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1. Prior to the Herbrand-Godel-Kleene definition of general recursive

function, certain classes of functions defined more restrictively by particular

"recursions" had been studied. Subsequently subclasses of the general recur-

sive functions have continued to be of interest, not only because of the sim-

plicity and naturalness of certain types of recursive definition, but because of

the insight such classes might provide into recursiveness and effectiveness

and because of the need for some measurement of the level or complexity of

recursiveness of a function or predicate.

Pursuit of this interest led therefore to the devising of various hierarchies

of recursive functions. It would seem that such a hierarchy ought to satisfy

at least the following conditions: (1) that it be generated on the basis of some

general principle, (2) that the order of a class should correspond to the com-

plexity of the functions it contains in the sense that functions which enumer-

ate or majorize a given class should appear in a higher class, (3) that the

union of its classes should contain all the recursive functions or, if this fails,

should be sufficiently large relative to one's purpose for the hierarchy.

The hierarchies of recursive functions which have been studied fall short

of fully satisfying these conditions (cf. [4, §l]).

In [4] Kleene makes a new attempt at a classification of general recursive

functions, by using the notion of relative primitive recursiveness and of the

uniform effective enumerability of the functions primitive recursive in an

assumed function. A general recursive function hy, and a class C„ of the func-

tions primitive recursive in hy, is associated with each element y of a system

O of ordinal notations. If y<oZ, hy is primitive recursive in hz but hz is not

primitive recursive in hv, so CVECZ and Cy^Cz. In addition the relation of

primitive recursive equivalence is used to divide the number-theoretic func-

tions into equivalence classes called primitive recursive degrees which may

be studied after the manner of [5].

We shall investigate some problems connected with these classifications.

First a uniqueness property of classes Cy associated with notations for the

same ordinal is described and shown to hold at ordinals less than a>2 and to

fail at co2. The ^-recursive functions of Peter [6] are located in the hierarchy

below the co" level. Although it is not yet settled whether all recursive func-

tions are obtained, it is clear that U„eo Cy is a large and interesting class.
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Finally primitive recursive degrees are studied, and certain similarities to

and differences from the theory of general recursive degrees of [5] are ob-

tained.

2. For the hierarchy of classes Cy, the "uniqueness property" will be

said to hold at an ordinal a if, whenever y, zEO, \y\ =\z\ =a, then Cy= Cz

(i.e. hv and hz are of the same primitive recursive degree). As is remarked in

[4, §7], the use of the 0 of 53, involving as it does general recursive funda-

mental sequences, would be out of keeping with the purpose of building a

hierarchy based on primitive recursiveness. We now show that if the 0 of

53 is used, the uniqueness property fails at the first possible place in the

hierarchy, namely at the co level. In fact, the nonuniqueness occurs in such a

way that a function of arbitrary primitive recursive degree for a general re-

cursive predicate is definable at the co level.

In this section 0 refers to the 0 of 53.

If cp is a function in C„, yEO, we shall refer to an index of cp from hy

[4, §3] as a "y-index" of cp. Let ei be an index of the primitive recursive func-

tion Xba {b, a) (i.e. an index under [4, §3] for / = 0), and hence also a y-index

of Xba (b, a) for all yEO. For y, zEO, if p is a y-index of h2', then

(4, 2, p, (2, 2, (0, 2, 1», ei)
is a y-index of hz.

Define the function %(n) primitive recursively as follows:

f (0) = (0, 2, 1),

?(n') = (4, 2, r(»), (2, 2, <0, 2, 1)), *>.

Now we can show by induction on n that, for all zEO, £(n) is a (2+o«o)-

index of h,. In particular, taking z = 0o, f («) is an w0-index of ho0(b, a), which

is identically 0. Thence it follows by induction on n, using the second recur-

sion equation for f that, for n^m, %(n) is an jw0-index of the constant func-

tion Xba 0. Define the function fin (y) by course-of-values recursion as follows:

/fin((y)0) + lify= 2<»>.^ 1,
fin (y) = <

{0    otherwise.

So if y, zEO, z = l or z = 3SWl, and y = z+on0, then fin (y) =n.

Define rj(n) primitive recursively:

„(«) = (4, 1, f(«), (2, 1, (2, 1, 1)), (3, 1, 1)).

The value n(n) is a y-index of the one-place constant function 1 if w<fin (y),

and (if \y\ <co) of the constant function 0 otherwise.

If for each n, un, vnEO and vn<0vn+i, and limn | v„\ =a, we say the values

of un "run through" the values of vn if (1) for each n there is an m such that

un=vm, (2) for each n un<oUH+i, and (3) lim„ \uH\ =a.

Let Q(n) be any recursive predicate. Define:
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yn = (2re + \)o

and

I yn +o lo   if Q(n),

\yn UQ(n).

Clearly the values of yn and of z„ run through the finite notations, n0. In

addition Xre y„ is primitive recursive and Xre z„ is recursive. So for u = 3 ■ 5y and

tj = 3-5* where Xnyn = Xn{y} (n0) and Xre z„=Xre{z) (re0) (notation of [l, §65]),

hu and hv are initial functions at the co level. For every re^O, »7(fin (yn)) is a

z„-index (77(fin (yn) — 1) is a (z„)o-index) of the constant function 1 if fin (y„)

<fin (zn) and of the constant function 0 otherwise. Therefore

( 1        if fin (y„) < fin (z„),
A,.(,(fin (y„) - 1), «) - -L '

(. 0       otherwise.

Furthermore [fin (y„)<fin (zn)] = [y»<oZn] = Q(re). So Xre A,B(w(fin (y„) —1),1)

is the representing function of Q(n). And Xre hZn(n(hn (yn) — 1), 1) is primitive

recursive in \nba hZn(b,a). Therefore Q(n) is primitive recursive in Xw&a hZn(b,a),

and hence in the initial function hv. So if, in particular, a recursive Q is chosen

which is not primitive recursive in ha, then hv is not primitive recursive in hu,

where u and v are the numbers defined above.

3. We now restrict ourselves to the system 0 of ordinal notations (called

0' in §§10 and 11 of [4]) which differs from the O of 53 by the exclusive use

of primitive recursive fundamental sequences of notations in the formation

of limit notations and the use of indices instead of Godel numbers. With this

restriction on 0 we prove the following theorem:

Theorem 1. J/a<co2, then the uniqueness property holds for a.

Proof, by course-of-values induction up to w2.

Case 1. a=|2»|. If a<co, the uniqueness property holds because the

ordinal notation is unique. Otherwise the argument of [4, §6] applies.

Case 2. a=|3-5"|. By a "complete sequence" of ordinal notations be-

tween /co and (/+1) -co is meant the sequence of values of a function Xre zn

such that z0£O, |z0| =/ co, and z„'=2'». If 3 5*£0 and |3-5*| =(/ + l)co,

then the values of the function Xre zn =Xre pr (z, (no)) must form either a com-

plete sequence or (except possibly for a finite initial sequence of function

values) a subsequence which runs through a complete sequence. Now let

v = 3-5* and u = 3- 5*, where y» = pr (y, (no)) and a=|«|=|p|. Then to

prove Case 2 we shall compare Cu and C„, first where yn is such a subsequence

of a complete sequence z„, second where yn except for a finite initial sequence

is such, and third where yn and zn are complete sequences.

To make the first of these comparisons, note that for all re, zn^oyn and
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CznECVn (cf. [4 (13b)]). Recalling the properties of the functions f and fin of

§2, observe that f(fin (y„) —«') is a (y„)0-index of hZn provided fin (y„)>«,

and that Xn£(hn (yn)~«') is primitive recursive. Then we may write:

•&»«*■ (fin (y(6)l) - (i)/),(4).),((J).,«))

fcr(A a) = • if z(6)l ^ y(6)„

./?„(&, a)    if zWl = yWl.

Thus &„ is primitive recursive in /?„.

It remains to be shown that hu is primitive recursive in hv. Denote zVn by

rn and zv„_i by sn. Since n<zn, y„<0rn and C,„CCn. So &„„ is primitive recur-

sive in hSn with index f(y*— (fin (y„))') and we can write

*,„(*, «) = MK* ■*■ (fin (y.))0, <*, a))-

ThusXw&a ^„(6, a) is primitive recursive inXw&a ^r„(&, fl). Further Xnba hrn(b, a)

is primitive recursive in Xnba hZn(b, a) since Xn yn is primitive recursive. And

hence Xnba hVn(b, a) is primitive recursive in Xnba hZn(b, a), so hu is primitive

recursive in hv. Therefore hu and hv are of the same primitive recursive degree.

In case y,<o2o, * = 0, • ■ • , M—l, but z0^oy^, let xn=yn+M. Then Xw x„

is a primitive recursive function running through the values of z„. Write

x„ = pr (x, (no)) and w = 3-5x. By the argument just completed hw and hv

are of the same (primitive recursive) degree. The following equations show

that hw and hu are also of the same degree.

hw(b,a) = hu(((b)o, (b)i+ M),a),

h(b a)..   f *•«<*, l>,<(*)o,a»       if (*)i — »    (t = 0,l, • • -,M-1),
I A»(((6)o, (*)i ^ AT), a) if (6)1 2: If,

where <,-, t = 0, • • • , M—l, is an (xi)o-index of hVi.

Finally we compare classes Cu for which the values of the function

Xn pr ((u)2, (n0)) form a complete sequence.

Denote by zn and yn two complete sequences of notations between I co

and (/ + 1) co = a. For each «^0, |z„| =|yn| and hence by the hypothesis of

the induction hZn and hVn are of the same primitive recursive degree. Let / be

an index of the primitive recursive function tr2 (b, c) of [4, §4]. Then using

[4, §6], if r is an index of hZn from hVn,

<4, 2, (0, 2, 1), (4, 2, t, (3, 2, 1), (2, 2, r», (3, 2, 2))

will be an index of ^n, from /»„„,. Let c be an index of hz„ from hVg. Define p(n)

primitive recursively as follows:

P(0) = c,

p(n') = <4, 2, (0, 2, 1), (4, 2,1, (3, 2, 1), (2, 2, p(n))), (3, 2, 2».
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Now by induction on re, p(«) is an index of h,n from hyn. Thus hZn(b, a)

= hVrl+l(p(n), (b, a)), so hv is primitive recursive in hu. Similarly hu is primitive

recursive in hv.

4. The uniqueness property fails at co2, however; there exist u, v such that

u, vEO, \u\ =\v\ =co2, and Cu ^Cv. To show this we shall first establish two

lemmas.

4.1. Suppose 0(xi, • • • , xn) is primitive recursive in 0(z, ylf • • • , ym) with

index e. The index e corresponds to a particular primitive recursive derivation

of 0 from 0 (cf. [4, §3]). Carrying out the computation of the value

<ri((a)o, • • ■ , (a)n-i) for a given a by the method corresponding to the index

e will require function values 0(z, yi, ■ • • , ym) for a specific finite set 5 of

(rez + l)-tuples z, yi, • • • , ym. S depends on e and a and on the function 0. For

the following lemma we define 8e(a) to be the largest value of z which appears

in the (?re + l)-tuples of S, or 0 if 5 is empty. (Kleene has examples with

Xa 8e(a) not primitive recursive.)

Lemma 1. If (p(x\, • • • , x„) is primitive recursive in 0(z, yi, • • • , ym) with

index e, then \a 8e(a) is primitive recursive in 0(z, yi, • • • , ym).

Proof, by a course-of-values induction on the index e. Suppose true for all

indices less than e.

Case 0. (e)0 = 0.

4> is 6.    8e(a) = (a)0.

Cases 1, 2, 3. (e)o = l, 2, 3. 4> is primitive recursive and its definition based

on e is independent of 0. 8e(a) =0.

Case 4. (e)0 = 4.

0(*i, ' • • , *«0i) = <Kxi(*i, • ■ • , *(eh), • • • , Xk(xi, ■ ■ ■ , x(e)l)),

where & = (e)2,i.

8e(a) = max [8Ml((xi((a)0, • ■ • , (a)Ml-i), • • • , Xk((a)o, • • • , (a)Ml-i))),

8w3(((a)o, ■ ■ ■ , (a)Ml-i)), • • • , 8Mt+i(((a)0, ■ ■ ■ , (a)(<0l_i))J.

Since Xii " ' " » X* are primitive recursive in 0 by the hypothesis of the lemma,

and 8i(a), for indices i<e, are primitive recursive in 0 by the hypothesis of

induction, and max is a primitive recursive function, 8e(a) is primitive recur-

sive in 0.

Case 5. (e)0 = 5.

c6(0, x2, • • • , xn) = ip(x2, • ■ ■ , xn),

(b(x{, x2, ■ ■ • , xn) = \(xi, (p(xi, • • • , x„), x2, ■ ■ • , xn).

Define 8e(a) by course-of-values recursion on a as follows (noting that when

(a)0>0, then ((c)0 —1, (a)i, • • • , (a){e)l_i)<a):
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, , ,        («(«),(((ffl)i, ' ' ' i (o)(.)i-i» if («)o = 0,

8e(a) =  < r
(.max [8e(((a)Q - 1, (a)h ■ ■ ■ , (a)Ml-i)),

5(«)3(((a)o — 1, <K(«o) — 1, (a)i, • • • , (a)(.)i-i),

(o)i, • • ■» (a)Ml-i))]ii(a)0> 0.

The functions 8Ml(a) and 8(e),(a) are primitive recursive in 8 by the hypothe-

sis of induction, cp is primitive recursive in B, and max is primitive recursive.

Hence 8e(a) is primitive recursive in B. This completes the proof.

From the definition of 8e(a) it follows that if an index e defines

cpi(xu •••,«„) from 0i(z, yi, • • • , ym) and cp2(xu • • • , x„) from B2(z, yu ■ • • ,

ym) respectively, and given any a, if, for all z<8e(a) and all yi, • • • , ym>

0i(z, yi," • , ym) = B2(z, yu • • • , ym),

then <pi((a)o, • ■ • , (a)„_i) =02((o)o, • • • , (a)»-i).

Lemma 2. Gwew o«y general recursive function cp(a), there is a general recur-

sive function v(a) of the form nyR(a, y), R primitive recursive, such that v(a)

>cp(a) for all a and v(a) is monotone increasing.

Proof. Let e be a Godel number of cp. Now by the proof of the normal form

theorem [l, §§56-58], 7"i(e, a, x)—*U(x)<x. Hence p.xTi(e, a, x)>cp(a). So

we may take v(a) =fJ.y(i)iSaTi(e. i. (v)i).

4.2. We define for arbitrary vEO a monotone increasing function

£»(oOGG„. (where v*=v+olo, notation of [2, footnote 23]) which majorizes

the one-place functions in Cv (and of course those in Cw for all w<ov):

£.(<*) = II Pi
isa

where pt is the (t + l)-st prime number. To see that this function has the de-

sired majorizing property, let a(a) be an arbitrary one-place function in Cv

with 7>index e. Then for each a^e the function value £„(«) has as a factor

/>?"*<«>»+1 = #(0,+1. Hence £„(a)>a(a) for all a^e.

4.3. The set of ordinal notations <oU for some uEO, ordered by <o, we

call the "segment" of 0 determined by u. Extending the definition of §2,

we say the values of yn "run through" the segment determined by uEO if,

for each n, yn<oyn' <oU and lim„ |y„| = \u\.

Let Xw y„=Xw pr (y, (n0)) be a primitive recursive function the values of

which run through the segment determined by u and have u as limit notation

3 ■ 5^. We shall define a monotone increasing function £(a) which majorizes

the one-place functions of Cw for all w<0u, and which under the assumption

that the uniqueness property holds at | u \ will be contained in C„.

Applying 4.2, there is an index d which, for all vEO, defines Xa £v(a) from

hv»; so %v(a) =hv*.(d, (a)). Let
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£(«) = 11 Pi
• SO

It is clear that £(a) is primitive recursive in \nba hy»>n(b, a). Supposing

that the uniqueness property holds at \u\, \nba hy~n(b, a) is primitive recur-

sive in hu, since putting y** = pr (s, (n0)), |m|=|3-5*| and hy~n(b, a)

= hz.b'((b, «), a). Thus (under the assumption of the uniqueness property at

|«|),£(a)£Cu.

Also £(o) is monotone increasing. Furthermore £(a) majorizes the one-

place functions in classes Cw, for w<0u, in the following way. If a(a)ECw,

then (using [4, (13)]) a(a) must appear in C„B for some value of re; let its

y„-index be e. Then for all a^n, the function value £(a) has as a factor

*»"%«, <a>)+l &„,(<0+l
Pn =  Pn -,

and for all a^e, ^Vn(a)>a(a). Hence for all o^max (e, re), £(a)>a(a).

4.4. Theorem 2. The uniqueness property does not hold at co2.

Proof. We shall contradict the assumption that the uniqueness property

holds at co2 by constructing two primitive recursive sequences y„ and z„

(y„ = pr (y, (no)), z„ = pr (z, (n0)), u = 3-5", 7j = 3-5*) such that each sequence

runs through a segment of the notations of 0 for the ordinals less than co2,

but zn advances through the segment so slowly in comparison with y„ that

Cu can be shown (under the assumption that the uniqueness property holds)

to contain functions not in C„.

First, consider some wEO, \w\ =co2. Then by 4.2 with v = w, £«,(«) major-

izes all the one-place functions of Cw. So by the assumption that the unique-

ness property holds at co2, £m majorizes all the one-place functions of Cu and

of C„. By Lemma 2 with [4, §9] there is a primitive recursive predicate

R(a, y) such that v(a) =p.yR(a, y) is monotone increasing and for all a, v(a)

>£w(a). Thus v(a) majorizes the functions of Cu and Cv.

Now use the predicate R just described to define a function \p primitive

recursively as follows:

\p(b, k, re) = re if k = 0,

= \P(b, k ^ 1, re) if k > 0 & (i)is fi„(„>!?(£ - 1, i),

= 3.5SDV6,*-!) +0 (fin (w) ^ Mt<iHn(n)U(A ^- l, i))0 otherwise,

where sbj is the function defined in [4, §10 ]. By the recursion theorem for

primitive recursive functions [4, §10] there is a number/ which is an index of

*(k, re) =>|(/, k, re). Let f (*, re) =^(k, «0).

Observe that, as we can prove by induction on k (using the monotonicity

property of v(a)), the first v(k) values f (k, 0), • • • , f (k, v(k) — 1) of the func-

tion Xre f (k, re) are
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Oo, lo, • • ■ ,(V(0)-l)o,

ttl,K0)U(l,K0))+olo, • • ■ ,f(l,»(0)) + o(Kl)-K0)-l)o,

»

Uk,v(k-l)),Uk,^k-l))+olo, ■ ■ ■ , ^(k,v(k-l))+0(V(k)-v(k-l)-l)0,

and the subsequent values of f (k, n) are obtained by successive additions

(+o) of lo, where, for 1 = 1, ■ ■ ■ , k, 1(1, v(l-l))=3-SA>lM-l~1'> is a notation

for la given by the sequence of values of the function £(l— 1, n). Thus for

/ = 0, • • -,*-1, f(*, K/)) =3-S*W.i) and |f(fe) „(/))| =(/+1).w.
Let zn = l(n, n). Clearly z„GG. For each «, f(£, n)^0£(k + l, n); and for

each k, £(k, n) <0£(k, n + 1). Hence z„<ozn+i. Furthermore for every n and /,

if n^v(l) then \zn\ ^(l+l)a. Hence lim„ \zn\ =co2. Thus the values of the

primitive recursive function Xn zn run through a segment of notations for

ordinals less than co2.

Define y„ as follows:

JOoif n = 0,

\3.5sb1i(/,n-i)    otherwise.

Then Xnyn is also primitive recursive, and y„ and zn run through the same

segment of notations for ordinals less than co2. By induction on n, using the

properties of v(n) and £(k, n), zn<0yn for every «>0.

We now show that Cu and C„ are not identical by observing that the func-

tion £(a), defined as in 4.3 using the sequence of notations y„ just defined (and

by 4.3, under the assumption that the uniqueness property holds at co2, a

function of class Cu), majorizes all the one-place functions of Cv.

Let a(a) be an arbitrary one-place function in Cv, and let e be an index of

a from Xnba hZn(b, a). Then 8e((a)) (as defined in 4.1) is the largest value of n,

for which values of the function Xnba hZn(b, a) are used in the computation

based on e of the function value a(a). By Lemma 1, Xa 8e((a)) is primitive

recursive mXnbahZn(b, a). Hence the v(a) we have defined majorizes 8e({a + l)).

Let d-i be an index of Xnba 8({b, n), a) from B, and let c be an arbitrary number

such that
c > max (pzz>Q(t)t>z(v(l - 1) > 8e((l))), tr3(e, di)).

Denote  by Xa ac(a)  the  function  primitive  recursive in

Xnba h((c^i,n)(b, a) (=Xnba hVc({b, n), a))

with index e. Then as is primitive recursive in hVc with index tr3(e, cfi).

We shall now show that ac(c)=a(c). First note that the computation

based on e of a(c) requires values of Xnba hZn(b, a) only for values of n g 8e((c))

<v(c — l). It follows from the properties of £(k, n) that (0(*)»■<»(«) [f('> *) =z«]
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and hence (i),-<,(<;-i) [ht{c-i,i)(b, a) = hZi(b, a)]. Thus by the remark at the con-

clusion of Lemma 1, ac(c) =a(c).

Furthermore acECVc. Now by 4.3, £(a) majorizes the functions of Cy„ in

such a way that (x) iimax(tr'(e,vdj.c) [£(x) >ac(x) ]. For all c under consideration,

c>tr8(e, di); hence %(c)>ac(c)=a(c). Thus £ majorizes a. Now £ is inde-

pendent of the choice of a and a is an arbitrary one-place function in C„, so

£ majorizes all one-place functions of Cv.

§5. We next investigate the problem of locating Peter's ^-recursive func-

tions [6, §10] in the hierarchy of [4].

5.1. First we extend the indexing of functions primitive recursive in as-

sumed functions [4, §3] to functions ^-recursive in assumed functions for

k>\.
A function 0 is said to be "^-recursive" in a fixed list of assumed functions

0i(ai, • • • , ami), • • • , 6i(ai, ■ • • , amt) if it is introduced by one of the

schemata (),•••, (IV) of [4, §3], or one of the following schemata (Vy),

j = l, ■ ■ ■ , k, where re^O and 0i, • • • , \pj, x. 7i". ' • ' . 7y-i- 7i2).

7J-2> • • ■ , 7i/_2), 7^-2\ ti are functions previously introduced by applica-

tions of the schemata:

'c4(0, xi, ■ • • , Xj, yi, • • • , y„) = \pi(xi} ■ ■ ■ , xh yu ■ ■ ■ , yn),

(p(x{, 0, xz, ■ ■ ■ , xh yi, • • ■ , y„) = \p2(xu xs, ■ ■ ■ , xh yu ■ ■ ■ , yn),

(Vy).

(b(xi, ■ ■ ■ , x'j-i, 0, yi, • • • , y„) = xpfai, • ■ • , xi-u Vu ' ' ' , y»),

(b(x{, ■ ■ ■ , Xj , yi, • • • , y„) = x(xi, ■ • • , Xj, <pu • • ■ , 0y, yu ■ • • , y„),

where

4>i = 0(*i, • • ■ , xi-l, xi,

7i  (*i, • • • , xi, (t>(x!, ■ ■ • , */_i, *y, yi, • • • , y„), yi, • • • , y„), • • • ,

yj'-i(xu • • •, xj,4>(x{, • • •, */_i, xy, yi, • • • , yn), yi, ■ • • , y„), yi, • • • ,y„).

For a given £, (V&) is the schema of [6, middle p. 77] (but read "c?i(rei + l, ■ ■ • ,

ret + 1)" for "0(rei, • • • , re^+i)"), except without the normalization to 0 of the

value of rei • «2.re^ = 0, and except that we allow parameters. The indices

corresponding to schemata (),•••, (IV) are those given in [4, §3]. When

si. • ■ • , Sj, h, gi", gi0, • • • , g!0_1) are respective indices of \pu • ■ ■ , \pj, x.

711'! 721'. • • • i 7iJ_1) as previously introduced, we assign (4+j, n+j, S\, • • • ,

si< h, gi\ g^\ • • • . g"-1') as index to the function c& introduced by (Vy). In

particular, this gives to (V) ( = (Vi)) the same index as in [4, §3].

For any fixed I, mi, ■ ■ • , mi ^ 0, a primitive recursive predicate

In™'.---.mi(6) may be defined to express that b is an index of 0 from assumed

functions 0i, • • ■ , 0j ^-recursively. For each £5:1,
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111 , '  '  • ,1711_ Ir      Bli i •  •  • ,Wl F •

In* (b) m   j[ln' '(b) & (J)0 = 0, 1, 2, 3j

V\b=      II     ^K& W„ = 4 &Inr •■■•""((*),)
L i<(6)l,i+S

ft(*)K«(»,^.i(Inr,'",",((*)«)&(»)i.i = wo]

v|"i=        II       ̂ (i>'&(6)o = 4+y
L       <<o*+y+4)/2

& (*)i«s«,+y+4)/2lnt '        ((&),-)

&Wi<K*fi((*)i.i = (*)i -«- 1) & (i)y+u = (»)i+i

& Ww«fl«t>M)fl((»)« = (*)i + 1) & 0 < 7 < A + ill ,

where Inmi-•••■*"«(&) is the predicate of [4, §3]. Infi'■•••"»(&)sin""-"-'""(ft).

5.2. Let Ci, c2 be indices from ft of the respective functions

, x    „,fl , «    f«*(y. °) = !»
ai(x) = /3(fin (x)),     <     .      ,, ,      . .

\a2(y,x) = y+0ft(x),

where fin (x) (§2) has the property fin (no) =n. Let

rj(w, 0, n) = no,

17(70, m', 0) = Oo = 1,

17(70, m', 1) = (0, 1, tr (ci, sbi(w, m))),

17(70, m', n") = (0, 1, tr (cu sbi(tr (c2, sbi(w, m)), 17(70, m', «'))))•

Thus 77(70, m, n) is primitive recursive, and by the recursion theorem for

primitive recursive functions there is an index e of n(e, m, n). Let 77(777,, n)

= n(e, m, n).

Observe that 77(777;', 1), 77(777/, n") (shown below at the right) are each of

the form 3-5", where Zz( = pr (z, (x0))) for x = 0, 1, 2, • • • are shown at the

left:

v(m, 0), -q(m, 1), 17(1%, 2), • • • 17(777/, 1),

1, t)(m', »') +oi)(m, 0), 77(w', n') +or\(m, 1), • • • i?(7»', n").

It follows by induction on m, and on n for each m, that, for each m, n:

n(m, n)EO and n(m, n) <0r\(m, n') and

, , In if mn = 0,
I 77(71?, n)\   =  <

(ncom if m, n > 0.

5.3. Since 1 is the first notation in the "fundamental sequence" of nota-
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tions with »7(»w', re") as "limit notation" (as shown above), hy+0^m',n)(b, a)

= hy+0T,(m',n')((b, 0), a). So, forc3 an index of \baf3((b, 0), a) from 0, hv+on{m',„)

is primitive recursive in hy+ov(m'in>) with index c3. It follows by induction on

p that A„+0,(m',») is primitive recursive in hy+0^m' in+P) with index v(p), where

,(0) = (0, 2, 1),

v(p') = tr2(v(p), c3).

Since n(m', 1) is a limit notation with the fundamental sequence v(m, 0),

77(?re, 1), v(m, 2), • • • , we have hv+ov(m,x)(b, a) = hy+0^m,ii)((b, x), a). So if c4

is an index of \xba fi((b, x), a) from 0, then p.(x) =sb2(x, c4) is an index of

^»+oi("».*) from hv+0,(m',i).

Ii (p has y+ov(m, l)-index b, it has y+ov(m'> l)-index tr2 (b, p.(l)). Thus

0 has y+of)(m+p, l)-index i(b, p), where

»(», 0) = 6,

t(J, f') = tr2 (t(4, #), M(l)),

defines t primitive recursively.

Homology of notation is defined for the present system 0 in the same

manner as for the former system [2, pp. 327-328]. Although the associative

law "(a+0b)+oc = a+o(b+oc)" does not hold in general for ordinal notations

[3, footnote 29], it does for the corresponding A-types, i.e. (a+ob)+oc is

always homologous to a+0(b+oc). The proof is by induction on c over 0.

And (just as was the case for the predicates Hy, [2, p. 329]) the functions

hy depend only on the &-type of y, i.e. hy(b, a) =hz(b, a) where y and z are

homologous.

Now (y+O7?(0, n))+oi7(0, 1) =y+077(0, re'), and (y+077(m', 0))+ov(m', 1)

= y+o77(?re', 1). Using the remark on the associative law for /j-types under

+0, (y+ov(m>, n'))+0n(m', 1) and y+on(m', re") are limit notations for

fundamental sequences of notations thus:

qo, ?i, q2, ■ ■ ■        (y +0 i?(w', re')) + 0 v(m', 1),

1,  r0, ru ■ ■ ■ y +0i)(m', re"),

where q( and r, are homologous, i = 0, 1, 2, • • • . Hence

^(K+o'<m''n')'+o'(m''1)^' a) = ^»+o"('"'-n">((W0> W1 + *)> a)-

To combine the cases m-re=0 and mn^O, let c6 be an index of

K((b)o, (b)i + 1), a)

from 0, and put

/ (0,2,1)        ifm-re = 0,
X(w, re) =  <

I cb if res • re 7^ 0.
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Then A(y+0,(«..n))+0i,(m,i) is primitive recursive in hy+0^m,n>) with index X(m, n).

Let c6 = (4, 2, (0, 2, 1), (2, 2, (0, 2, 1)), d) be an index of hy+ov(0,n) from

^y+oico.n'), where «i is an index of Xba (b, a). Using the c3 given above, define p

primitive recursively as follows:

p(m, 0, 6) = b,

p(0, n', b) = tr2(p(0, n, b), ct),

p(m', n', b) = tr2 (b, c3).

By induction on m, and on n for each m, if a function a has y-index b, it has

y+o'7(w, w)-index p(m, n, b).

5.4. Theorem 3. Tor eac/f £3:1, //jere is a primitive recursive function

vk(b) and, for each I, mi, • ■ • , twj^O, a primitive recursive function Ok(b, cx,

■ ■ ■ , ci) such that, if cp is k-recursive in 8i(ai, • • • , ami), • • • , 6i(ai, • ■ ■ , ami)

with index b, and if, for some yEO, cx, • • • , ci are y-indices of Bi, • ■ ■ , Bi

respectively, then crk(b, Ci, • • • , c{) is a y+on(k — 2, vk(b))-index of cp.

Proof. For any ifej&l, we define Vk by the course-of-values recursion

vk(b) = max (vh((b)2), • • • , n((b)m2A+i)) if (b)o = 4,

= sg (k - 1) + max (vk((b)2), • • • , Vk((b)ik?+k+i)/2))

if (6)0 = 4+ifory = 1, • • • , k,
= 0       otherwise.

The proof of the theorem and the definition of cjk now proceed by course-

of-values induction on k.

First we treat the trivial case, k = l. By induction on b, vi(b) =0 for all b,

so 77(1—2, vi(b)) =77(0, 0) = 1, and y+0»7(l —2, Vi(b))=y, and it suffices to

take
0-1(0, ci, ■ • • , ci) = ^■■■■■m'(b, cu ■ ■ ■ , ci).

For the induction step (k>l), we assume the theorem to be already

proved for preceding values of k which are ^1, and infer it for the given k

by an induction on b, which we present under 5+k cases.

CaseO. (6)o = 0. Then cp=8i, i=(b)2,vk(b) =0. Let crk(b, d, ■ ■ ■ , Cj)=c<.

Cases 1, 2, 3. (b)0 = l, 2, 3. Then cp is primitive recursive, Vk(b)=0. Let

ak(b, cu • • • , ci) =b.

Case 4. (b)0 = i.cp(xi, ■ ■ ■ , xn) =yp(xi(xi, ■ ■ ■ ,xn), ■ ■ ■ ,Xm(xu ■ ■ ■ ,x„)),

where n = (b)i, m = (b)2,i. By the hypothesis of the secondary induction on b,

\p has y+0n(k — 2, vk((b)2))-index CTk((b)2, cu ■ ■ ■ , Ci), and Xi has

y + or)(k — 2, Vk((b)2+,))-'mdex

crk((b);+2, cu ■ ■ ■ ,  ci), i = l, ■ ■ ■ , m.   But

vk(b) = max (vk((b)2), ■ • • , vk((b)m+2)).
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So using the function v defined in 5.3, 0 has y+orj(k — 2, vk(b))-index

tr2 (o-k((b)2, Ci, ■ ■ ■ , Ci), v(vk(b) — vk((b)2))), and similarly with each x»- Hence

it suffices to take

(Tk(b, Ci, ■ ■ ■ , Ci)

= 24-3<»'-        II       Pi exp tr2 (<rk((b)i, d, ■ ■ ■ , a), v(vk(b) - **((&)<))).
Kl<(6)2, i+3

Case 5. (6)o = 5. Similarly we take

ck(b,ci, ■ ■ ■ ,ci)= 25-3'«'-[5 exp tr2 (ak((b)2, d, ■ ■ ■ , ci), v(vk(b) - vk((b)2)))}

■ [7 exp tr2 (ak((b)3, cu ■ ■ ■ , ci), v(vk(b) — vk((b)3)))].

There remain k — 1 cases for the given k. The treatment will be sufficiently

illustrated (and the notation kept simple) by treating the two remaining

cases for k = 3 without parameters. We begin with Case 7.

Case 7. (b)a = 7. Then

0(0, x2, x3) = \pi(x2, Xz),

(b(xi, 0, x3) = 02(*i, x3),

(p(x{, x2,0) = \pz(xi, x2),

(p(xi , x2 ,Xz) = x(xi, x2, Xz, (b(xi, 7i   (xh x2, x3, (p(x{, x2 , x3)),

72   (xi, x2, Xz, 4>(x(, x2 , Xz))),

(2)
(b(x{, x2, 7i   (xi, x2, Xz, (b(x{, x{ , x3))),

4>(x{, x(, x3)).

Using the hypothesis of the induction on 6, and a construction illustrated in

Case 4, the functions 0i, 02, 03, X. 7i > 7L1)i 7i are primitive recursive in

hw (where w=y+o77(l, r) for r = max (vz((b)2), • • • , v3((b)z))) with indices

si, s2, s3, h, gf\ g(i\ gf\ respectively, where S; = tr2 ((Tk((b)i+U cu • ■ • , c{),

v(r — vz((b)i))), t = l, 2, 3, and h, gf\ g^, gf> are constructed similarly from

(&)«■ (b)a, (b)i, (b)s.

Now observe that for each X\ the equations of (V3) define \x2x3 (p(x[, x2 x3,)

2-recursively from 02, 03, x> 711'. 7™. 7i2)> and \x2x3 <p(xi, x2, x3). In order to

exhibit the 2-recursion let

XzM, b, c, d) = x(xu a, b, <p(xu 71 (xh a, b, d),    y2 (xh a, b, d)), c, d).

For each Xi, Xn is primitive recursive in x> \x2x3<p(xi, x2, x3), y^\ and 7"', say

with index g (independent of Xi). And let

(2) (     a    ^ m ( k    \
7i.*1(a, 0, c) = 71   (xu a, b, c).
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Then Xx2x3 cp(x[, x2, x3) is introduced by the 2-recursion

<p(x{, 0, x3) = ^2(xi, x3),

<p(x{, xi, 0) = \p3(xu x2),

(2)
<7>(xi , x2' ,xi) = Xxi(x2, x3, cb(x{ , x2, 7i,»i(^2, x3, <p(x{ , x2 , x3))), cp(x{ , x2 , x3)) .

And/=(6, 2, (0, 1, 1), (0, 1, 2), (0, 4, 3), (0, 3, 4)) defines Xx2x3 cp(x{, x2, x3)

from Xx3 i^2(xi, x3), Xx2 ̂ 3(xi, x2), Xzx and yf^Xl 2-recursively.

Using 5.3, Ti(xi) = sb}(p(0, xt, ,?2),Xi) is a70+o7?(O,Xi)-indexof Xx3\[/2(xi, x3),

r2(x1)=sbl(p(0, xi, st), xi) of Xx2\j/3(xi, x2), t3(xi) =sb3(p(0, xu gf), xi) of

7$i. T*(x0 =P(°> *i> h) of X' r5(*i) =P(°> x'> Si0) of Ti0. and t6(xi) =p(0, xu g1?)

oiy?.

Now we shall work out the definition of a function k(xi) such that, for

each Xi, k(xi) will be a 70+017(0, Xi)-index of Xx2x3</>(xi,x2, x3). Clearly k(0) =Si.

If k(xi) is a 70+017(0, Xi)-index of Xx2x3 cp(xu x2, x3), then t7(xi, k(xi))

= tr62'4'4(g, t4(xi), k(xi), tb(xi), t6(xi)) is such an index of \xv and hence

t8(xi, k(x0) =(t2(/, ti(xi), r2(xi), t7(xi, /c(xi)), t3(xi)) is a (w+O77(0, Xi))

+0*7(0, v2(f))-'mdex of Xx2x3 cp(x{, x2, x3). But under the above definition

of vk, v2(f) = l; t8(xi, k(xi)) is thus a (70+0*7(0, Xi))+0*7(0, l)-index of

Xx2x3 cp(x(, x2, x3). Using the function X of 5.3,

t9(xi, k(xi)) = tr2 (r8(xi, k(xi)),        X(0, Xi))

is a 70 + 017(0, xi') -index of Xx2x3 cp(x{, x2, x3). So take k(xi') =Tg(xi, k(x0).

The functions n, ■ ■ ■ , r9 are primitive recursive and

*(0) = Si,

k(xi) = r9(xi, k(xi)),

so k is primitive recursive.

Since k(xi) is a 70+017(0, Xi)-index of Xx2x3 cp(xi, x2, x3), cp(xx, x2, x3)

= /z„,+0,(i,d((k(xi), Xi), (x2, x3)) and (letting q be an index of k and ei an index

of Xba (b, a))

i = (4, 3, (0, 2,1), <4, 3, eh (4,3, q, (3, 3,1)), (3, 3,1», <4, 3, eu (3, 3, 2),<3, 3, 3)))

isa70+o*?(l, l)indexof<7>. But70 = y+0*7(1,7-). So tr2(7;,X(l,r)) isay+0i](l,r')-

indexof cp. Since r' =v3(b), tr2 (i, X(l, r)) is ay+o*7(l, v3(b))-index oi cp. Hence

it suffices to take cr3(b, cu ■ ■ • , Ci) =tr2 (*', X(l, v3(b) — 1)).

For any k>l, the proof of Case 4+k proceeds similarly, and we take

cTk(b, cu ■ ■ ■ , c;)=tr2 (ik, X(k — 2, vk(b) — l)), where ik is a 70+o*?(& —2, 1)-

index of cp (i3 = i). (If k = 2, the proof is a bit simpler.) If parameters are

allowed, slight alterations in the proof give us ik as a primitive recursive

function of (6)1 (the number of variables of cp), hence as a primitive recursive

function of b.
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The treatment of Case 6 can be described briefly in terms of the work on

Case 7.

Case 6. (b)0 = 6. 0(xi, x2) is introduced by an application of (Vi). The

auxiliary functions \pu \p2, x, 7iJ) for (V2) are primitive recursive in hw (for a

w defined similarly to that of Case 7). By the proof of Case 6 for k = 2 (under

the hypothesis of induction on k) 0 has a w+ov(0, l)-index i2, and hence a

w+ov(l< l)-index 1(^2, 1), using the 1 of 5.3. As in the last step of Case 7, we

may take <rz(b, cu ■ ■ ■ , c()=tr2 (i(i2, 1), X(l, v3(b) — \)).

For any k>2, the proof of Case 4+j, l<j<k, proceeds similarly. Here

i(ij, k—j) is a w+on(k — 2, 1) index of 0. Take

o-k(b, a, ■ ■ ■ , ci) = tr2 (i(ij, k-j), X(A - 2, vk(b) - 1)).

We exhibit the primitive recursive definition of (Tk separately.

crk(b, cu ■ ■ ■ , ci) = d if (b)a = 0 & (b)2 = i        (i = 1, • • • , I),

= b if (6)0 = 1, 2, 3,

= 2<-3<»>'-       II      Pi exp tr2 (*k((b)i, ch • ■ ■ , ci), v(vk(b) - *»((&),)))
Ki<(6)s,l+3

if (bo) = 4,

= 26-3«i- [5 exp tr2 (ak((b)2, a, ■ ■ ■ , ci), v(vk(b) - vk((b)2)))]

•[7 exp tr2 (<Tk((b)3, d, ■ ■ ■ , ci), v(vk(b) - vk((b)3)))\ if (b)0 = 5,

= tr2 ((ij, k - j),\(k-2, Vk(b)-l))ii (b0) = 4+j, (j-2, ••■,*- 1),

= tr2 (ik, \(k - 2, vk(b) - 1)) if (6)0 = 4 + k, (k> 2),

= 0        otherwise.

Note that for k = l, this definition agrees with p. 96 (cf. [4, §4]).

Corollary 1. If <b is k-recursive, then there is an re (re = 0, if k = l) such

that 0 is primitive recursive in h„(k+2,n); thus for all k>\, the k-recursive func-

tions appear in the hierarchy below the co*-"1 level.

Proof. If k>l, apply the theorem with 1 = 0 and y = 0o.

6. In [4, §6] the notion of primitive recursive degree is introduced in

analogy to that of degree of recursive unsolvability (general recursive degree)

of Kleene and Post [5]. Operations KJ and ' are given under which formulas

(1)-(12) of [5] hold.
We shall use the term degree, unless otherwise qualified, to refer to primi-

tive recursive degree.

This system of degrees is a refinement of the system of general recursive

degrees of Kleene and Post, since clearly no functions of the same degree

will be of different general recursive degrees. The degrees of objects of general

recursive degree 0 might be called "degrees of solvability."
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For any two functions a and ft, either a is primitive recursive in ft or

not, so that for each two degrees a and b, either a<b, a = b, a>b, or a| b.

That the fourth possibility occurs follows of course from the existence of in-

comparable general recursive degrees. But we shall later exhibit incomparable

degrees within a single general recursive degree, i.e. incomparable degrees

associated with objects having the same general recursive degree.

That there is no highest degree is an immediate consequence of the ab-

sence of a highest general recursive degree. The question whether there is a

highest degree within a given general recursive degree can easily be answered

in the negative. Suppose a(x) is of degree a within a given general recursive

degree d. Then pr" (b, a), of general recursive degree d, is of degree a'>a.

There are N0 functions of each degree, and 2No degrees. There are K0 de-

grees within each general recursive degree since (g) there are only N0 func-

tions of each general recursive degree (by [5, 1.2]) and since (^) there is no

highest degree within any general recursive degree.

The definition of independence of degrees and the proof that for w>2

independence implies pairwise incomparability but not conversely translate

directly from [5, 1.3], replacing recursive by primitive recursive. In 8.2 we

will show the existence for any n^l, of n independent degrees within any

given general recursive degree, so the definition and proof apply to degrees

within a given general recursive degree.

As was true for general recursive degrees, the degree of an infinite join

of a set of functions is not determined by the degrees of the functions. It de-

pends on the functions themselves and on the order in which they are joined.

7.7.1. Lemma 1. For each I, mi, ■ • ■ , mi^O, there is a primitive recursive

function p(b) such that, if 8i(xi, • • • , xmi) is bounded by fti(xi, ■ • • , xmi),

i = l, ■ • • , I, then pr9l>-•••*'(&, a) ^prft''--'ft(p(6), a) and, when lnml'-"-ml(b),

the number p(b) is an index from fti, ■ ■ • , fti of a function of (b)i variables which

is monotone nondecreasing in each variable.

Proof. A function which fails to be monotone nondecreasing can be intro-

duced under Schemata (),•••, (V) only by ( ) or (V) or by application of

(IV) to previously introduced functions which fail to be monotone nonde-

creasing. Let di, i = l, ■ ■ ■ , I, be an index of

Xxi, • • • , xmi ]T) ftiiyu • * * > ym,-) from /?,-.
1/14*1. • • -.fc^lmj

Let c be an index of Xxy x+y. If an index b defines cp from &i, ■ ■ • , di and if

(o)o = 5, then Schema (V), altered by replacing x(xu y, x2, ■ ■ ■ , x„) by

y+x(*i> y, x2, ■ ■ ■ , xn), introduces a function defined from 61, ■ ■ ■ , 81 by

(5, (b)i, (b)2, (4, (6)3.1, c, (3, (6)3.1, 2), (&),».

Now define by course-of-values recursion
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p(b) = di if (b)o = 0 & (b)2 = i (i = 1, • • • , I),

= b if (b)0 = 1, 2, 3,

-2*.3Wi.   n  *rK) if wo = 4,
Ki<(»)i,i+S

= (5, (6)!, P((i)0, <4, (b)3,i, c, (3, (b)a,i, 2), P((b)z))) if (4)o = 5,

= 0       otherwise.

The function p is primitive recursive. An induction on b shows that, if

In"11'"■■""(&), the function defined by p(b) from 0i, • • • , 0j is monotone non-

decreasing and simultaneously (using the monotonicity) that it bounds the

function defined by o from 0i, • • • , 0;. If lnmi-"--ml(b), then pr*1'"•■"'(&, a) =0.

7.2. To any function, predicate or set there is an object of each of the

other two kinds having the same general recursive degree [5, 1.2]. This is

not the case for primitive recursive degrees.

Theorem 4. // a(x), of degree a, is a function which majorizes the one-place

primitive recursive functions, then there is no predicate or set of degree a.

Proof. The degree of a predicate or set is the degree of its representing

function 0. To apply Lemma 1 (7.1) with 1 = 1, let 0(x)=l since for all

x, 0(x) ^ 1. Then to each function <p(x) primitive recursive in a predicate or set

(i.e. primitive recursive, say with index e, in 0) there is a primitive recursive

function pr"(p(e), (x)) which bounds 0(x). Thus a function a(x) which major-

izes all the one-place primitive recursive functions cannot be primitive recur-

sive in any such 0 (hence not in any predicate or set) and so cannot be of the

same degree. This completes the proof.

Observe that if d>a, d is also the degree of a function which majorizes

the one-place primitive recursive functions since, if 5 is of degree d, then

(a(x), 8(x)) is of degree d [5, (7)] and for all x, (a(x), 8(x))^a(x).

It can be noted, in addition, that a is actually incomparable with the

degree of some predicates. For example, define v(x) =sg(pr"(x, (x))); then

tj(x) takes on only values 0 and 1 (and is thus the representing function of a

predicate U(x)), and differs from every function primitive recursive in a. The

degree of U is incomparable with that of a. And if a is recursive (e.g. a(x)

= Ya.b^x h2(b, a), which is of degree 0') then U is recursive. The degrees of

a and of U may thus both be within general recursive degree 0.

8. 8.1. For the purposes of Theorem 5 we show that for a given function

a(x) a function ir(b, a), primitive recursive in pra (b, a), can be defined which,

when In1 (o), gives for all functions 0(x) which take on only values 0 and 1,

an upper bound for the values of x for which values of (a(x), d(x)) are required

for the computation (based on index b) of the function value prx*<a(x)''w>(c>,a).

In other words, if

(x)x<T(,b.a)[<t>i(x) = <fa(x) & (<pi(x))0 = a(x) & (4>i(x))i ^ 1 & (pi(x)

=   <(0,(*))o,  (0<(*))l>], *  -   1,  2,

then pr*1^, a) =pr*2(c>, a).
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To use Lemma 1 (7.1) with l = nti = l, choose /3(x) = (a(x), 1). Thus, for

every function B(x) which takes on only values 0 and 1, for all x, ft(x)

^(a(x), 0(x)>, and \P(b, a)=pr" (p(b), a) ^prx*<a<*> •"<*>>(&, a).

Then define tt as follows:

ir(b, a) = aii (b)o= 0,

= max [ir((6)2, i),ir((b)j, a)] where i ^     II    pk
« *<(i>)2,l

and 2 <j < (b)2A + 3 if (o)2,i > 0 and (o)0 = 4,

= *r ((6)2,     II    ?*°)t+1) if (6)o = 5 & (b)i > 1 & (a)o = 0,
\ t<(6)i-l /

= max [".(6, [a/2]), ir((b)3, 2(o,^3''-      n     t?*)]
7       L \ l<kg(b)i /J

where.7 ^ *(&, [a/2]) if (6)0 = 5 & (a)0 > 0,

= 0 otherwise (including when (o)0 = 1, 2, 3).

A course-of-values induction on index 6 shows that ir(b, a) has the required

property. If (0)0 = 0, 1, 2, 3, the property clearly is obtained. If (p)0 = 4 we

need only observe that it suffices to choose ir(b, a) no smaller than

max Ttt ((b)2,   II Pt exp prH"M^)((b)k+3, a)\ , w((b)h a), ■ ■ ■, ir((b)m+2, o)l

where tm = (6)2,i. Since yp(b, a)^pr*x<-a(x)'Hx))(b, a), the number

II £*expprx*<"<*>-l'<*>>((ft)t+,, a)
k<m

lies among the values of i used under the fourth case in the definition of

ir(b, a). Similarly if (o)0 = 5.

Now ft(x) = (a(x), 1) is primitive recursive in a(x). So by (10) of [4, §6],

prs (b, a) is primitive recursive in pra (b, a). Hence \f/(b, a) is primitive recur-

sive in pr" (b, a). Observe that the definition of ir(b, a) from\p(b, a),and thence

from pra (b, a) is an unnested course-of-values double recursion: for given

b and a, the value ir(b, a) is obtained primitive recursively from values

w(b, y), where y<a, and values 7r(x, z), where x<6 and z is given primitive

recursively from pfa (b, a). Hence by combining the methods of [6, §§3 and

6], ir(b, a) is primitive recursive in pra (b, a).

8.2. Theorem 5. For any n = l, given any function a(x), of degree a, which

majorizes the primitive recursive functions (e.g. a = 0'), there exist functions

Bi(x), • • • , 8n(x) such that:

(1) for i = l, • • • , n, 8i is primitive recursive in pra (b, a),

(2) for i = l, ■ • • , n, Bi is not primitive recursive in a, 8i, ■ • • , fl,-_i,

8i+u • • • ,8n, and
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(3) a is not primitive recursive in 6i, • ■ • , 0„.

Proof. For simplicity, we illustrate the proof with re = 2. For larger re,

replace (a(x), d(x)) in the definition of ir(b, a) by

(a(x), 6i(x), e2(x), • ■ ■ , 0„-i(x))

and let the 0(x) for the application of Lemma 1 (7.1) instead be 2a(x) ■ JIo<k» Pi-

Let ir(b, a) be defined as in 8.1 for the a(x) of our theorem. Let

"(0) = 0,

v(g') = 5r([g/2]', v(g)') + g'.

The function ir(b, a) [l, p. 291 ] is primitive recursive in ir(b, a) and is

monotone nondecreasing in both variables. Thus v(g) is primitive recursive

in Tr(b, a), hence in pr" (b, a), and is monotone increasing. Furthermore, for

all b, a ~(b', a')>ir(b, a); so for any g and for any 0 which takes on only values

0 and 1, the computation based on index b of pr^x<a<-x'>.e^'>(b, v(g)), b= [g/2],

requires only values of a(x) and of 0(x) for xO(g').

Suppose a function 0(x) is primitive recursive in (a(x), 0(x)) with index

b and that 0(x) is a primitive recursive function with index t. Then <p is primi-

tive recursive in a with index tr1 (6, (4, 1, ei, (0, 1, 1), t)), where ei is an index

of Xyz (y, z). In particular, if 0(x) =Xx (c)x— 1, then t = sh\(e, c) for e an index

of Xcx (c)*^l (cf. [4, §10]). So letting

e(b, c) = tr1 (b, (4, 1, ei, (0, 1, 1), sb^e, c)»,

e is primitive recursive and

prXI<a(x),(c)x^l>(J) a)   = pra (e(6> ^ fl) _

We now proceed to define the functions 0i and 02. First let

f (0) = 2 exp   II Pi,
i<y(l)

„,„        a(s)-po'(a) if g= 26 + 1,
i(S) ~   V , .      Tito) ., .,

W(g)-P<,' ifg = 26,
where

yi(g) = 21+"*<Pr"<'^<f<»>>i*<t<«»»*-••*«•(»)),,).••(»)>).        ' p\y

0<i<m

and

y2(g) = 21+"«<Pra<«<Mr(<0)o*<r(»))2*---*(r(»)>1,>.>'C»))>.       '  p

0<i<m

and m = v(g + 2)—v(g). Observe that, for h^i, (f(A))i=(f (*))<; and further-

more that, for g odd [g even],

(f(«))i * (f(g))3 * • • • * «■(«)). [(f(g))o * G-d)), * • • • * (r(g))J
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is a product of the first v(g') primes to nonvanishing exponents, where for

even y<g [odd y<g] the exponent of p„(„) is

1 + sg(pr-(«([y/2]> (f(y))o * (f(y)), * • • • * (tty))v), v(y)))

[1 + sg(pr«(e([y/2], (t(y))i * (t(y))3 * • • • * (t(y))y), v(y)))], all other

exponents being 1. The function £" is primitive recursive in pra, since the

expression  (f(g))x * (£(g))3 * ■ ■ ■ * (£(g))0  in  71(g)  can be written

n (r(g)Wi
»S [0/2]

where  H* is defined from *  in the same way as H from  •   [l,  p.  224],

and similarly in y2(g).

Now let

*,(*) = (0-(2x + l))i * (f (2x + 1))3 * • • • * (f (2x + l))2x+i)x - 1,

02(x) = ((f(2x))0 * (f(2x))2 * • • • * tf(2x))2x)x - 1.

Since di and 62 are primitive recursive in f, they are primitive recursive in

pra (b, a). Also 0i(x) and 02(x) take on only values 0 and 1. Furthermore, if

g = 2b + l, then, using the above observations and the monotonicity of v(g),

and writing fj,(x) = f[i<x p\M+1 (ci.  [2, footnote 2]),

«*("(«)) = Sg(pr" «b, (f(g))i* (f(g)),* • • • * (r(f)),), Kg)))

= s-g(pr" (e(6, tTi(,(g'))), Kg)))

= ig(pr^<«<*>.<«"'<"<»'>))^i)(0) y(g))).

Now by a property of v(g), since ^i(x) takes on only values 0 and 1, the com-

putation based on index b= [g/2] of prXx^a(-x)'SlM'>(b, v(g)) requires only values

of a(x) and of 0i(x) for x<v(g'). Hence 82(v(g)) =sg(pr^a^'e^x'»(b, v(g))).

Thus 82(x) differs from every one-place function primitive recursive in

(a(x), 8i(x)) for at least one value of x and so is not primitive recursive in

{a(x), 8i(x)). Similarly 0i(x) is not primitive recursive in (a(x), 82(x)). Thus

conditions (1) and (2) are satisfied.

To show that condition (3) is satisfied we apply Lemma 1 (7.1) as in the

proof of Theorem 4. Recall that for all x, 0i(x) <2 and 02(x) <2. Since the

primitive recursive (constant) function (1,1) bounds (0i(x), 82(x)), each func-

tion primitive recursive in (0i(x), 02(x)) is bounded by a primitive recursive

function by Lemma 1. By hypothesis, a(x) majorizes the one-place primitive

recursive functions, and hence a(x) is not primitive recursive in (8i(x), 82(x)).

This completes the proof of the theorem.

The arguments which yield Corollaries 1-3, [5, 2.2], may now be used to

give three analogous corollaries in which degree is understood to mean primi-

tive recursive degree and the degree a satisfies the condition of the theorem.
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No analog of Post's problem [5,  p. 391 ] arises for this system of degrees.

Theorem 5 and its proof may be altered slightly to eliminate the function

a and to produce, for any re^l, functions 0,- with independent degrees ti,

where ti<0', i = l, • • • . n.

Theorem 5 (concluded). For any re^l, there exist functions 0i(x), • • • ,

0n(x) such that: (1) for i=l, ■ ■ ■ , n,diis primitive recursive in pr (b, a), (2) for

* = 1, • • • , re, 0t- is not primitive recursive in 0\, • • • , 0j_i, 0,+i, • • • , 6n.

Proof. The proof is essentially that just given with the last paragraph

eliminated and the following additional alterations. Let a(x) = 1. In redefining

ir(b, a) choose 0(x) = (l, 1). Then ir(b, a) is primitive recursive in pr (b, a).

The  primitive  recursive  function  e(b,  c)  is redefined  replacing

(4, 1, ex, (0, 1, 1), 0 by (4, 1, eh (2, 1, 1), t).

Finally, replace pr" in the exponent of 2 in both 71(g) and 72(g) by pr.

Corollaries 2 and 3 may then be amended to allow a to be any degree.

8.3. The upper semi-lattice of general recursive degrees is shown not to

be a lattice, according to [5, Theorem 3]. The proof establishes that the up-

per semi-lattice of (primitive recursive) degrees is also not a lattice (leaving

the question unanswered concerning degrees within a given general recursive

degree). For the recursiveness in Bi and B2 mentioned in (B) and (C) of

[5, Theorem 3] is actually shown to be primitive [5, p. 405 and p. 406 lines

14—15], since, for j^k, L, is primitive recursive in Lk (using [5, p. 384] lines

1-3 k—j times).
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