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Recent work has been concerned with Hubert spaces whose elements are

entire functions and which have these three properties:

(HI) Whenever F(z) is in the space and has a nonreal zero w, the function

F(z) (z — w)l(z — w) is in the space and has the same norm as F(z).

(H2) Whenever w is a nonreal number, the linear functional defined on

the space by F(z) -» F(w) is continuous.

(H3) Whenever F(z) is in the space, the function F*iz) = F(z) is in the space

and has the same norm as F(z). If E(z) is an entire function which satisfies the

inequality

(1) |£(z-)|   <  |£(z)|

for y > 0 (z = x + iy), we write E(z) = A(z) — iB(z) where A(z) and B(z) are

entire functions which are real for real z and

K(w,z) = {B(z)À(w) - A(z)B(w)-\l\n(z-w)l

Let Jf(E) be the Hubert space of entire functions F(z) such that

lfi2 = JV«|2 \m\~2dt < »,

with integration on the real axis, and

|F(z)|2 ^  ||F||2X(z,z)

for all complex z. Then, Jif(E) is a Hubert space of entire functions which satisfies

(HI), (H2), and (H3). For each complex number w, K(w,z) belongs to Jt(E) as

a function of z and

Fiw) = <F(í),X(w,í)>

for every F(z) in J*f (E). As shown in [7], a Hubert space, whose elements are

entire functions, which satisfies (HI), (H2), and (H3), and which contains a

nonzero element, is equal isometrically to some such Jf(E).

Conditions are given in Theorems II and III of [9] that one Hubert space

of entire functions be contained isometrically in another. These involve matrix

valued entire functions
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m   I A(z)    B(z) \

M{Z)       \C(Z)    D(z))'

whose entries are real for real z and satisfy

A(z)D(z) -  B(z)C(z) = 1,

Re [A(z)B(z) - B(z)C(z)~] ̂  1,

(2) \ß(z)Ä(z) - A(z)B(z)-]/(z-z) ^ 0,

lD(z)C(z) -  C(z)D(z)-\l(z-z) 2; 0

for all complex z. If E(a,z) and E(b,z) are entire functions which satisfy (1)

and have no real zeros, and if 3^(E(a)) is contained isometrically in Jf(E(b)),

there is a unique matrix valued entire function M(a,b,z), satisfying (2), such

that

(3) (A(b,z),B(b,z)) = (A(a,z),B(a,z))M(a,b,z)

for all complex z.

Theorem I. If E(a,z), E(b,z), and E(c,z) are entire functions which satisfy

(1) and have no real zeros, and ifJ^(E(a)) and Jf(E(b)) are contained isometric-

ally in je(E(c)), then either Jf(E(a)) contains 2?(E(b)) or J?(E(bj) contains

3f(E(a)).

If p is a non-negative measure on the Borel sets of the real line, conditions

are given by Theorem V of [8] that Jf(E) be contained isometrically in L2(p).

One might ask whether the space J^(E(c)) of Theorem I can be replaced by L}(p).

Although this is not the case in general, as finite dimensional examples will show,

it is in the presence of a suitable growth restriction, for instance if we have func-

tions F(z) of exponential type which satisfy.

(4) Í(1 + i2)"1 log+1 £(0 \dt < oo.

Theorem II.   Let E(a,z) and E(b,z) be entire functions of exponential type

with no real zeros, which satisfy (1) and (4). Let p be a non-negative measure

on the Borel sets of the real line. IfJf(E(a)) and Jf(E(b)) are contained iso-

metrically in L2(p),  then eitherJf(E(a)) contains Je°(E(b)) orJt(E(b)) contains

M(E(a)).

Because of (3), Theorem I has implications for the factorization of matrix

valued entire functions satisfying (2).

Theorem III. Let M(a,b,z), M(a,c,z), M(b,d,z), and M(c,d,z) be matrix

valued entire functions which satisfy (2). If

(5) M(a,b,z)M(b,d,z)  = M(a,c,z)M(c,d,z)
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for all complex z, then either

M(a,b,z)_1 M(a,c,z) or M(a,c,z)~1 M(a,b,z)

is a matrix valued entire function which satisfies (2).

The conclusion of Theorem II may also be obtained under different hypotheses.

Theorem IV.   Let E(b,z) and E(c,z) be entire functions which satisfy (1) and

have no real zeros. Let p be a non-negative measure on the Borel sets of the real

line. If $?iE(b)) and Jif(E(c)) are contained isometrically in L2(p) and if the

intersection ofJ^(E(b)) and ¿ti?(E(c)) contains a nonzero element, then either

J?(E(b)) contains Jf(E(c)) or Jf(E(c)) contains Jf(Eib)).

In [10] isometric inclusions of spaces of entire functions were obtained from

first order differential equations. Let

m(0=U)     7(0 j

be a matrix valued function of t > 0, where a(i), ß(t), y(t) are real valued, abso-

lutely continuous functions of t > 0 such that

(6) a'(0^0,   y'(0e0,   ßW á ot'it) y'it)
a.e. for t > 0,

(7) lim «(i) = 0,

and

(8) lim [«(i) + y(tf]  =  co.
/-.00

We will also study the special case in which

(9) lim ß(t) = 0 and   lim y(t) = 0.
t\o ry ' »\o

A real number b > 0 is said to be singular with respect to m(t) if it belongs to

an open interval ia,c) in which ot'(t), ß'(t), y'(t) are equal a.e. to constant

multiples of a single function and

ß'(t)2 = <x'(0 y'it)

a.e. Otherwise, a number b > 0 is said to be regular with respect to m(t). Let

-(.-¡)-

In stating Theorem I of [10], we will suppose that m(t) satisfies (6), (7), and (8),

and that a(i) > 0 for / > 0. Suppose that there exists a family (E(t,z)) of entire

functions satisfying (1) with no real zeros, such that £(i,0) = 1, t > 0, such that

for each complex number w, E(t,w) is a continuous function of t > 0,
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(10) (A(b,w),B(b,w))I - (A(a,w),B(a,w))I = w       (A(t,w),B(t,w))dm(t)

whenever 0 < a < b < oo, and

(11) lim   K(a,w,w) = 0.

Then, when a < b are regular points with respect to m(t), 3^(E(a)) is contained

isometrically in •#"(£(&)). If the regular points, with respect to m(t), are unbounded,

there is a unique non-negative measure p on the Borel sets of the real line such

that every J*i?(E(a)), with a regular, is contained isometrically in L2(p). In this

case, the union of the spaces Jf(E(a)), with a regular, is dense in L2(p). But if

the regular points are unbounded, there is a largest one, call it b. Although there

are many non-negative measures p on the Borel sets of the real line such that

Jt(E(b)) is contained isometrically in L2(p), there is a unique one such that

L r\E(b,t)\2dp(t) =     y_ r|£(fr,o|2|£(c,or2^
n)(t-x)2 + y2       c^co n J (t-x)2 + y2

for y > 0. In this case, ^(E(b)) fills L2(p).

The above construction is interesting because of Theorem II of [10]. Let

£(z) be an entire function which satisfies (1) and has no real zeros, such that

£(0) = 1. Let v be a non-negative measure on the Borel sets of the real line such

that Jf(E) is contained isometrically in L2(v). Then, there is a matrix valued

function m(t), as above, and there is a corresponding family (E(t,z)) in which

the function £(z) appears; that is, £(z) = E(b,z) for some regular number b > 0.

Furthermore, the construction can be made so that p coincides with the given

v. As a result, we are in possession of spaces of entire functions contained iso-

metrically in Jf (£), and also of spaces containing Jif(E) but contained isometric-

ally in L2(v). A consequence of Theorems I and IV is that we have obtained all

the spaces associated with Jif(E) and L2(v) in this way.

Theorem V. Let m(t) be a matrix valued function of t > 0 which satisfies

(6), (7), and (8) with a(t) > Ofor t > 0. We suppose given a corresponding family

(E(t,z)) of entire functions satisfying (1), (10) and (11) with corresponding

measure p. Let b > 0 be regular with respect to m(t) and let E(z) be an entire

function which satisfies (1) and has no real zeros.

(A) //Jf(£) is contained isometrically inJf(E(b)), then^C(E) is equal iso-

metrically to J^(E(a)) for some regular number a with 0 < a ^ b.

(B) IfJt(E) contains Jf(E(b)) and is contained isometrically in L2(p), then

3V(E)  is  equal  isometrically  to Jff(E(c)) for  some  regular  number  c  with

b ^ c < oo.

In particular, these results apply to the situation of Theorems IV and VIII

of [9], which give a more strongly stated special case of Theorem I of [10]. A
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related construction is given by Theorem VI of [9]. Let m(t) be a matrix valued

function of t ^ 0 which satisfies (6), (7), and (9). Then, for each complex number

w, there is a unique continuous matrix valued function M(t,w) of t ^ 0 such

that

(12) M(a,w)I-I = w f M(t,w)dm(t)

for a 3: 0. For each fixed a ^ 0, M(a,z) is a matrix valued entire function of z

which satisfies (2) and M(a,0) = 1. Similarly, for each fixed a ^ 0 and each

complex number w, there is a unique continuous matrix valued function M(a,t,w)

of t ^ a such that

(13) M(a,b,w)I-I = w f M(a,t,w)dm(t)

whenever b ^ a. For each fixed a and fe, with af^b, M(a,b,z) is a matrix valued

entire function of z which satisfies (2) and M(a,b,0) = 1. As in the proof of

Theorem IV of [9], the uniqueness of these constructions implies that

(14) M(b,z) = M(a,z) M(a,b,z)

for all complex z, whenever a^b. The construction is useful because of Theorem

VII of [9]. Let M(z) he a given matrix valued entire function which satisfies (2).

Then, there is some choice of matrix valued function m(t), satisfying (6), (7),

and (9), such that for some b ^ 0,

M(z) = M(0)M(b,z)

for all complex z, where the family (M(t,z)) corresponds to m(t) by (12). Then,

(14) yields a factorization of M(z) into matrix valued entire functions which

satisfy (2). We will now show that these are the only such factorizations of M(z).

Theorem VI. Let m(t) be a matrix valued function of t ^ 0 which satisfies

(6), (7), and (9), and let (M(t,z)) be the corresponding family of matrix valued

entire functions defined by (12). Let b ^ 0. If M(z) is a matrix valued entire

function which satisfies (2) and if M(z)~1M(b,z) also satisfies (2), then

(15) M(z) = M(0) M(a,z)

for some number a with O^a^Lb.

A similar result can be obtained for the construction of Theorem XI of [9].

Let m(i) be a matrix valued function of t ^ 0 which satisfies (6), (7), (8), and (9)

with a(t) > 0 for t > 0. Let (M(t,z)) be the corresponding family of matrix valued

entire functions defined by (12). Then, the function E(a,z) = ^4(a,z) — i"B(a,z)

satisfies (1) for every a > 0 and has no real zeros. The family (E(t,z)) so defined

satisfies (10) and (11). Let p be the corresponding non-negative measure on the
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Borel sets of the real line, defined as in Theorem I of [10] or the here equivalent

condition of Theorem XI of [9], where it is shown that

(16) f(l + t2yldp(t) < oo.

As we have said, Jf(E(a)) is contained isometrically in L2(p) when a is regular.

Furthermore, it is known from Theorem IV of [8] that each E(a,z) has expo-

nential type and satisfies (4). By Theorem XII of [9], if v is a non-negative measure

on the Borel sets of the real line which satisfies (16) and does not vanish identically,

then v = p for some such choice of m(t). Therefore, we know the existence of

spaces of entire functions contained isometrically in the given L2(v). A conse-

quence of Theorem II is that this construction yields the only spaces with the

stated properties.

Theorem VII.   Let m(t) be a matrix valued function of t ^ 0 which satisfies

(6), (7), (8), and (9) with a(t) > 0 for t > 0. Let (M(t,z)) be the corresponding

family of matrix valued entire functions defined by (12), and let E(t,z) = A(t,z)

— iB(t,z). If E(z) is an entire function of exponential type with no real zeros

which satisfies (1) and (4), and ifJif(E) is contained isometrically in L2(p), then

JF(E) is equal isometrically to J*f(E(a))for some regular number a >0.

In applications, it is at times necessary to consider situations similar to those

above except that the axiom (H3) is not satisfied. Only a small amount of ad-

ditional information is needed to handle these cases.

Theorem VIII. Let E(a,z) and E(b,z) be entire functions which satisfy (1)

and have no real zeros, such that Jf (E(a)) is contained isometrically in J^(E(b)).

Then,

(17) T=lim    y'1 log\ E(b,iy)IE(a,iy)\

exists and t §; 0. If — t ^ h ^ t, then e'hz F(z) is inJf(E(b)) whenever F(z) is

inJe(E(a)).

Theorem IX. Let E(b,z) be an entire function which satisfies (1) and has

no real zeros. Let ¿4? be a closed subspace of ^(E(b)) such that F(z)/(z — w)

belongs to Jti? whenever F(z) belongs to $C and F(w) = 0. If 3f contains a nonzero

element, then there is a function E(a,z) which satisfies (1) and has no real zeros,

such that Jt(E(a)) is contained isometrically in Jf(E(b)), and there is a number

h as in Theorem VIII with this property: an entire function F(z) inJ^(E(b))

belongs toJifif, and only if, e~'hzF(z) belongs toJf(E(a)).

Theorem X. Let m(t) be a matrix valued function of t >0 which satisfies

(6), (7), and (8) with corresponding family (E(t,z)) of entire functions which

satisfy (1), (10), and (11). If 0 <a ^b < oo, then
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(18) J {pt'(t)y'(t)-ß'it)2yl2dt -to y-ilog\E(b,iy)IEia,iy)\.

Results for spaces of entire functions give information about certain kinds

of integral transforms because of Theorem III of [10]. To avoid the complica-

tions of the general theorem, we will develop a special case which is notationally

easy and yet is still useful for some applications.

Theorem XI. Let m(t) be a matrix valued function of t >0 which satisfies

(6), (7), and (8) with corresponding family of entire functions satisfying (1),

(10), and (11) and with corresponding measure p. Suppose that there are no

singular points with respect to m(t) and that

(19) a'(0 = u(t)ü(t),     ß'(t) - uit)vit) = »(i)«(i),     y'(t) = v(t)v(t)

a.e. where u(t) and v(t) are measurable functions of t > 0.

(A) If a>0, then

f \A(t,w)u(t) + B(t,w)vit)\2dt < co

for every complex number w. For each element fit) of L2(0,cc ) which vanishes

a.e. for t ^ a, define a corresponding "eigentransform" F(z) by

(20) n F(w) = j f(t) [A(t,w) ü(t) + B(t,w) tJ(0] dt

for all complex w. Then, F(z) is an entire function, it belongs toJf(E(a)), and

(21) n j \Fit)\2dpit)  =  j\f(t)\2dt.

Every element G(z) of 34?(E(a)) is equal to the eigentransform F(z) of some such

element f(t) of L2 (0,oo ).

(B) Let a > 0, let f(t) and g(t) be elements of L2(0,co ) which vanish a.e. for

t ^ a, and let F(z) and G(z) be the corresponding eigentransforms. A necessary

and sufficient condition that G(z) = zF(z)for all complex z is that

(22) f(x) = J "g (t) [u(x) vit) - v(x) ü(tf] dt

for almost all x and that

f  g(t)û(t)dt = 0.
.'o

(C) If fit) is in L2(0,oo ), the corresponding eigentransform F(x), defined by

it Fix) = lim   j   f(t)[A(t,x)ü(t) + B(í,x)tJ(0] dt,
a->G0 Jo
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exists with convergence in the metric of L (p) and (21) holds. Every element

G(x) of L2(p) is equal, a.e. with respect to p, to the eigentransform F(x) of an

element f(t) o/L2(0,oo).

(D) Letf(x) and g(x) be in L2(0,oo)and let F(x) andG(x) be the corresponding

eigentransforms in L2(p). A necessary and sufficient condition that G(x) = xF(x)

a.e. with respect to p is that

(23) f(x) = v(x) j*g(t)u(t)dt - u(x) ^g(W)dt

a.e. where j*g(t)v(t)dt denotes the choice of an absolutely continuous function

whose derivative is g(x)v(x) a.e.

Our theorems on spaces of entire functions now have a number of applications

to integral transforms of the form (22), of which the following result is typical.

Theorem XII. If u(x) and v(x) are functions of x in L2(0,1), satisfy

(24) « (x) v (x) = v(x) u (x)

a.e. and] are essentially linearly independent when restricted to any subinterval

of (0,1), consider the corresponding bounded linear transformation T of L2(0, 1)

into itself, defined by T:g->fif

(25) f(x) = j g (t) [« (x)tJ(í) -v(x)ü (if] dt

for almost all values ofx. Let Ji bea closed subspace o/L2(0,1) which is invariant

under T in the sense that Tg belongs to M whenever g belongs to M. Then,

there is a number a, with 0 :£ a ^ 1, such that Ji coincides with the set of func-

tions f(x) ofL2 (0,1) which vanish a.e. for x ^ a.

The same conclusion is available from the work of Kalisch[15] when u(x)

and v(x) satisfy additional smoothness conditions. The particular integral trans-

forms which we study are related to certain kinds of Sturm-Liouville equations.

Let p(x) and r(x) be measurable, real valued functions defined for O^x^l,

with p(x)>0 and with p(x)-1 and r(x) absolutely integrable. As shown by

Stone [19], there exist absolutely continuous, real valued functions u(x) and

v(x) defined for 0 ^ x ^ 1 such that

(p(x)u'(x))' = r(x)u(x),

(p(x)v'(x))' - r(x)v(x),

p(x)u'(x)v(x) — p(x)v'(x)u(x) = 1
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in a suitable a.e. interpretation, and these functions may be chosen to satisfy

boundary conditions at the origin. In the presence of boundary conditions at

x = 1, the differential equation

a(x) = -(p(x)/'(*))' + r(x)/(x)

is equivalent to the integral equation (25) for functions /(x) and a(x) in L2(0,1).

Theorem XI then gives a version of the eigenfunction expansions obtained by

Kodaira[16] and Titchmarsh [20] for Sturm-Liouville equations. Theorem XII

can be used to give an alternative proof of uniqueness in the inverse Sturm-

Liouville problem studied by Levinson [17]. These results for differential equations

have in fact inspired much of the present work, though it can also be thought

of as a generalization of the theory of orthogonal polynomials which Shohat and

Tamarkin [18] apply to the Hamburger moment problem.

Our proofs will use some properties of the generalized Hubert transform of

[10], which are best given in matrix notation.

Lemma 1. If Miz) is a matrix valued entire function of z which satisfies (2),

there is a unique Hilbert spaceJOM), whose elements are pairs

of entire functions with this property: for each complex number w and for each

pair of complex numbers u and v,

M(z)IM(w)-I fu\
2n (z — w)       \v J

belongs toJF(M) as a function of z and

nn fuY fF(w)\      /(F(f)\     M(t)IM(w)-I ( u\ x
(26) \v)    [g(w))=   \{G(t))>        2n(t-w)       [v)>

for every (F(z),G(z))- in 3#>(M). If

(Hx)\      is in *(M) then     (lF & ~ F(»M* ~ ")\
[g(z)) ^M)> then     {lG(z) - Giw)]l(z - w)J

is in J^iM) as a function of z for every complex number w. If iFliz),G1(z))~

and iF2iz),G2iz))~ are in Jt(M), then
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i*(F*W\~i fFl(w)
\G2(w))      \Gi(w)

nr. =/{F1(t)\     ßF2(t)-F2(w)-]l(t-n)\\
1   } ' \ IG,«)] '  \lG2(t) - G2(w)-]l(t-w)J /

_ / (ÍFi (t) - £, (w)]/(i - w)\      /£2 (i) \ v

\ {[Gi(t) - Gi (w)]/(i - w)J '  \G2(t))y

for all complex w. If (F(z),G(z))- is in 3€(M), then (F(z),G(z))~ is in ¿f(M)

and has the same norm.

Vertical pairs are necessary in Lemma 1 for the most consistent matrix no-

tation. Since such pairs can be awkward in print, we use the adjoint notation

0« ■
(u,v)

of [10] to transpose. Property (27) of the generalized Hubert transform, which

was previously overlooked, has the following consequence.

Lemma 2. If M(z) is a matrix valued entire function which satisfies (2)

and if u and v are numbers such that (ü,v)~ belongs to 3^(M), then üv = vu.

Lemma 3. Let M (b,z) be a matrix valued entire function which satisfies (2),

and let u and v be numbers which satisfy üv =vu and are not both zero. A

necessary and sufficient condition that (ü,v)~ belong toJ^(M(b)) is that

(28) M(b,z) = M(a,z)M(a,b,z),

where M(a,b,z) is a matrix valued entire function satisfying (2) and

A(a,z) =   1—ßz,   B(a,z)=otz,

C(a,z) = - yz,   D(a,z) = 1 + ßz,

and ct,ß,y are real numbers, not all zero, such that

a. ̂  0, y ^ 0, ß2 = ay, av = ßu, ßv = yu.

This lemma is used in obtaining a strengthened version of Theorems II and

III of [9].

Lemma 4. Let E(a,z) be an entire function which satisfies (1), and let

M(a,b,z) be a matrix valued function which satisfies (2). We suppose that

there are no numbers u and v, not both zero, such that A(a,z)u + B(a,z)v
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belongs to Jf(E(a)) and (ü,v)~ belongs to Jt(M(a,b)). Then, the entire func-

tions A(b,z) and B(b,z) defined by (3) are real for real z, and E(b,z) = A(b,z)

— iB(b,z) satisfies (1). The space JP(E(a)) is contained isometrically in the

space Jf(£(&)). // ( F(z), G(z))~ is in Jf(M(a,b)), then A(a,z) F(z)

+ B (a,z) Giz) is in Je(E(b)), it is orthogonal to J^(E(a)), and

(30) ||(F(0,0(0)-||2=2||^(a,í)F(0 + B(a,0G(í)||2.

Every element of 3^(E(b)) which is orthogonal to J^iEia)) is uniquely of this

form. If Eia,z) has no real zeros, then neither does E(b,z).

Lemma 5. If E(a,z) and E(b,z) are entire functions which satisfy (1) and

have no real zeros, and if J(?(E(a)) is contained isometrically in J^(E(b)),

then (3) holds for a unique matrix valued entire function M(a,b,z) as in Lemma 2.

Lemma 6.   Let E(a,z) and E(b,z) be entire functions which satisfy (1) and

have no real zeros, and let 3/?(E(a)) be contained isometrically in J>if(E(b)).

IfF(z) is in Jf(E(b)) and if Liz) is an element of .5f(£(&)) orthogonal to

3^(E(a)), then there is an entire function f(z) such that

mBM,<mm;zmm..L(,i>

for every G(z) in J^(E(a)) and for all complex w. The function f(z) has expo-

nential type and satisfies (4).

The key Lemma 6 is adopted from the ideas of [2] and [3]. Its successful

application depends on information about the modulus of entire functions of

minimal exponential type, given by Heins [14] and stated below first as a lemma

on subharmonic functions.

Lemma 7. Let u(x + iy) be a non-negative, continuous, subharmonic func-

tion defined in the complex plane and periodic of period 2ni. Let Z be the in-

terior of the set of zeros of this function. If

Q(x)2=  |     u(x + iy)2dy

with the positive choice of root and if p(x) is the probability that x 4- iy not

lie in Z on each vertical line, then Q(x)2 is a convex function of

exp ( I   p(t)~1dt)du

in the region where Q(x) ■£ 0.
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We include a formal proof of the lemma by the Carleman method. Although

the steps are easily justified if u (x + iy) has continuous first and second partial

derivatives in x and v, the general case requires an approximation procedure as

in Heins [14]. A consequence of the lemma is that any two nonconstant entire

functions of minimal exponential type must be simultaneously very large in some

part of the plane.

Lemma 8. If f(z) and g(z) are entire function of minimal exponential type

such that

(31) min(|/(Z)|,|fir(z)|)^|^|-1

for all complex z, then either f(z) or g(z) vanishes identically.

An apparently stronger assertion now follows by use of the Ahlfors-Heins

theorem.

Lemma 9. If f(z) and g(z) are entire functions of exponential type which

are real for real z and satisfy (4), and if

(32) \y\è\m\~1 + \g(z)\-1

for all complex z, then either f(z) or g(z) vanishes identically.

The only other information needed is a variant of Lemma 11 of [9].

Lemma 10. Let E(a,z) and E(b,z) be entire functions which satisfy (1)

and have no real zeros, such thatJf(E(a)) is contained isometrically in Jif(E(b)).

IfF(z) is in J^(E(b)) and if

(33) F(iy) = o(E(a,i\y\))

as \y\-* oo, then F(z) is in 3^(E(a)).

Proof of Lemma 1. To show the existence of Jf(M), consider first the special

case in which M(z) is a constant. Then, M(z) I M(w) - I vanishes identically

for all choices of w. Property (26) implies that Jif(M) contains no nonzero ele-

ment. Since the conclusions of the lemma are obvious in this case, we may sup-

pose in the remainder of the proof that M(z) is not a constant.

The construction of ^f(M) depends on properties of the generalized Hubert

transform of [10]. The discussion there requires that

(34) A(iy) - iB(iy)  = o[yD(iy) + iyC(iy)l

(35) D(iy) + iC(iy)  = o[yA(iy) - iyB(iy)]
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as y -* + co. These are the corrected statements of conditions (34) and (42) of

[10], where factors of y are inadvertently omitted; both conditions are special

cases of condition (4) of [9]. If (34) and (35) are not fulfilled, it is always possible

to make a change of variable. For any fixed real number a, the matrix valued

entire function

/   cosa   since      \
MJiz) = . Miz)

\-sma   cosa     /

satisfies (2). The definitions imply that

¡F(z)  \ /    cosa   sin a \    / F(z) \

\G(z) )    ~*    \-sina    cosa/    \ G(z) )

is a linear isometric transformation of^"(M) ontoJf(MA. If one of these spaces

can be constructed, the other is obtained by a rotation of coordinates. The re-

quired properties of the spaces are easily seen to be preserved under this trans-

formation. Suppose that one condition, say (35), is not satisfied by M(z). The

hypothesis (2) implies that

f(z) = [A(z) - iB(z)T1lD(z) + iCizf]

is defined and analytic for y > 0 and that Re f(z) ^ 0. By the Poisson repre-

sentation of a function positive and harmonic in a half-plane, there is a number

a ^ 0 such that

Re/(x + iy) = ay +
y f Re fjt) dt
n) it-x)2 + y2

for y > 0. By the Lebesgue dominated convergence theorem,

a =     lim      y-1 Re/(x + iy).
y->+<x>

If M(z) does not satisfy (35), then a > 0 and

A(iy) - iB(iy) = o[D(iy) + iC(iy)l
Since

A„(z) - ißa(z)    =    cos a \_A(z) - iB(z)] -i sin a \D(z) + ¡C(z)],

Da(z) + iCx(z)  = -j'sina[^(z) - iB(z)1 + cosa[£>(z) + iCizf],

we have

lim [Aa(iy) - iBx(iy)Yl[Da(iy) + iC¿iy)] = ¿cota.
y-t+m

Therefore, Miz) satisfies (34) and (35) if a is not an integral multiple of 7t/2.

A similar argument applies to the reciprocal of/(z) if (34) is not satisfied. To

avoid complications of terminology, we will suppose for the construction of

Jf(M) that M(z) satisfies (34) and (35).
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Because of (2), the function A(z) — iB(z) has no zeros for y ^ 0 and satisfies

the inequality

|¿(f)- iB(z)\ ^ \A(z)-iB(z)\

for y > 0, which implies that

\lA(z)-iB(z)Y1lA(z) + iB(z)-]\ Ï 1

for y > 0. By the representation of functions analytic in a half-plane, Boas [1,

p. 92], these inequalities are strict unless \_A(z) —iB(z)Y1\_A(z) + iB(z)"\ is a

constant of absolute value 1. Therefore, ^4(z) — iB(z) has no zeros if it does not

satisfy (1). By Theorem IV of [8], the hypothesis (2) implies that A(z) — iB(z)

has exponential type and satisfies (4). If this function has no zeros,

A(z) - iB(z) = [A(0) - iß(0)] exp(iaz)

where a is a constant which is real because of (4). Since

\_A(z) - iB(z)Y1{A(z) + iB(z)~]  = [¿(0) - ÍP(0)]-X[^(0) + ¿P(0)]e-2""

is a constant of A(z) — iB(z) does not satisfy (1), a = 0 in this case and A(z) — iB(z)

is a constant. We will now show that D(z) + iC(z) is a constant in this case.

By Theorem IV of [8], this function has exponential type and satisfies (4). By

Boas [1, p. 97], its indicator diagram is a vertical line segment. The hypothesis

(2) implies that

|D(z-)+iC(z)|  Z \D(z) + iC(z)\

for y > 0. Therefore, (35) implies that

D(iy) + iC(iy) =o(\y\)

as | y | -» oo, and the function D(z) + iC(z) has minimal exponential type. By

Boas [1, p. 83], these estimates on the imaginary axis make D(z) + ¿C(z) a con-

stant. We have shown that the function A(z) — iB(z) satisfies (1) unless M(z) is

a constant. A similar argument using (34) will show that D(z) + iC(z) satisfies

(1) unless M(z) is a constant. Since the case in which M(z) is a constant has

already been treated, we must suppose that A(z) — iB(z) and D(z) + iC(z)

satisfy (1).

Theorem IX of [10] is now applicable because of (34). For every complex

number w,

1 - A(z) D(w) + B(z) €(w)

n (z — w)

belongs to Jcc(A — iB) as a function of z. If F(z) is in JC(A — iB), the corre-

sponding entire function G(z), defined by
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H6Ï C(^-/F(ù   l-A(t)D(">) + B(t)C(w)x
(36) G(w) - <Fit), -^—¥)-y A-iB

for all complex w, belongs to Jf(D + iC) and

(37) ||F|U_iB - ||G||D+iC   .

Because of (35), we may apply Theorem IX of [10] with A(z) - iB(z) and

D(z) + iC(z) interchanged. For every complex number w,

l-D(z)À(w) + C(z)Ë(w)

n iz — w)

belongs to JC(D + iC) as a function of z. If G(z) is in Jf(D + iC), the corre-

sponding entire function F(z) defined by

(38) FM -      ¿Gin  l-D(t)A(») + C(t)B(")\
(38)                        F(w) -  - <G(i),-^——}-yD+iC

for all complex w, belongs to 3^(A — i'B), and (37) holds. Although the equi-

valence of (36) and (38) is not explicit in [10], it is a consequence of Theorem X

there. Let^f (M) be the Hubert space of such pairs (F(z),G(z))~ with

\\(F(t),G(t))-\\2M =   ||F(0||Í-iB+  ¡G(t)\\2D+iC .

Property (26) follows from this definition by a straightforward substitution. By

Theorem XI of [10], difference quotients do belong to^f (M), which is closed

under the stated conjugation. If

¡F¿z) \ M(z)fM(w,.)-7    /«,. \

XGiz)} 2niz-wt)       \v, )   '

i = 1,2, where u¡, v¡, w¡ are complex numbers, formula (27) follows from (26)

using (2). The general case of (27) follows by linearity and continuity since finite

linear combinations of these functions are dense in J^(M) as a result of (26).

This completes the proof of existence of a space Jif(M) with the stated pro-

perty. Uniqueness is a consequence of (26) by standard arguments. For if two

spaces ^A\M) and ^2iM) have this property,

Mjz)IM(w)-I

2 71 (z — w) 0
belongs to each space for every choice of complex numbers u, v, and w. There-

fore, the finite linear combinations of such functions are common to both spaces.

A short calculation from (26) will show that such combinations have the same

norm in each space. Since such combinations are dense in each space as a result

of (26), we can now easily show by approximation that Jf^M) and Jf2(M) are

isometrically equal.
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Proof of Lemma 2. Let £j(z) = F2(z) = u and Gx(z) = G2(z) = v in (27),

which then reads vu — üv = 0.

Proof of Lemma 3, the necessity. By hypothesis, (ü,v)~ belongs to Ji?(M(b)).

By multiplying u and v by a constant, we may suppose with no loss of generality

that it has norm 1. Let

et = 2nuü,   ß =2nuv = 2nvü,   y=2nvv.

The matrix valued entire function M(a,z), defined as in the statement of the lemma,

is easily verified to satisfy (2), and (ü,v)~ is an element of norm 1 in Jt(M(a))

which spans this space. Therefore, 3^(M(a)) is contained isometrically in 3^(M(b)).

It follows from (26) in these two spaces that for every choice of complex num-

bers u, v, and w,

M(b,z)IM(b,w) - M(a,z)IM(a,w)     / u\

2 n (z — w) \VJ

belongs to J^(M(b)) as a function of z and is orthogonal to 3ti?(M(a)). If

(F(z),G(z))~ is in ¿e(M(b)) and is orthogonal to Jf(M(a)), then

ncn    (UY(FW\      / l f(0 \   M(b,t)IM(b,n)-M(a,t)IM(a,w) I u K
W    [vj    \G(w)) -\\G(t)j'- 2n(t-w) [v)^

In particular, we obtain the inequality

u\~ M(b,w)IM(b,w)-M(a,w)lM(a,w)  lu\

v ) 2n(w — w) \VJ

M(b,t) I M(b,w) - M(a,t) I M(a,w) Iu\ i 2

2n(t- w) \v ) \   ~

Because of (2), M(a,b,z) = M(a,z) ~ lM(b,z) is a well-defined matrix valued

entire function whose entries are real for real z. We have seen that

/ u \ ~ **i     \ M(a,b,w)IM(a,b,w) -Ia,     . / u \
M(a,w)-—-,--r-M(a,w) ^0

\ v ) 2n(w — w) \v/

for every choice of numbers u and v. Since M(a,w) is an invertible matrix, we

obtain the matrix inequality

M(a,b,w) IM(a,b,w) — /

27i(x — w)

for all complex w. A short calculation will show that this inequality implies (2)

for M(a,b,z), since the entries of this matrix are real for real z. This completes

the proof of necessity for Lemma 3, but additional properties of the construction

are required for the proof of sufficiency. If (F(z),G(z))~ is in JP(M(a,b)), then

M(a,z)(F(z),G(z))~ is in 34?(M(b)), is orthogonal to Jf(M(a)), and has the same

norm as (F(z), G(z)) ~. When (F(z), G(z)) ~ is a finite linear combination of func-

tions of the form
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M(a,b,z) I M(a,b,w) - I -

2n(z — w)
M(a,w) (U),

this fact is easily verified from (39) using the identity (26) in the space Jf(M(a,b)).

The general case follows by linearity and continuity since such combinations are

dense in 3^(M(a,b)) as a result of (26). It is not hard to show from (39) that

the transformation

(S)-'**!«)
takes JF(M(a,b)) onto the orthogonal complement of J?(M(a)) in J^(M(b)). What

is needed later is that (ü,v)~ does not belong to Jf(M(a,b)). For if this were true

(ü,v)~ = M(a,z) (u,v)~ would belong to the orthogonal complement in J>^(M(b))

of >?f(M(a)). This is not the case since (ü,v) ~ belongs toJ^(M(a)) by construction

and is not zero by hypothesis.

Proof of Lemma 3, the sufficiency. By the proof of necessity, we may write

M(a,b,z) = M(a,c,z) M(c,b,z), where M(c,b,z) is a matrix valued entire function

which satisfies (2) and (ü,v)~ does not belong to Jif(M(c,b)), and where M(a,c,z)

is defined by

A(a,c,z)  = 1 — p\z ,     B(a,c,z)  = atz,

C(a,c,z)  = -ylZ , D(a,c,z)  = 1 + ßtz,

using real numbers <*-ußi,yi which satisfy (29). Then,

M(b,z) = M(c,z)M(c,b,z)

where

and

and

M(c,z) = M(a,c)Ma,c,z)

A(c,z) =  1 - ß2z,    Bic,z) = a2z,

C(c,z) = -y2z,        Diez) =  14-j82z,

a2 = a + a1;   ß2 = ß + ßu   y2 = 7 + yu

are real numbers which satisfy (29). Since a,ß,y are not all zero by hypothesis,

the numbers 0L2,ß2,y2 are not all zero. As in the proof of necessity, (m,uT be-

longs to Ji?(M(c)) and spans this space. On the other hand, (ü,v)~ is not in

Jf(M(c,b)) and is not of the form M(c,z)(F(z),G(z))~ with (F(z),G(z))- in

Jf(M(c,b)) since this would imply F(z) = w and G(z) = v. Let ^f be the Hubert

space of pairs

g:)+ms»)-
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where X is complex and (F(z),G(z))~ is in J^(M(c,b)), using the norm

l(i:)+-w(S)r-l(i:)L +
The definition is unambiguous by what has been said about the location of (ü,v)-.

A short calculation using (26) in Jf(M(c)) and in Jf(M(c,b)) will show that (26)

holds in Jc°with M(z) = M(b,z). By Lemma l,Jif is equal isometrically to Jf(M(b)),

which therefore contains (w,t7)~.

Proof of Lemma 4. The isometric inclusion of J?(£(a)) in ¿f (£(f>)) will be

proved using Theorem II of [9]. Since (3) holds, we need only show that condition

(4) of [9] holds, or the equivalent condition given by Lemma 8 of [9], if u and

v are numbers such that A(a,z)u + B(a,z)v belongs to 3fc°(E(a)). By Theorem I

of [9], we have ûv = vu in this case, and the desired conclusion follows from

Lemma 3 since (U,v)~ does not belong to 3t(M(a,b)) by hypothesis. The proof

of (30) is easiest when (F(z), G(z))~ is a finite linear combination of functions

of the form

r4m M(a,b,z)IÑ(a,b,w)-I    (A(a,w)\

1    ; n(z-w) \S(a,w)f  '
for

(A(a,z),B(a,z))M{aAz)Iima^w)-1    (j^)
v  v    '    v    " n(z-w) \B(a,w) J

= K(b,w,z) — K(a,w,z)

belongs to ^f(E(b)) and is orthogonal to^(£(a)) by the isometric property of

the inclusion. In this case, formula (30) may be verified using (26). The general

case of (30) follows by linearity and continuity once it is shown that finite linear

combinations of functions of the form (40) are dense in Jt(M(a,b)). In other

words, it must be shown that an element (F(z),G(z))~ of 3^(M(a,b)), which is

orthogonal to all such combinations, vanishes identically. Because of (26), we

have A(a,z)F(z) + B(a,z)G(z) =0 identically in this case. For every complex

number w,

lF(z)-F(wï]l(z-w) \

\G(z)-G(w)-\l(z-w))

belongs to ^(M(a,b)) as a function of z by Lemma 1. By what we have already

shown,

£(z) - F(w)                  G(z)-G(w)
A(a,z)-h B(a,z)-

z — w z — w

belongs to 3t(E(b)) and is orthogonal to J4?(E(a)). Since this function may be

written in the form K(a,w,z) where

(Ht)
\G(t) (Mc.M

(
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c = n F(w) \ B(a,w) = - 7iG(w) / A(a,w),

it also belongs to ^(E(a)), and hence vanishes identically. In other words,

A(a,z) F(w) + B(a,z) G(w) = 0 for all complex z and w, and we may conclude

that F(z) and G(z) vanish identically since £(a,z) satisfies (1).

It remains to show that the transformation

(F(z),G(z))~ -> A(a,z)F(z) + Bia,z)Giz)

takes ^(M(a,b)) onto the orthogonal complement of^f(£(a)) inJf(£(fc)). Since

this transformation satisfies (30), its range is closed. It is sufficient to show that

an element L(z) of Jf(E(b)) which is orthogonal to Jf(£(a)) and to the range of

the transformation vanishes identically. Since K(b,w,z) — K(a,w,z) is known to

be in the range for every complex number w,

Uw) =<L(i), K(a,w,t)} + <L(t),K(b,w,t) - K(a,w,t)} = 0.

The function L(z) vanishes identically by the arbitrariness of w. If E(a,z) has

no real zeros, K(a,w,w) >0 for all real w. Since K(b,w,w) _ K(a,w,w,), as shown

in the proof of Theorem VII of [8], it follows that K(b,w,w) > 0 and that E(b,z)

has no real zeros.

Proof of Lemma 5. The lemma follows from Theorem III of [9] since con-

dition (4) of [9] is equivalent, via Lemma 8 of [9] and the present Lemma 3,

to the requirement that (ü,v)~ not belong to Ji?(M(a,b)).

Proof of Lemma 6. Since 2tf(E(a)) is contained in Jf (E(b)), F(z) G(w) - G(z)F(w)

belongs to JP(E(b)) as a function of z for every complex number w. Since this

function vanishes when z = w and since £(2>,z) has no real zeros,

iFiz) Giw) - G(z) Fiwf] Hz-w)

belongs to tf(E(b)). We may write

F(z)=F1(z) + F2(z),

where FA\z) is in J^(E(a)) and F2(z) is orthogonal to <?f (£(a)). The above argument

will show that [Fi(z)G(w) - G(z)Fi(w)'\l(z - w) belongs to Jt°(E(á)\ since

E(a,z) has no real zeros by hypothesis. Since L(z) is assumed orthogonal to

Jif(E(a)), it is sufficient to prove the lemma in the case that F(z) = F2(z) is ortho-

gonal to ¿f (E(a)). By Lemmas 4 and 5, we may write

F(z) = A(a,z)P(z) + B(a,z)Q(z),

where (F(z),Q(z))- is in^f(M(a,b)). Furthermore, we know from Lemma 1 that

[P(z)-P(wï]l(z-w) \

[ß(z)-ß(w)]/(z-W) ;(
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belongs to 3f(M(a,b)) as a function of z for every complex number w. By Lemma 4,

na - m        q(z) - «»)
z — w z — w

is in^(£(ft)) and is orthogonal toJf (£(a)). Since

F(z)G(w) - G(z)£(w)

z — w

z-w z-w

+   r A(a,z)G(w)-G(z)A(a,w) 1 ^

+   rP(a,z)G(w)-G(z)P(a,w)1  ^

where the last two terms on the right are in 3^(E(a)),

F(t) G(w) - G(t) £(w)

P(t) - P(w)

y F(t) G(w) - (J(t) F(W)^ L(í) K

= G(w) <A(a,t) r-^p- + JK«,0 2^f^, K0> •

Therefore, the desired entire function /(z) exists and

m . <>,«>ffi^i + *(«,,) «!I^|W, «,)>

for all complex w. By Lemma 4 we may write

L(z) = A(a,z) R(z) + B(a,z) S(z),

where (J?(z), £(z))~ is in.?f (M(a,b)) and

(41) 2f(w) = <f ( [P(<) - P(W)] /(í - W) Ï     i*(0 ï Sm)   N l [ö(o - e(w)]/(i-w); • U(oJ /

for all complex w. By Theorem IV of [8], the property (2) of M(a,b,z) implies

that the entire entries of this matrix have exponential type and satisfy (4). An

estimate from (26) using the Schwarz inequality will show that P(z) and Q(z)

have exponential type and satisfy (4). By the proof of Lemma 1, J^(M(a,b))

inner products can be evaluated as integrals along the real axis with respect to

a suitable measure. Estimates from (41), similar to those for the lemma of [2],

will now show that/(z) has exponential type and satisfies (4).



1962] SOME HILBERT SPACES OF ENTIRE FUNCTIONS. IV 63

Formal proof of Lemma 7.   From the definition of ß(x), we have

r2" du
ß(x) ß'(x)  =   I      u(x + iy) -fa(x+ iy) dy,

Q'(x)2 + Q(x) Q"(x) = £" -^-(x + iy) ^ (x + iy)dy

r2" d2u
+ u(x + iy) -fa-2ix + iy) dy,

where by the Schwarz inequality

ß(x)2ß'(x)2 = ß(x)2 £" -^ (x + iy) |^-(x + iy)dy .

Since a, a-,
d2U, .  .       d2U . .  .   .     A
^(x + !y) + ^(x + Iy) = 0

because u(x + iy) is subharmonic,

d^u

dy2
ß(x)ß"(x)= - f 'uix + i)

/•2a

= "a~ (* + ty) T~" (x + '3') ^
Jo

•2* 3m  .       . . ou

-w(x+iy)w

on integration by parts. If an absolutely continuous function /(x) of real x van-

ishes outside of a finite interval (a,b) and has a square integrable derivative, then

n2 j \f(t)\2dt = (b-a)2j \f'(t)\2dt.

For each fixed x, u(x + iy) vanishes outside of a union of y-intervals whose

total length is 2 n p(x) in each period. Application of this inequality on vertical

line segments yields

u(x+iy)2dy = 4p(x)2 -=— (x + iy) -=— (x + iy) dy.
Jo Jo    oy dy

Therefore, ß"(x) = 4^1p(x)~2ß(x), and

[ßWß'W]' = ß'W2 + 4"1pW_2ßW2 = PW_1ßWß'W,

from which the lemma follows.
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Proof of Lemma 8.   If

"i(z) = log+ |/(exp z) | , u2(z) = log+ | a(expz) |,

then each u¡(x + iy) satisfies the hypotheses of Lemma 7. Let Q¡(x) and p,(x)

be the corresponding quantities as in the statement of the lemma. Because of

(31), either ux (x + iy) = 0 or w2(x + iy) = 0 whenever | sin>> | ^ exp(-x), from

which it follows that
Pi(x) + p2(x) ^ l + e~x

and that

Pi(xT1+p2(x)-1^ 4e7(ex+l).

Now argue by contradiction, supposing that neither f(z) nor g(z) is a constant.

By Liouville's theorem, Qt(x) and ß2(x) are unboundedly large on the right.

As a result of Lemma 7, there is a number k > 0 for which the inequalities

Qt(x)2^2k   J^exp (Jko-1 dt)du,

i = 1,2, hold when x ^ a is sufficiently large. By the convexity of the exponential

function

Qi(x)2 + Q2(x)2

£4fc  fexpíi [ Pi(t)~ldt + i  f"p2(0_1d0 du
Jo Jo Jo

^ 4fc Texp (2 f(e'+ l)"1 e'dtyu

(eu + l)2duikil
0

when x ^ a. It follows that

lim infe-^ßiix^ + ß^x)2] ^ i/c > 0

in contradiction of the minimal type hypotheses in the form

lim sup e~x Qi(x) = 0,

i = 1,2. To get out of this dilemma, we must grant that one function, say g(z),

is a constant. If g(z) is not zero, then (31) implies that/(z) goes to zero at both

ends of the imaginary axis and so vanishes identically by Boas [1, p. 83].

Proof of Lemma 9. If/(z) and g(z) are of minimal exponential type, the lemma

follows from Lemma 8 after a change of variable. Otherwise, one function, say

/(z), has positive type x. By the Ahlfors-Heins theorem, Boas [1, p. 116],

limr~1log|/(rei<')|  = x|sin0|
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holds as r -+ co for almost all 6. We use this deep fact only to conclude that

lim/iVr1  = 0

holds as r -» co for almost all 6, from which our hypothesis (32) now implies that

lim gire") = 0

holds as r -* co for almost all 8. Since g{z) has exponential type for hypothesis,

the Phragmen-Lindelöf principle, Boas [1, p. 3], applies for angles less than n.

With several applications of it, we find that g(z) remains bounded in the complex

plane. By Liouville's theorem, g(z) is a constant, which is zero by the last limit.

Proof of Lemma 10. If L(z) is an element of Jf (E(b)) orthogonal to 3t(E(a)),

the corresponding entire function /(z), given by Lemma 6, has exponential type

and satisfies (4). By the Schwarz inequality,

|/(z)G(z)| = |yr[||F|| |G(z)| + |G|| |F(z)|] | L ||

holds for all complex z. Since we may choose G(z) = K(a,w,z) where w is any

complex number, we have

|/(z)| = \y\-li\F\  + K(a,z,zTv>\F(z)\\ \\L\\

for all complex z. Since (33) holds by hypothesis, f(z) goes to zero at both ends

of the imaginary axis. Since the indicator diagram of/(z) is a vertical line segment

because of (4), this function has minimal exponential type and vanishes identi-

cally by Boas [1, p. 83]. By the arbitrariness of L(z), the expression

[F(z)G(w)-G(z)F(w)]/(z-w)

belongs to 3^(E(ctf) as a function of z for every complex number w. As in the

proof of Lemma 11 of [9], the hypothesis (33) now implies that F(z) belongs

to J^(E(a)).

Proof of Theorem I. If F(z) is in J?(E(a)) and if G(z) is in J^(E(b)), the function

[F(z)G(w)-G(z)F(w)~]l(z-w) is in^f(£(c)) since E(c,z) has no real zeros.

We will show that it must belong either to Jf (E(a)) or to Jf(E(b)). In doing so,

we can suppose that neither F(z) nor G(z) vanishes identically, since the con-

clusion is obvious in that case. If L(z) is in 2?(£(c)) and is orthogonal to 3/F(E(a)),

and if T(z) is in J^(E(c)) and is orthogonal toJt(E(b)), consider the functions

f(z) and g(z) defined as in Lemma 6 so that

(42) mm  = < »WOW-CMW my
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for all complex w. The Schwarz inequality yields estimates

|a(z)£(z)| Ï |j»r[|Gl|f<z)| + ||£|||G(z)|] \\L\\,

\f(z)G(z)\  Ï  \y\-ll\\F¡\G(z)\ + ||G||F(z)|] UT!,

which imply that

|,|á ||G|||L|||a(z)|-1 + |F|| || T« |/(z)|~>

for all complex z, if L(z) and T(z) do not vanish identically. By Lemma 6, /(z)

and g(z) are entire functions of exponential type which satisfy (4). If they are real

for real z, we may conclude from Lemma 9 that either /(z) or g(z) vanishes

identically. This is the case if F(z), G(z), L(z), and T(z) are all real for real z,

and the general case is easily reduced to this one using (H3). By the arbritari-

ness of L(z) and T(z), [£(z) G(w) - G(z) £(w)] / (z - w) belongs to Jf(E(a)) as

a function of z for all complex w, or it belongs to 3f(E(b)) as a function of z

for all complex w, whenever F(z) is in^f(£(a)) and G(z) is in J^(E(b)). Further-

more, it is clear from the proof that one of the spaces, eitherJf(E(aj) or J*i?(E(b)),

must contain all such functions ^F(z)G(w) — G(z)F(w)~]¡(z — w). For definiteness

let us suppose it is ¿?(E(a)).

If g(z) is an element of Jf(E(b)) whose product by z is in 3^(E(b)), we have

[F(z)wG(w) - zG(z)F(wf] ¡(z-w) inJf (£(a)) for every £(z) in^f(£(a)) and

every complex number w. Since E(a,z) has no real zeros by hypothesis, such a

choice of F(z) is possible with £(0) = 1. When w =0, we find that G(z) is in

Jf(E(a)). If such elements G(z) are dense in ¿f(£(&)), we may conclude immed-

iately that Jf (E(b)) is contained in Jf(E(a)). Otherwise, let G0(z) be the choice

of an element of norm 1 in Jt(E(b)) which is orthogonal to the domain of mul-

tiplication by z in this space. By Theorem I of [9], G0(z) spans the ^orthogonal

complement of this domain. Therefore, the orthogonal complement of G0(z) in

J^(E(b)) is contained in J^(E(a)). If G0(z) belongs to Jf?(E(a)), then ^(E(b)) is

contained mJ^(E(a)). We must still study the case in which G0(z) does not be-

long to^f(£(a)).

Let us write G0(z) = [G0(z) - S(z)~\ + S(z), where G0(z) - S(z) is in Jf(E(a))

and S(z) is orthogonal to<?f(£(a)). We have seen that

[£(z)G0(tv) - G0(z)F(wf\l(z - w)

belongs to 3^(E(a)) for every £(z) in J^(E(a)) and every complex number w.

Since E(a, z) has no real zeros by hypothesis, the same is true if G0(z) is

replaced by any element of ^f(£(a)). It follows that [£(z)S(w)-S(z)£(w)]/(z-w)

belongs to^f(£(a)) for every £(z) in^(£(a)) and every complex number w.

The argument of [9, p. 132] will now show that there exist complex numbers u

and v such that S(z) = A(a,z)u + B(a,z)v for all complex z. Furthermore, these

numbers satisfy üv = vu and are not zero both. The space 3V(E(b)) is contained
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in the closed span of S(z) and Jf (£(a)), and this span is itself a Hubert space of

entire functions satisfying (HI), (H2), and (H3). By the theorem of [7], there is

an entire function £(z) which satisfies (1) and such that this closed span is equal

isometrically to Jf(E). The function £(z)can have no real zeros since Jf(E) con-

tains .?f(£(a)) isometrically and E(a,z) has no real zeros by hypothesis. In order

to avoid new notation, let us simply suppose for the rest of the proof that

E(c,z) coincides with £(z).

If F(z) is in J^(E(a)) and if G(z) is in ¿t°(Eb)), the function

zG(z)F(w)-F(z)wG(w)   _G(:)F(w) , wG(z)F(w) - F(z)G(w)
Z — W \  )     \   I Z — W

belongs to 3f(E(c)) as a function of z for every complex number w. Since S(z)

is orthogonal to Jf(E(a)) and since [G(z)F(w) - F(z)G(w)~\l(z - w) is known

to be in ^f(£(a)),

^)F(w)-nt)wG(w) t s(i)> =F(w)<G(i)jS(t)>

for all complex w, where we can have <G(í),S(í)> = 1 if G(z) is suitably

chosen. In this case, we have

G(iy)-1F(iy) = oi\y\)

as | y | -» co, by the Lebesgue dominated convergence theorem. If T(z) is in

J?(E(c)) and is orthogonal to J*i?(E(b)), we have seen that (42) holds for an entire

function /(z) of exponential type which satisfies (4) and

/(^^lyl-IlFlIlIrlI+yl-lGízr^ízíllGlUlTlI.
Since f(z) goes to zero at both ends of the imaginary axis, it has minimal ex-

ponential type by Boas [1, p. 97] and vanishes identically by Boas [1, p. 83]. By the

arbitrariness of T(z), the expression [F (z) G (w) — G (z) F'(w)~\¡(z — w) belongs

to J^f(E (b) ) as a function of z for every complex number w. In our derivation

of this fact, we supposed that <G(i),S(f)> = 1, but this hypothesis can now be

removed by linearity.

If F(z) is an element of J^(E(a)) whose product by z is in je(E(a)), then

F(z) must belong to ^f(£(b)) by an argument already used above with a and b

interchanged. If such elements are dense in ^f(£(a)), the inclusion of Jf(E(a))

in Jt(E(b)) follows. Otherwise, let F0(z) be an element of norm 1 in Jf?(E(a))

which is orthogonal to the domain of multiplication by z in this space. By Theo-

rem I of [9], we can conclude that the orthogonal complement of F0(z)in ^(E(a))

is contained in Jt(E(b)). If F0(z) belongs to J^(E(b)), then certainly ¿f(E(a))

is contained in ¿f(E (b) ). Otherwise (and we shall see this impossible) the ortho-
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gonal complement of f0(z) in Jf(E(a)) coincides with the intersection of¿f(£(a))

and Jf(£(b)). Since [£0(z)G0(w)— G0(z)£0(w)]/(z - w) is known to belong to

this intersection, which is orthogonal to both F0(z) and G0(z), we have

.,.       .    F0(t)G0(w)-G0(t)F0(w)     2

v ' t-w

= 2Rei<£0(OG0(w)-G0(0£o(w),fo(OGo(w)-_G;(OFo(w)>=0

and hence F0(z)G0(w)-G0(z)F0(w) vanishes identically if w is not real. It

follows that Jf?(E(a)) coincides with 3f(E(b)), a case which has already been

discarded in our presentation of the argument.

Proof of Theorem II. The proof is formally the same as for Theorem I

except that inner products are taken in L2(p) instead of ^f(£(c)). The entire

functions L(z) and T(z) must be replaced by measurable functions L(x) and

T(x) in L2(p). The only new verification to be made is that the conclusion of

Lemma 6 holds. For instance, if £(z) is in Jf(E(b)) and if L(x) is an element of

L2(p) orthogonal to Jf?(E(a)), we must show that there is an entire function

/(z) such that

for every G(z) inJif (E(a)) and all complex w, and that/(z) so defined has ex-

ponential type and satisfies (4). The existence of/(z) follows from the identity

which holds whenever GA[z) and G2(z): are in  ^f(£(a)) because

\Gi(z)G2(w)-G2(z)Gi(w)-]l(z-w)

belong to^f (E(a)) as a function of z for all choices of w. Simple estimates

show that/(z) is entire because F(z) and G(z) are entire by context and because

the integrals are absolutely convergent by the Schwarz inequality. Since £(z)

and G(z) are of exponential type and satisfy (4) as a result of the hypotheses on

E(a,z) and E(b,z), the function/(z) G(z) has exponential type and satisfies (4)

by the proof of the lemma of [2]. Since G(z) has exponential type and satisfies

(4), the same follows for/(z) using the representation theorem of Boas [1, p. 92].
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Proof of Theorem III. Since M(a, b, z) and M(b, d, z) are matrix valued

entire functions which satisfy (2) by hypothesis, M(a, d, z) = Mia, b, z) M(b, d, z)

is a matrix valued entire function which satisfies (2). Let u and v be complex

numbers, not both zero, such that üv = vu. If there exist complex numbers ut

and vlt not both zero, such that («i,t>i)~ belongs toM'(M(a,d)), choose u and v

so that uvi # utv. By Lemma 2, (ü,v)~ cannot then belong to 3^(M(a,d)). The

function E(a,z) = 1 — nuvz — inuüz satisfies (1), and u = A(a,z)u + B(a,z)v

is an element of norm 1 in 3t?(E (a) ) which spans this space. If A (d, z) and B (d, z)

are the entire functions defined by

(A(d,z),B(d,z))=(A(a,z),B(a,z))M(a,d,z),

they are real for for real z, and £(d, z) = A(d, z) — iB(d, z) satisfies (1) by Lemma

4. The space yf(E(a)) is contained isometrically in the space Jf(E(d)). Since

iü,v)- does not belong to Jf(M(a,d)) by construction, it does not belong to

Jf(M(a,b)) by Lemma 3. The entire functions A(b,z) and B(b,z), defined by

(3), are real for real z, and E(b, z) = A(b, z) - iB(b, z) satisfies (1). By Lemma 4,

Jf(E(a)) is contained isometrically in 3^(E(b)). By this construction, we have

(A(d, z), Bid, z) ) = iAib, z), B(b, z) ) M(b, d, z)

for all complex z, but we cannot conclude that J^(E(b)) is contained isometrically

in^f(£(d)) as there may be numbers u2 and v2, not both zero, such that iü2,v2)~

belongs to 3t(M(b, d)) and A(b, z)u2 + B(b, z) v2 belongs to Jt(E(b)). By Lemma

2, we then have ü2v2 = v2u2. By Lemma 3, we may write

M(b,d,z)=Mb,b +,z)M(b+,d, z),

where M(b+,d,z) is a matrix valued entire function which satisfies (2) and

A(b,b + ,z) = 1 - ß2z,   B(b,b+,z) = a2z,

C(b,b + ,z)= -y2z,   D(b,b+,z) = l + ß2z,

where <x2,ß2,y2 are real numbers, not all zero, such that

a2 = 0, y2 ^ 0, ßl = a2y2,   a2v2 = ß2u2,   ß2v2 = y2u2.

As in the proof of the lemma, we make the construction in such a way that

(ü2,v2)~ does not belong to ^f(M(h+,d)). The entire functions A(b+,z) and

B(i?+,z), defined by

(Aib+,z),B(b+,z))=(A(b,z),B(b,z))M(b,b+,z),

are real for real z, and E(b+,z) = A(b+,z), - iB(b+,z) satisfies (1). The space

.Jf(£(&)) coincides with J^(E(b+)) as a set, and

Aib,z)u2 + B(b,z)v2 =A(b+,z)u2 + B(b+,z)v2
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has a smaller norm in the second of these spaces. The orthogonal complement

Jt of this function in the first space coincides isometrically with the orthogonal

complement of the same function in the second space. By this construction,

we have

( A(d, z), B(d, z) ) = (A(b +, z), Bib +, z) )Mib + , d, z)

for all complex z. If u3 and v3 are complex numbers such that (u3,v3)~ belongs

to J>if(M(b+,d)), then ü3v3 =v3u3 by Lemma 2 and u3v2 # v3u2 by the choice

of M(b+,d,z). Since A(b+,z)u2 + B(b+,z)v2 belongs to J^(E(b+)) by construc-

tion, A(b+,z)u3 + B(b+,z)v3 does not belong to Jt(E(b+)) unless both u3 and

v3 are zero, by Lemma 7 of [7]. By Lemma 4, 3f(E(b+)) is contained isometri-

cally in J^(E(d)). Since M(a,b,z) and M(b,b+,z) are matrix valued entire func-

tions which satisfy (2), so is

M(a,b + ,z) = M(a,b,z)M(b,b + ,z).

Since
M(a,d,z) = M(a,b+,z)Mib+,d,z),

where (ü,v)~ does not belong to Jf(M(a,d)) by construction, we may conclude

that (ü,v)~ does not belong to Jf(Ma,b+)) by Lemma 3. Since

(A(b+,z),B(b+,z))=(A(a,z),B(a,z))M(a,b+,z),

Jf(E(a)) is contained isometrically in Jf(E(b+)) by Lemma 4. By Theorem II

of [8], Jt is a Hubert space of entire functions which satisfies (Hl), (H2), and

(H3) when considered in the metric of J^(E(b+)). It cannot be the zero sub-

space of 3>?(E(b+)), for if JiT(E(b+)) had dimension 1, Jf(E(a)) would fill this

space and Mia, b, z) would be a constant as a result of Lemma 4. It would follow

that both factors M(a,b,z) and M(b, b+,z) are constant by Theorem IX of [9],

whereas ot2,ß2,y2 are not all zero by construction. The only alternative, then,

is that Jt contains a nonzero element. By [7], Jt is equal isometrically to

J?(EifiS)), where £(b_,z) is an entire function which satisfies (1). This function

has no real zeros because of Theorem II of [8]. By Lemma 5, there is a unique

matrix valued entire function M(ft_,b+,z), satisfying (2), such that

(A(b + ,z),B(b + ,z))=(A(b„,z),B(b-,z))M(b_,b + ,z)

for all complex z. By Theorem I of [8], we may choose £(fc_,z) in such a way

that M(i>_,2?+,0) = 1. By construction, the function A(b+,z)u2 + B(b+,z)v2

spans the orthogonal complement of <?f(£(i>_)) in Jf(E(b+)). By Lemma 4,

(û2,v2)- belongs to J^iM(b-,b+)) and spans this space, and

A(b^,b+,z) = 1 — ßz ,   B(b-,b + ,z) = az ,

C(i_,fc+,z) = -yz,   D(b_,b + ,z) = 1 + ßz,
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where a,/?, y are real numbers, not all zero, suchthat a = 0, y _ 0, /?2 = ay,

av2=ßu2, ßv2=yu2. Since JP(£(&_)) is contained isometrically in Jf (E(b)),

we have similarly

(A(b,z),B(b,z))=(A(b-,z),B(b-,z))M(b_,b,z),

where

A(b_,b,z)    = 1 — ßiZ,  B(o_,b,z) = ajZ,

C(b-,b,z)   =   -7lz,  D(b.,b,z) - 1 + jV,

and a1,j81,y1 are real numbers, not all zero, which satisfy

«i^0,   y1=0,   /î2=a1y1,   a.lv2=ßiu2,   ßiV2=yiU2.

Since

(A(6 + ,z),B(& + ,z))=(A(6_,z), B(b_,z))M(b_,b,z)M(b,b + ,z),

we have

M(6_, 6 + , z) = M(b_,b, z)M(b, b + , z)

by the uniqueness part of Lemma 5, and hence

a = a!+a2,   ß=ßi+ß2,   y = yt + y2.

Since Jf(£(a)) and Jf(£(b_)) are contained isometrically in J^(E(b+)), either

je(E(a)) contains Jf(£(&_)) or¿r*(£(í>_)) contains Jf(£(a)) by Theorem I. Since

3f(E(a)) has dimension 1 by construction and since Jf(£(i>_)) contains a nonzero

element, Jf(E(a)) is contained in Jf(£(6_)). By Lemma 5, there is a unique

matrix valued entire function M(a,b-,z), satisfying (2), such that

(A(b_,z),B(b^,z))=(A(a,z),B(a,z))M(a,b_,z)

for all complex z. Since

(Aib,z),B(b,z)) = (A(a,z),B(a,z))M(a,b^,z)M(b-,b,z),

M(a,b,z) = M(a,b.,z)M(b-.,b,z)

by the uniqueness part of Lemma 5.

A similar construction can be made with b replaced by c. There are entire func-

tions E(c_,z) and E(c+,z) which satisfy (1) and

L4(c_,z), B(c_,z)) = (A(a,z), B(a,z))M(a,c.,z),

L4(c,z), Bicz)) = iAicz), B(c_,z))M(c_,c,z),

(i4(c+,z), B(c + ,z)) = iAicz),    B(c,z))M(c,c+,z),

(A(d,z), Bid,z)) = iAic+,z), B(c+,z))M(c+,d,z),

where Mia,c_,z), Mic_,c,z), Mic,c+,z), M(c+,d,z) are matrix valued  entire

functions which satisfy (2) and

M(a,c,z)    = M(a,c-,z) M(c^,c,z),

M(c,d,z)    = M(c,c+,z) M(c+,d,z)
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for all complex z. The diagram of isometric inclusions

Jf (£(a)) cz JT(£(c_)) cz ¿f (£(c+)) cr 3V(E(d))

holds,  and  M(c-,c,z),  M(c,c+,z),  M(c-,c+,z)  = M(c-,c,z)M(c,c+,z)  are

linear functions with value 1 at the origin.

IDf (E(b+)) is contained in J?(E(c_)), then by Lemma 5,

(A(c-,z), B(c_,z)) = (A(b+,z), B(b + ,z))M(b + ,C-,z),

where M(b+,c_,z) is a matrix valued entire function which satisfies (2). In this

case,

M(b,c,z) = M(b,b+,z)M(b+,C-,z)M(c-,c,z)

is a matrix valued entire function which satisfies (2) and

(A(c,z), B(c,z)) = (A(b,z), B(b,z))M(b,c,z)

for all complex z. Since

(A(c,z), B(c,z)) = (A(a,z), B(a,z))M(a,b,z)M(b,c,z)

for all complex z, we have

(43) M(a,c,z) = M(a,b,z)M(b,c,z)

by the uniqueness part of Lemma 5, and

M(b,c,z) = M(a,b,z)~l M(a,c,z)

satisfies (2) in this case. Otherwise, Jf(E(b+)) contains ^f(£(c_)) properly by

Theorem I. By the same theorem, Jt(E(b+)) contains ^T(£(c+)) or je(E(c+))

contains Jif(E(b+)). Since the orthogonal complement of ^f(£(c_)) in Jf(E(c+))

has dimension 0 or 1, 3f(E(b+)) contains Jf(E(c+)) in this case.

If ^f(£(c+)) is contained in 3t(E(b-)), a similar argument will show that

M(a,c,z)~i M(a,b,z) satisfies (2). Otherwise,Jf(E(c+)) containsJP(E(b+)). Be-

cause of double inclusions, we have now only the case to consider in which

Jf(E(b+)) is equal to 3>iC(E(c+)). We may suppose that the inclusions of 3f(E(bJ))

in J*t(E(b+)) and Jf(E(c_)) in ^f(£(c+)) are proper since otherwise we fall into

a case already considered. Either Jf(E(bJ)) contains ^f(£(c_)) or Jf(E(c_))

contains Jf (E(b-)), by Theorem I. Since the orthogonal complement of J^(E(b-))

in J^(E(b+)) and the orthogonal complement of 3f(E(c_)) in ¿f(£(c+)) have

dimension 1, we must then have Jf(E(b-)) equal to Jf(E(c-)).

By Theorem I of [8], there are constant matrices M(b-,C-,z) and M(b+,c+,z),

satisfying (2), such that

(A(c_,z), B(c_,z)) = (A(b-,z), B(b-,z))M(b-,C-,z),

(A(c+,z), B(c+,z)) = (A(b + ,z), B(b+,z))M(b+,c+,z)

and hence
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(A(c+,z), P(c+,z))= (A(b.,z), B)b.,z))M(b.,b+,z)M(b+,c+,z),

(A(c+,z), B(c+,z)) - (A(b.,z), B(b-,z))M(b-,C-,z)M(c-,c+,z)

for all complex z. By the uniqueness part of Lemma 5,

M(b-,b+,z)M(b+,c+,z) = M(b-,C-,z)M(c-,c+,z).

Since M(b-,b+,z) and M(c-,c+,z) are constructed with value 1 at the origin,

M(b-,c-,z) = M(b+,c+,z). If we denote this constant matrix by P, it has real

entries of determinant 1, and

M(c.,c+,z) = P~1M(b-,b+,z)P

for all complex z. Since we have linear matrix valued functions which satisfy (2)

and have value 1 at the origin,

M(b.,b,z)  = 1 + M'(b.,b,z)z,

M(b,b+,z)  = 1 + M'(b,b+,z)z,

where M'(b-,b,z) and M'(b,b+,z) are constant matrices which satisfy the

matrix inequalities

M'(b.,b,z)I > 0 and M'(b,b+,z)I ^ 0 .

The same statement is true when b is replaced by c. Since M(b-,b+,z) is linear,

M'(b-, b, z) and M'(b,b+, z) are linearly dependent and M'(b-,b+,z) = M'(b-,b,z)

+ M'(b,b+,z). Again the statement is true when b is replaced by c.

Since

M'(c.,c+,z) = P-1M'(b-,p+)z)P,

we have an identity

P~lM'(b-,b,z)PI + P~lM'(b,b+,z) PI = M'(c-,c,z)I + M'(c,c+,z)I,

in which the four matrix terms are non-negative and are scalar multiples of a

single matrix. Since the real numbers are totally ordered, either

P~lM'(b-,b,z)PI g M'(c_,c,z)7
and

p-1M'(b,b+,z)PI ^ M'(c,c+,z)I,
or

p-^M'ty.^z)?! ^ M'(c^,c,z)I
and

P~1M'(b,b+,z)PI ^ M'(c,c+,z)I.

If the first pair of inequalities holds, then

M(b,c,z)    = M(f>_Az)-1 M(b-,c,z)

= M(a,b,z)~1M(a,c,z)

satisfies (2). If the second pair of inequalities holds, then
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M(c,b,z)    = Micczy^ic.^^)

= M(a,c,z)~lM(a,b,z)

satisfies (2).

Proof of Theorem IV. The intersection of JP(E(b)) and <?f(£(c)) is a Hubert

space of entire functions which satisfies (HI), (H2), and (H3) when considered

in the metric of L2ifi), since ^f(£(b)) and 3f(E(c)) each have these properties.

Since the intersection contains a nonzero element by hypothesis, it is equal iso-

metrically to 3^(E(a)), where E(a,z) is an entire function which satisfies (1).

Since E(b,z) has no real zeros by hypothesis, F(z)¡(z-w) belongs to 3^(E(b))

whenever F(z) belongs to ¿P(E(b)) and F(w) = 0. Since ̂ (E(c)) has this property

for the same reason, so does <?f (E(a)). It follows that E(a, z) has no real zeros

and that Lemma 5 applies. Let M(a,b,z) and Mia,c,z) be the unique matrix

valued entire functions satisfying (2) such that (3) and (43) hold for all complex z.

If ub and vb are complex numbers, not both zero, such that iüb,vb)~

belongs to 3^(M(a,b)), then Aia,z)ub + Bia,z)vb does not belong to Jf(E(a)).

The same statement is true if b is replaced by c. As a result of Lemma 2, each

such pair of numbers is unique within a constant factor if it exists. For our con-

struction, it is convenient to suppose that neither ub nor vb is zero if such a pair

(üb,vb)~ exists, and that neither uc nor vc is zero if (üc,vc)~ exists. Such

a situation can always be obtained by a rotation, as in the proof of Lemma 1,

at the cost of altering £(a, z) according to Theorem I of [8]. To prove the. theorem,

we must show that Jf(E(a)) is equal either to ¿?(E(b)) or to JC (£(c)), or in other

words that M(a,b,z) or M(a,c,z) is a constant. We will argue by contradiction,

supposing that neither of these functions is constant.

Since 3tf (E(b)) is contained isometrically in L2(p), Theorem V of [8] applies.

There is a unique function W(b,z), defined and analytic for y >0, such that

|rF(fc,z)| ^ 1 and

y_ f \E(b,t)\2dp(t) E(b,z) + £*(fe,z) W(b,z)
n )    it-x)2 + y2    '       Eib,z) - E*(b,z) W(b,z)

for y > 0. The same statement is true if b is replaced by a or c. By the proof

of necessity for Theorem IX of [8],

1 + W(a,z) _ jD(a,b,z) + iC(a,b,zy] + [D(a,b,z) - iC(a,b,z)] W(b,z)

1 - W(a,z) ~ [A(a,b,z) - iB(a,b,z)] - [_A(a,b,z) + ¿B(a,t>,z)] W(b,z)

for y > 0. The same formula holds with b replaced by c. Since we suppose that

that M(a,b,z) is not constant and that (0,1)_ does not belong to J^(M(a,b)),

the function A(a,b,z) — iB(a,b,z) satisfies (1) by the proof of Lemma 1. Since

| W(b,z)\ S L the function

f(,   ,       jA(a,b,z) - iB(a,b,z)\ + {Aja,b,z) + iBja,b,z)] Wjb,z)

n ,Z) '    [A(a,b,z) - iB(a,b,zf\ - iA(a,b,z) + iB(a,f>,z)] W(b,z)
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is defined and analytic for y > 0 and Re/(£>,z) > 0. By the Poisson representation

of a function positive and harmonic in a half-plane, there is a non-negative

measure v on the Borel sets of the real line and a number p ^ 0 such that

(44) 2. f \A(a,b,t)-iB(a,b,t)\2dV(t) =
n J (i - x)2 + y2

for y > 0. In writing the representation in this form, we use the fact that A(a,b,z)

— iB(a,b,z) has no real zeros as a result of (2) for M(a,b,z). Because of Theorems

I and II of [10], we actually have p = 0 and J^(A(a,b) — iB(a,b)) contained

isometrically in L2(v) according to Theorem V of [8]. By the proof of necessity

for Theorem IX of [8],

(45) xf    <*;('>   ,r,;+ *("■»>
x)2 + y2 1 - W(a,z)

for y > 0. A similar argument and construction can now be made with b replaced

by c. Because of (45), this substitution does not change the measure v in (44).

Therefore, 3f(A(a,b) — iB(a,b)) and Jf(A(a,c) — iB(a,c)) are contained iso-

metrically in the same L2(v). By Theorem IV of [8], A(a,b,z) — iB(a,b,z) and

A(a,c,z) — iB(a,c,z) have exponential type and satisfy (4). By Theorem II, either

3e(A(a,b) - iB(a,b)) contains J?(A(a,c) - iB(a,c)) or Jf (A(a,c) - iB(a,c)) con-

tains M'(A(a,b) — iB(a,b)); for definiteness we suppose the second alternative

holds. By our choice of ub and vb, we see as in Lemma 1 that D(a,b,z) + iC(a,b,z)

satisfies (1) and the generalized Hubert transform takes tf (A(a,b) — iB(a,b))

isometrically onto JÍ?(D(a,b) + iC(a,b)). By our choice of uc and vc, D(a,c,z)

+ iC(a,c,z) satisfies (1) and the generalized Hubert transform takes

Jt?(A(a,c) - iB(a,c))

isometrically onto ^(D(a,c) + iC(a,c)). These two transformations are con-

sistent because of Theorem X of [10], and we may conclude that Jf(M(a,b))

is contained isometrically in Jf?(M(a,c)). By the proof of necessity for Lemma 3,

the matrix valued entire function M(b,c,z) = M(a,6,z)-1 M(a,c,z) satisfies (2).

Since

(A(c,z), B(c,z))  = (A(b,z), B(b,z))M(b,c,z),

3t(E(b)) is contained in^f (E(c)). As the argument was posed, this conclusion is

a contradiction, to escape which our only alternative is to grant the theorem.

Proof of Theorem V. In case (A), let V be the set of regular points t with

the property that Jf(E) is contained in Jf(E(t)). Our hypothesis is that b belongs

to V. If t is in V, the inequality

0 < K(z,z) ^ K(t,z,z)

follows from the isometric nature of the inclusion. Since (11) holds by hypothesis,
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the set V is bounded away from zero. Since the regular points are clearly an open

set by definition, F has a least element a. If (0,a) is an interval of singular points

for mit), J^iEia)) has dimension 1 by Theorem III of [10]. Since Jf(£) is con-

tained in Jf(E(a)) and since ¿F(£) contains a nonzero element, it must coincide

with 3f(E(a)) in this case. Otherwise, there are regular points s with s <a. Since

Jf (£) is not contained in 3tf(E(s)) by the choice of a, Jf(E(s)) is contained in

¿€(E) by Theorem I. If a is not the right-hand end point of an interval of singular

points, the union of such spaces Ji?(E(s)) is dense in Jf(E) by Theorem III of

[10], and so Jf(E) coincides with ^f(£(a)) in this case. Otherwise, there is a

regular point a_ with a_ <a, such that (a-, a) is an interval of singular points.

Since the orthogonal complement of ^(£(a_)) in Jf(Eia)) has dimension 0 or

1 by Theorem III of [10], Jf(E) coincides with Jt?(£(a)) in this case also.

In case (B), let U be the set of regular points t with the property that Jf (£(<))

is contained in Jf (£). Our hypothesis is that b belongs to Í7. If t is in U, the

inequality

Kit,z,z) ^ Kiz,z) <  co

follows from the isometric nature of the inclusion. Since when z is not real,

lim X(í,z,z,) = co

by Theorem I of [10], the set Fis bounded. Since the regular points are an open

set of real numbers, V has a largest element c. If c is the largest regular point

for mit), then 5?(E(c)) fills L2(p) by Theorem I of [10]. Since 3f(E(c)) is con-

tained in <?f(£), which in turn is contained in L2(p), it follows that Jf(E) equals

Jf (E(c)) in this case. Otherwise, there are regular points s with s > c. Since ^"(£(s))

is not contained in Jf(£) by the choice of c, Jf(E) is contained in ^(£(s)) by

Theorem IV. If c is not the left-hand end point of an interval of singular points,

the intersection of such spaces ¿f (E(s)) is J^(E) by Theorem III of [10], and it

follows that Jf(E) is equal to ^f(£(c)) in this case. Otherwise, there is a regular

point c+ with c+ > c such that ic,c+) is an interval of singular points. Since the

orthogonal complement ofJif(E(c)) is^(£(c+)) has dimension 0 or 1 by Theorem

III of [10], JJf (£) is equal to 3?(E(c)) in this case also.

Proof of Theorem VI. For ease of notation our proof will suppose that

a(t) + y(() = t, as can always be obtained by a reparametrization. Let U be the

set of numbers u ^ 0 such that M(u,z)~ ' Miz) satisfies (2), and let V be the set

of numbers v Sï 0 such that M(z)~xM(v,z) satisfies (2). If u is in U and v is in V,

the product M(u,z)~1M(v,z) satisfies (2). If «gi>, this fact is in agreement

with our previous knowledge that M(u,v,z) satisfies (2). But if v ^ w, it is the

assertion that M(v,u,z)~l satisfies (2). Since M(v,u,z) has value 1 at the origin

and since its z-derivative there is

M'(vu0)  =  (W-««U«)-«W\
(,,)     \ M - yiu), ßiu) - ßiv) ) '
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the function M(v,u,z) ' has value 1 at the origin and z-derivative there equal to

— M'(v,u,0). If M(v,u,z)~l satisfies (2), we must have

a(v) — oc(u) ̂  0 and y(v) — y(u) ^ 0,

by Theorem IX of [9]. In our parametrization, it follows that u ^ v, and hence

u = v since the reverse inequality also holds. In other words, we have u ^ v

whenever u is in U and v is in V. Since 0 is in U and b is in F by hypothesis, there

is a number a in [0,i>] such that u ^ a S v whenever m is in 17 and v is in V, by

the completeness of the real numbers. If s is in [0,b], we know that M(b,z)

= Ai(s,z) M(s,b,z), where Ai(s,z) and M(s,b,z) are matrix valued entire functions

which satisfy (2), whereas M(z) and M(z)~1M(b,z) satisfy (2) by hypothesis. By

Theorem III, either M(s,z)~lM(z) or M(z)~1M(s,z) satisfies (2), or in other

words, s belongs to U or V. It follows that U contains every number s with

0 ^ s < a and that V contains every number s with a <s ^b. Therefore, there

is a sequence (u„) with u„ in U for every n,u„ ^ «„+,, and a =limu„. Since

Mfa^z)-1 M(z) satisfies (2) for every n, and since M(a,z) = lim M(u„,z), for all

complex z, M(a,z)~1 M(z) satisfies (2) and a belongs to U. A similar approxi-

mation from above will show that a belongs to V. Since both M(a,z)~lM(z) and

its reciprocal are now known to satisfy (2), this function is a constant by Theorem

IX of [9], and the theorem follows.

Proof of Theorem VII. The argument for Theorem V, A or B, applies with

an appeal to Theorem II instead of Theorem I or Theorem IV.

Proof of Theorem VIII. By Lemma 5, formula (3) holds for a matrix valued

entire function M(a,b,z) which satisfies (2). As in the proof of Theorem VII of

[8], the function

D(a,b,z) + iC(a,b,z) - A(a,b,z) + iB(a,b,z)

M(a,D,z) - D,ab¿) + iC(a,b,z) + A(a,b,z) - iB(a,b,z)

is defined and analytic for y 2; 0, | W(a,b,z) | ^ 1 there, and

*JE(a,t)IE(b,t)\2 dt E(a,z) + E*(a,z) W(a,b,z)

(f - x)2 + v2 E(a,z) — E*(a,z) W(a,b,z)

for y > 0. Since (2) holds for M(a,b,z), we have

£ (a,z)   2 E(a,z) + E*(a,z) W(a,b,z)

E (b,z)      =      E(a,z) - E*(a,z) W(a,b,z)

when y > 0. It follows that there is some real number t such that

log|£(Z»,0/£(a,i) | dt
(46) log|£(o,z)/iïia,z)|  = xy + -£ J"

(i - x)2 + y2
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for y > 0, with absolute convergence of the integral. See the proof of the re-

presentation theorem in a half-plane, given by Boas [1, p. 92]. Although he makes

an exponential type hypothesis natural in applications to entire functions, the

same argument applies under the present estimate. Formula (17) follows by the

Lebesgue dominated convergence theorem. Since |£(a,z)/£(6,z)|2 has been

given an explicit majorization by a Poisson integral, the Lebesgue dominated

convergence theorem also implies that

|£(a,iy)/£(b,iy)|  = o(y)

as y -» + co, and hence that t ^ 0. If Fiz) is in Jf (£(a)), the definition of this

space yields the estimate

|F(z)/£(a,z)|2 ^ (4^y)-1|F||2

for y > 0, where

||F||2 =   [\Fit)IEia,t)\2dt < oo.

If Fiz) does not vanish identically, as we can suppose with no loss of generality,

we may conclude that

log|F(0/£(a,0|di
log|F(z)/£(a,z)| <£ £ f

(i - x)2 + y2

for y > 0. Let Giz) = e"" Fiz) where h is fixed and — t ^ h ^ x. Since F(z) is in

¿f(£(b)) and since |G(z)| = |F(z)| for all real z,

j \Git)¡Eib,t)\2dt < co,

whereas the last inequality and (46) imply that

loglG(i)/£O,0Ut
log|G(z)/£(i>,z)|  Ú -£ $

it - x)2 + y2

for y > 0. Since «2 is a convex function of log«, Jensen's inequality yields

ig(z)/£(mi2 $ ¿ f |¿;(o/y?

for y > 0, as in Boas [1, p. 100]. Approximation from large semicircles estab-

lishes Cauchy's formula

G(t)IE(b,t)dt
°'Z; = 2^J

for y > 0, and hence also

mi).ijfmm2

0 = J_f   G(t)IEjb,t)dt
2ni J t-z
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for y < 0. By (H3), the same formulas hold when G(z) is replaced by G*(z). As

in [7], it follows that

G(w) =   ÍG(t)R(b,w,t)\E(b,t)\-2dt

for all complex w, and that G(z) belongs to Jif(E(b)).

Proof of Theorem LX. Clearly, JF is a Hubert space of entire functions which

satisfies (HI) and (H2) when considered in the metric of JF(E(b)). For each

complex number w, let K(w,z) be the unique element of Jf such that

F(w) = <[F(t),K(w,t)>

for every F(z) in ¿f. Since ^f contains a nonzero element by hypothesis, K(w,w) > 0

when w is not real by Lemma 1 of [7]. The same inequality holds when w is

real since F(z)¡(z — w) belongs to $? whenever £(z) belongs to JF and F(w) = 0,

by hypothesis. By the same lemma, K(z,w) = K(w,z) for all complex z and w.

By Lemma 3 of [7], K(w,z) satisfies an identity which is equivalent to the exis-

tence of entire functions .4(z) and B(z) such that

2n(z - w) K(w,z) = B(z) À(w) - A(z) B(w)

for all complex z and w. When z = w, we find that B(z)A*(z) = A(z)B*(z).

These functions may be chosen in a number of ways and in particular so that

¿(0) = 1 and B(0) = 0. Since

2ni(w-z)K(w,z) = [A(z) - iB(zf\ [A(w) - iB(vv)]~

- lA(z) + iB(z)-][A(w) + iB(w)]-

and since K (w, w) > 0 for all complex w, we see that ^4(z) — iB(z) has no zeros for

y ^ 0 and that .4(z) + iB(z) has no zeros for y ^ 0. Therefore,

A*(z) - iB*(z) _ A*(z) + iB*(z)

A(z) - iB(z)   ~   A(z) + iB(z)

is an entire function which has no zeros. Since it has value 1 at the origin by

construction, we may write it as U(z)2, where U(z) is an entire function with

value 1 at the origin, and which also satisfies U(z)~x = U*(z). It follows that

A(a, z) = A(z) U(z) and B(a, z) = B(z) U(z)

are entire functions which are real for real z, and that E(a,z) =A(a,z) — iB(a,z)

satisfies (1) and has no real zeros. Since

K(a, w, z) = K(w, z) U(z) D(w)

for all complex z and w, the transformation £(z) -> £(z) U(z) take ^f isometri-

cally onto^f(£(a)) by the proof of Lemma 3. Since J? is contained inJ^(E(b)),

K(w,z) belongs to^f(£(i>)) as a function of z for every complex number w.
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As in the proof of Theorem VIII, there is a number t+ ^ 0 such that

,._.     ,        Aiz) - iBiz) y   r,
(47)    l0g        £(fr,z) --^ + ijtog

¿it) - W)
£(6,0

dt
it - x)2 + y2

holds for y > 0, with absolute convergence of the integral. Because of (H3),

the same formula holds when Aiz) is replaced by A\z) and Biz) is replaced by

B*iz), if T+ is replaced by t_ ^ 0. If 2h = x+ — t_, we obtain

M«wl-» + iJ$^log 117(01A
y2

for y > 0. Since L7(z) has absolute value 1 on the real axis and value 1 at the

origin, U(z) = e~lhz. Therefore, if Fiz) is in ^(£(a)), the function e,7,IF(z) be-

longs toJf and hence toJf(Eib)). By (H3), e~""F*iz) also belongs to Jf(£(ft)).

If Fiz) is real for real z, this function must now satisfy the defining inequality of

3f(E(b)) and hence belong to this space. Since ̂ f(£(a)) satisfies (H3), the inclu-

sion of JfiEia)) in JfiEib)) follows. The inclusion is isometric because

F(z) -* eihz F(z) takes ^(£(a)) isometrically into ^(£(b)) by construction and

because elhz has absolute value 1 on the real axis. Since (47) holds and t7(z) has

been determined, we may deduce (46) with 2t = t+ + t_, and so — t ^ h ^ r.

Proof of Theorem X. By Theorem VIII,

t(a, b) - lim  y-1 log | £(b, iy)¡Eia, iy) \
y-* +QO ' '

exists. From (3) we have

2£(è, z) « £(a, z) [A{a, b, z) - iBia, b, z) + Dia, b, z) 4- iCia, b, z)]

+ E*ia, z) \_Aia, b, z) - iBia, b, z) - D(a, b, z) - iCia, b, z)]

where |£*(a,z)| <|£(a,z)| for y>0. Therefore,

| £(b, z)/Eia, z) | á | Ma, b, z) - iBia, b,z) \ + \ Dia, b, z) + iCia, b, z) |

for y > 0, and the inequality

xia,b)£ j &Mt'(i)-ßWi*dt

follows from Theorem X of [9]. The reverse inequality follows from the proof

of that theorem.

Proof of Theorem XI.  Since m(0 has no singular points by hypothesis, the

space Lo(m) °f [10] coincides with L2 (m). Because of (19),

ifit),git))-+fit)uit) + git)vit)

is a linear isometric transformation of L2im) onto L2(0, co). The theorem now
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follows from Theorem III of [10]. A factor of n is inadvertently omitted from

the left-hand side of formula (11) of [10]. It should be placed so as to match

the corresponding factor in formula (10) of that paper.

Proof of Theorem XII.   Since u(t) and v(t) are in L2(0,1) and since (24)

holds, the matrix valued function m(t), defined by

<x(a) =       u(t)ü(t)dt,

ß(a)=   i u(t)v(t)dt     =   I   v(t)ü(t)dt,
Jo Jo

y(a) =   I   v(t)v(t)dt
Jo

satisfies (6) for 0 S í ^ 1. The same formulas may be used to define m(t) for

t 2 1 if u(t) and v(t) are suitably extended. For example, u(t) = 1 and v(t) = t

are a possible choice for t ^ 1. The function m(t) so defined satisfies (6), (7),

(8), and (9). Since u(t) and v(t) are assumed linearly independent when restricted

to any subinterval of [0,1], the function m(t) has no singular points in this inter-

val. If (M(t, z ) ) is the corresponding family of matrix valued entire functions

defined by (12), we write £(i, z) = A(t, z) - iB(t, z). Since <x(a) > 0 for a > 0

by our linear independence hypothesis, E(a, z) satisfies (1) when a > 0. The

equation (12) for the family (M(t,z)) implies (10) and (11) for the family (E(t,z)).

If/(i) belongs to L2(0,1), let its eigentransform £(z) be defined according to

part A of Theorem XL If g(t) is in L2(0,1) with eigentransform G(z), and if/ = Tg,

then

nw

w

F(w) = w í   f(t)[A(t,w)u(t) + B(t,w)v(ty]dt

|     i   g(x)[u(t)v(x)-v(t)ü(x)']dx
Jo   Jo

x [A(t, w) ü(t) + B(t, w)v(t)] dt

= w ¡  g(x) f lu(t)v(x)-v(t)ü(x)~]
Jo Jo

x [A(t, w) u(t) + B(t, w)iJ(i)] dt dx

=    |   g(x) \_A(x, w) ü(x) 4- B(x, w)v(x)

- A(x, 0) w(x) - B(x, 0)iJ(x)] dx

= TtG(w)-nG(0)
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for all complex w by (12) and (20). Interchange of the integrals is justified because

the double integral converges absolutely by the Schwarz inequality. Let^f be

the set of all eigentransforms Fiz) of elements fit) of Jt. Since Jt is a closed

subspace of L2(0,1) by hypothesis and since (21) holds, ¿F is a closed subspace

of ^f(£(l)). Since Tg belongs to Jt whenever g belongs to Jt by hypothesis,

[Giz) - G(0)]/z belongs to Jf whenever Giz) belongs to Jf by what we have

shown above. By Theorems III and IV of [8], [F(z) — F(w)~\/(z — w) belongs

to Jf(E(l)) whenever F(z) belongs to Jf(E(l)), for every complex number w.

Since the transformation R(w):Fiz)-*f_F(z) — Fiw)~\Hz — w) has a closed graph

in ¿f(£(l)) as a result of (H2), it is bounded. The closed graph theorem can be

avoided here at the cost of explicit estimates from Theorem III of [8]. It now

follows that [Fiz) - F(w)~\¡(z - w) belongs to ¿f whenever F(z) belongs to3t, for

every complex number w. For let Q be the set of numbers w with this property.

Since the resolvent identity

(z - w)R(z)R(w) = Riz) - R(w)

holds for all complex z and w, the power series

R(z) = R(w) ?, iz - w)n R(w)n

converges in the operator norm when \z — w\ < \\R(w) ||_1. It follows that

Í2 is both open and closed. Since this set contains the origin, it is the complex

plane. We use this fact only to conclude that F(z)/(z - w) belongs to Jf whenever

F(z) belongs to Jf and F(w) =0. If Sf contains no nonzero element, then every

element of Jt vanishes a.e. because of (21). If 2t? contains a nonzero element,

let Eia,z) and h be defined for 3f as in Theorem IX with b = 1. The number

T, defined by (17) with 6 = 1, is equal to zero because of (18) and (19). There-

fore, 6 = 0 anAJP coincides with Jf(E(a)). The theorem now follows from part

A of Theorem XL
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