amE C0, and sequences of dis-

tinct elements (xßl, • • •, xßr) and (xßi, ■ ■ ■, xßr) in X. We must show that

4>fau •••,om,x#1, •••,%) if and only if $(ax, ■■■,amxßl, ■■-,xß-r). We have

already shown this in the case when ßx< ■■■ < ßr and ßx < • • • < ßr. But by

3.9, 0(di, ■■■,am,xßl, •••,%) cannot depend on the order of the ßi's. (We

actually apply 3.9 to the theory T([ax, ■■-,am]) which extends T by add-

ing ax,---,am as "distinguished elements" but by 2.8, T([ax, •■-,am])

is totally transcendental if T is.) Theorem 4.6 is now proved.

5. Saturated models and categoricity in power. Suppose B is an infinite

system G -3^(T). B is saturated if for every A ç B with k(A) < k(B), every

point of S(A) is realized in B.
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From 4.1 we see that if B G -3(T) is saturated, then B is a model of T.

Saturated systems were considered in [ 10], and the following result was

established(22).

Theorem 5.1. If A and B are saturated models of T of the same power,

then A is isomorphic to B.

Thus a sufficient condition for T to be categorical in power k is that

every model of T of power k be saturated(23).

Suppose BE-3ÍT) is an uncountable system. B is saturated over counta-

ble subsystems if for every countable A QB, B realizes every point of S (A).

By 4.1, every BE~3(T) which is saturated over countable subsystems

is a model of T.

Theorem 5.2. If T is totally transcendental and k > K0, fAere fAere is a

model of T of power k which is saturated over countable subsystems i24).

Proof. Let B0 be an arbitrary model of T of pwer k. Then S(B0) = k

by 2.7. Therefore, there is a model of T, Bx 3 B0 such that k(Bx) = k and

every point of S(B0) is realized in Bx. Proceeding inductively, we see that

there is an increasing chain of models of T of power k, j Ba; a < wx j such

that every point of S(BJ is realized in Ba+X (for all a<coi). Then B

= U„<ul Ba is a model of T of power k which is saturated over countable

subsystems. For if A is a countable subsystem of B, then there is an

a < co! such that A Q Ba; then every p G S (A) is realized in B0+1 and,

a fortiori, in B.

Lemma 5.3. Suppose T is totally transcendental and B is an uncountable

model of T which is not saturated. Then there is a countable model of T,

AQB, with a subsystem A' Q A such that (i) fAere is an infinite set YQ\A\

— | A'| of elements indiscernible over A', and (ii) fAere is a gGS(A') which

is not realized in A.

( ) In [10] universal homogeneous systems are considered. This is a terminology of Jónsson

[5]. If K is a class of similar relational systems and AÇK then: (1) A is universal for K if A con-

tains an isomorphic image of every B£K with k(B) s k(A), (2) A is homogeneous in K if when-

ever B\,B2£K,Bx,B2QA. k(Bí)<k(.A),andf:Bx—>B2 is an isomorphism, then / may be ex-

tended to an automorphism of A. Jónsson showed that under certain simple conditions on K that

any two universal homogenous systems of the same power are isomorphic. In the case that K

=yr\ T), universal-homogeneous is equivalent to saturated. This was shown in the countable case

by Vaught [18] and in the uncountable case by Keisler (Theorem A2 of [8]).
23

( ) That the problem of categoricity in power could be approached this way was noticed by

Vaught. He proved [10;17] (assuming the generalized continuum hypothesis) that if T is cate-

gorical in an increasing sequence of powers then it is categorical in the limit power.

( ) In the case «■>« , this result was proved in [10] without the assumption that T is

totally transcendental. However, it is possible to give an example of a theory T which is not

totally transcendental and a cardinal « > No with « ° ¿¿ * such that no model of T of power «

is countably saturated.
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Proof. Since B is not saturated there is some CQB,kÍC) <k(B), and

apES(C) which is not realized in B. By 4.6 there is a countable infinite

set, Y, of elements indiscernible over C contained in |B| — |C|. By the

Löwenheim-Skolem theorem there is a countable submodel of B,A0, such

that A0 2 Y. For each aEA0 let pa be the point of S(Q realized by a.

Then no pa = p since no element of B realizes p. Hence, there is for each

a E A0 a formula \paEF(C) such that \poEpa and ~^aGP- Since <pa

involves only a finite number of sysmbols we may find for each some

finite CaQC such that 4>aEF(CJ. Let A[ = Ua&AoCa. Then no aE A0

realizes iAlC{p) in <S(A0- Let Ax be a countable submodel of B such that

AXQ]AQ(J A[. By iteration we may find a sequence of countable models,

A0Q • • • AnQ ■■ -, and a sequence of systems, A[Q ■ ■ • A'nQ ■ • -, such

that A'nQ AnC\C and no aGA„ realizes iAn+xcip) in SiA'n+x). Let A

= U„e„A„ and A'= U„&A;. Then Ye|A|+-|A'| is a set of ele-
ments indiscernible over A' and no a G A realizes i%cip) in SiA').

Theorem 5.4. Suppose T is totally transcendental and has an uncounta-

ble model which is not saturated. Then for each k > X0, T has a model of

power k which is not saturated over countable subsystems.

Proof. Let A, A', and Y be as in Lemma 5.3 and q E SiA') be not realized

in A. By the completeness theorem there is an A,E^(T) such that

A» 2 A' U Y and A, — A' is a set of k elements indiscernible over A'. (For

we can assert the existence of such an A, by a set 2 (of power k) of sen-

tences, and the existence of A'U Y shows that every finite subset of 2,

and therefore 2, is consistent.) Let \y„;a<K\ be a well-ordering of A,

— A', and Aa = A' U \yß;ß <a\. Apply Theorem 4.5 to get an increasing

chain of models of T, \ßa;a <k\, with Ba prime over A„ and for each

limit ordinal b < k,  B¡= Ua<è Ba.

We assert that q is not realized in any B„. The proof is by induction

on a. For a < co, the existence of the model AQ\A'{JY and not realizing

o, implies B„ does not realize q. If a = b, the induction hypothesis implies

no Bg iß < 5) realizes q and, hence, B¡=\j ß<iBß does not realize o.

Finally, if a = ß + 1 > co, then by the indiscernibility of A, — A' over A',

there is an isomorphism of Aa onto Aß which is the identity on A'. So

there is a monomorphism of Ba into Bß which is the identity on A'. By

the induction hypothesis B„ does not realize q, therefore Ba does not

realize q.

B, = U„<«B(, is of power k and does not realize q.

Theorem 5.5. If T is categorical in some power x>N0, fAera every un-

countable model of T is saturated.

Proof. By 3.8, T is totally transcendental. By 5.2, there is a model of T

of power k which is saturated over countable subsystems.  If T had an un-
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countable model which was not saturated, then by 5.4 it would have a

model of power k which was not saturated over countable subsystems, and

T would not be categorical in power k.

Theorem 5.6. If T is categorical in one uncountable power then T is

categorical in every uncountable power.

Proof. The proof is immediate from 5.1 and 5.5.

We shall conclude by mentioning some open questionsi25). The first

two questions are about theories categorical in uncountable powers but

not in power X0.

(1) Does every such theory have exactly K0 isomorphism types of

countable models?

(2) Is any such theory finitely axiomatizable?

The next two questions concern theories in languages with an uncounta-

ble number of symbols.

(3) If k > K0, 2 is a theory in a language having ^ * symbols, and 2

is categorical in some power > k, is 2 necessarily categorical in every

power > k?

(4) If k > N0 and every model of 2 has power è * can 2 be categorical

in power k?

We return to theories in countable languages. From 4.3 and 4.6 it follows

that if T is totally transcendental and k > N0 we may find a model of

T,A, and a set XCI|A| with k(X) = k(A) = k such that any one-one map

of X into itself may be extended to an endomorphism of A. This raises

the following question.

(5) If T is totally transcendental and k ^ X0, is there always a model

of T, A, with a set XC|A| such that k(A) = k(X) = k and any one-one

map of X onto itself may be extended to an automorphism of A?

Notice this would follow from 3.5 and 3.9 if whenever T were totally

transcendental we could find a T* which was totally transcendental. In

[ 1 ], Theorem 2 asserts the affirmative of this question for theories cate-

gorical in power 2", but Vaught has pointed out a fallacy in the proof given.

Finally, we consider some questions about the ordinal aT defined in 2.6.

In 2.6 we showed that aT< (2N°)+. The first question is:

(6) Is a-¡- ever uncountable?

We can answer this question in one case.

Theorem 5.7.  If T is totally transcendental, aT < wx.

Proof. By 2.4 if p G Tr°(A) there is a finite B ç A such that i%A(p)

GTr"(73). By 2.7 S(B) is countable for every finite BE-^(T).  Thus we

(^ Problems (1) through (4) below are not due to the author; they seem to have been con-

sidered by several people. Problem (5) has recently been answered affirmatively by Jack Silver.
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need only to show that there are only a countable number of isomorphism

types of finite members ofyr/(T). We prove inductively for each reG<"

that there are only a countable number of isomorphism types of members

of_vf(T) of power re. For re = 0 there is obviously only one. (Strictly,

the empty set is not a subsystem. But since we can define F(0), there

is no harm in treating it as a member ofyV(T).) Assume only a countable

number of isomorphism types of systems of power tti. By 2.7 there are

only a countable number of ways of adding an element to each system

of power m, so there are only a countable number of isomorphism types

of members of Jl/( T) of power m + 1.

Another question is:

(7) What model-theoretical conditions on T imply that aT is finite?

Plausible possibilities are T being categorical in some power, or T = 2*

with 2 finitely axiomatizable.
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