FACTOR SETS AND DIFFERENTIALS ON
ABELIAN VARIETIES

BY
IACOPO BARSOTTI()

The main results of this paper are stated in 2.8 and 3.7; the notations and
language are those used by the author in his previous work; numbers in
brackets refer to the bibliography at the end of the paper. Although a few
results of §§1 and 2 are valid for any characteristic, this paper intends to treat
only the case of characteristic zero. The case of positive characteristic is
treated in a forthcoming paper, since it needs an analysis of the derivations
of higher order, and is connected to the rather surprising fact that an abelian
variety over a field of positive characteristic may very well possess exact
differentials of the first kind. §§1 and 2 contain the proofs of those properties
of the differentials of the second kind which are needed in §3; these properties
are familiar in classical algebraic geometry, but their algebraic proofs are
new. While our main interest, in §§1 and 2, rests with the differentials of the
second kind, certain properties of the differentials of the first kind are also
found, usually as special cases; the algebraic proofs of most of these properties
are not new, and can be found also in [S. Koizumi, On the differential forms of
the first kind on algebraic varieties, J. Math. Soc. Japan vol. 1 (1949) p. 273]
and [S. Nakano, On invariant differential forms on group varieties, ibid. vol. 2
(1951) p. 216].

1. The differentials of the first and second kind. Let V be an irreducible
variety over the field k; let W be an irreducible subvariety of V, and set
Q=Q(W/V), B=PB(W/V); let D be a derivation on V (see §5 of [4]). We
shall say that D is regular at W if DxEQ when xEQ, and DxEP when xEP.
If, in addition, Dx &P when xEQ, we shall say that D has a zero at W. Let
w be the homomorphic mapping of Q into k(W) whose kernel is B; if D is
regular at W, for x&Q we see that 7(Dx) depends only on wx, and from this
follows the existence of a derivation #D on W such that (wD)(wx) =n(Dx)
for x&€Q; wD is called the derivation induced by D on W; clearly, #D=0 if
and only if D has a zero at W.

1.1. THEOREM. Let V be an n-dimensional irreducible variety of inseparabil-
ity 1 over the field k; let W be an m-dimensional irreducible subvariety of V,
simple on V, of inseparability 1. Set Q=Q(W/V), B=P(W/V), and let 7 be
the homomorphic mapping of Q onto k(W) whose kernel is B. Let xy, « « -, Xn
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be elements of Q such that k(xy, - - -, xm)SQ, and that k(W) be an algebraic
separable extension of k(wx1, + + + , Txm); let {Xmys, =+ -, x,.} be a regular set of
parameters of Q. There exist derivations Dy, - - -, Dn on V such that Dx;=8;;

(Kronecker's symbol) for i,j=1, - - -, n; these form an independent k(V)-basts
for the dertvations on V. The derivations on V regular at W are all and only
those of the form .., a:D;, with a;EQ for i Sm, and a;EP for i>m; among
these, those with a zero at W are all and only those for which a; &P for t <m. The
derivations wD; (1=1, « - -, m) form an independent k(W)-basis for the deriva-
tions on W.

Proof. Let F be the projective space over k& whose n.h.g.p. (nonhomogene-

ous general point) is {xl, e, x,.} ; let {yl, <, yr} be a n.h.g.p. of V, for
which W is at finite distance, and let y, be an element of Q. Let V' be the
model of k(V) whose n.h.g.p. is {0, - - -, .} ; then W corresponds on V' to

an irreducible variety W’ such that Q(W’/ V') =Q. Let ¢ be the rational map-
ping of V' onto F generated by the embedding of k(F) into k(V’); let
{ Vo, - - -, V,} be the n.h.g.p. of the ambient space of ¢ [F], and let {fi(¥, x),
fo(V,x), - - - } be a basis of the ideal related to ¢ in k[ Y, x]. The Corollary to
Theorem 5.6 of [2] (modified to apply to nonhomogeneous co-ordinates) im-
plies then that the jacobian J(f(Y, x); Y) acquires the rank 41 when { v}
is replaced by {7y} and {x} by {mx}, hence also when { ¥} is replaced by
{y} and {x} by {x}, this, in particular, indicates that ins (k(V):k(F)) =1,
so that Dy, - - -, D, exist and form an independent k(V)-basis for the deriva-
tions on V. From f;(y, x) =0 follows D;f:(y, x) =0, or

(0¥, %)/0%;]rmy + 22 [0f:(¥, %)/0Y aly—uDjyn = O.
h

If these are considered as equations in the unknowns Djy,, - - -, Djy,, the
previous remark on the rank of J(f; ¥Y) shows that D;y,&Q, in particular
Dy, €0, valid for any y,EQ. If y,EB, then yo= D i1 @i, a:EQ, so that,
for j<m, Dyyo= 2 tms1 %:Dja;EP; hence Dy, - - -, D, are regular at W.
Moreover, bD; (j=1, - - -, n) certainly has a zero at W if b& .

Now, let Z;‘_l a;:D; be regular at W; then Zi a;Dx;=a; must be in Q if
j=<m, and in P if j>m; finally, if Z; a:D; also has a zero at W, it must nec-
essarily be a;EP for 4=1, - - -, n, as announced. The derivations 7D;
(¢=1, - - -, m) exist and are independent, since (wD;)(rx;) = 8;;, Q.E.D.

The derivations Dy, - - -, D, of 1.1, in this order, are said to form a
canonical W-basis for the derivations on V, related to the set {xl, ceey, x,.} ;
this set, in turn, is called a set of uniformizing parameters at W on V.

Let V be an irreducible variety over k; a differential of k(V) over k, or on
V, is a linear mapping w: D—wD of the k(V)-module of the derivations on V
into £(V); linear in the sense that if D, D’ are derivations, and x&k(V), then
wDER(V), w(D+D') =wD+wD’, w(xD) =xwD. If w, »’ are differentials on V,
and xEk(V), the differentials w+w’, xw=wx are defined by (w+w')D
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=wD+w'D, (xw) D =x(wD) for any derivation D on V. The differentials on
V thus form a k(V)-module (dual to the k2(V)-module of the derivations on
V). If ins V=1, such module has order n =dim V. If x&k(V), dx (or, if neces-
sary, dvx) shall denote the differential on V such that (dx)D =Dx for any
derivation D on V. A differential of the type dx is called an exact differential.

Let W be an irreducible subvariety of V; set Q=Q(W/V), B=P(W/V),
and let w be a differential on V. We say that w kas a pole at W if either oD & Q
for some derivation D on V, regular at W, or wD &P for some derivation D
on V which has a zero at W; if w does not have a pole at W, it is said to be
regular at W. If this is the case, and if = denotes the homomorphic mapping
of Q onto k(W) whose kernel is B, then, for any derivation D on V, regular at
W, w(wD) depends only on wD, and therefore there exists at least one differen-
tial o on W such that «'(wD) =w(wD) for any such D. If the wD are all the
derivations on W, as it is under the assumptions of 1.1, ' is unique, and is
then denoted by 7w or o YW or WNuw, and called the differential on W in-
duced by w; w induces 0 on W, or has a zero at W, if rw=0, or if wDEP for each
derivation D on V, regular at W.

1.2. THEOREM. Let kb, V, W, {x}, Q, B, 7 be as in 1.1; then the differentials
on V regular at W are all and only those of the form D . adx:, with a;EQ
(¢=1, - - -, n); and among these, those with a zero at W are all and only those
for which a;€PB (=1, - - -, m). The differentials WNdx; (=1, - - -, m)
form an independent k(W)-basts for the differentials on W. If xEQ, dx is regu-
lar at W, and dwx = WNdx; if xEB, dx has a zero at W.

Proof. For =1, - - -, n, dx; is regular at W; in fact, if Dy, - - -, D, have
the same meaning as in 1.1, and if D= Y, a;D; is regular at W, we have
(dx;)D =Dx;=a;, and this, by 1.1, belongs to Q, and also to P if D has a zero
at W. If w= D bidx; is regular at W, then wD = Y_; b;a; must belong to Q if

a, -+, am€Qand @myy, + - -, a.EP, and to P if also ay, + - -, aEP. This
is true if and only if 8y, - - -, b,E€Q; and w has a zero at W if and only if
> iba,EBforay, - -+, an€EQ, Gmy, * - + , G EP; this is true if and only if
by, + - -, bmEPand bmy1, - - -, 0. EQ. The differentials WNdx; (=1, - - «,m)

exist, and are independent over k(W) ; hence they form a k(W)-basis for the
differentials on W.

If x€Q, then dx = D _; (D:ix)dx;, and this is regular at W because DxEQ
for 1=1, .-, n; if x&$, then x= Z}‘_,,,H yx;, with y;&EQ; hence dx
= D" i1 ¥idxi+x;dy;; since each dx; and each x;dy; has a zero at W, the
same is true of dx. The statement WM\dx =dwx is obvious, Q.E.D.

The differentials dx;, - - -, dx, of 1.2, ordered so that those with a zero
at W are the last » —m, are said to form a canonical W-basis for the differen-
tials on V, related to the set {xi, - - -, xn}.

1.3. LEmMA. Let V, W be as in 1.1, and let w be a differential on V which
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has a pole at W; then w has a pole at some (n—1)-dimensional irreducible sub-
variety of V containing W.

Proof. Set Q=Q(W/V), B=P(W/V). If w has a pole at W, then either
wD & Q for some derivation D on V, regular at W, or wD & for some deriva-
tion D on V with a zero at . In the first case, set wD =gp~!, where ¢€Q,
pEP, and p, ¢ have no common factors (here one should remember that every
minimal prime ideal of Q is principal; see [8]). If D’=pD, D’ has a zero at
W, let U be the center on V of a prime divisor v of V such that QCR, and
that v(p)>0; then D'xEpQCP, for xEQ, so that if a=xy"'€R,, with
*x&EQ, yEQ—pQ, we have D'a=y"1D’x —xy~2D’y&PB,. Hence D’ has a zero
at U; but wD’ =pwD =g&P,, which proves that w has a pole at U. In the
second case, i.e. when wD&P and D has a zero at W, we may assume wD =q
to be a unit of Q, otherwise this case would fall within the first case. If
{Dl, S, D,,} is a canonical W-basis for the derivations on V, we have
D=3 a:Di a;€DB, and g=wD = Y_; awD,. Unless w is such that the first
case applies, we must have wD;EQ for i <m, and therefore Y * ..., awD; is
a unit of Q, while each a,wD; belongs to Q. As a consequence, a.wD; is a unit
of Q for some ¢>m, say 1=n. Now, let U, v be related to a, as they were be-
fore to p; if D' =a,D,, we have D'xE4a,QC P, for x&Q, and therefore also for
*&ER,; hence D’ has a zero at U, but wD’&B,. This proves that w has a pole
at U, Q.E.D.

The sentence “U s a pole of w” shall mean, from now on, that w has a pole
at U, and that U has dimension »—1, if # is the dimension of V.

1.4. THEOREM. Let V be an n-dimensional irreducible variety over k; let W
be an irreducible proper subvariety of V, simple on V, and of inseparability 1;
let w be a differential on V. Then w has a pole at W if and only if W is a sub-
variety of a pole of w. If x Ck(V), and V has no (n—1)-dimensional singularity,
and no (n—1)-dimensional irreducible subvariety of inseparability >1, each
pole of dx is a pole of x; under the same assumptions, w has finitely many poles.
If, in addition, k has characteristic 0, each pole of x is a pole of dx.

Proof. If w has a pole at W, then a pole of w contains W by 1.3. If WCU
and U is a pole of w, let {dxl, cee, dx,.} be a canonical W-basis for the
differentials on V, and write w= Z; aidx;; should w not have a pole at W,
we would have ¢;€Q(W/V)CQ(U/V) for each ¢ by 1.2. Since, by 1.2, dx;
is regular at U, the sgme would be true of w, a contradiction. Hence w has a
pole at W. If U is now any (z—1)-dimensional irreducible subvariety of V,
simple on V, and if ins U=1, from xEQ(U/V) follows that dx is regular at
U by 1.2; hence each pole of dx, under the additional conditions mentioned in
the statement, is a pole of x. Therefore the poles of w are to be found among
the poles of x;, - - -, x,, a1, - - -, @n, and are finite in number. If £ has char-
acteristic 0, and U is a pole of x, we can write x =u#", where » is a unit of
Q(U/V), t generates P(U/V), and 7r<0. Then dx=rut—'dt+t'du; let
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{tl, cee, t,.} be a set of uniformizing parameters at U on V, such that ¢, =¢,
and let {Dy, - - -, D,} be the canonical U-basis for the derivations on V
which is related to {t} Then (dx)(tD,) =rut+t+'D,u; since tD,uER(U/V),
it follows that ¢+1D,u E¢+1Q(U/ V), while rut+1Q(U/ V) ; hence (dx) (D)
&Q(U/V), and therefore U is a pole of dx, since tD, has a zero at U by 1.1,
Q.E.D.

1.5. THEOREM. Let U, W, V be irreducible varieties over k, such that
(1) UCWCV, (2) Utis simple on W and V, and (3) ins U=1; let w be a differ-
ential on V, regular at U. Then w is regular at W, and oMU = (wN\W)NU.

Proof. By conditions (2) and (3), if the dimensions of W, V are m, n re-
spectively, it is possible to find a set of uniformizing parameters { X1, +c %)
at U on V which is also a set of uniformizing parameters at Won V, and such
that if 7w is the homomorphic mapping of Q(W/V) onto k(W) whose kernel
is B(W/V), {1rx1, cee, 1rx,,,} is a set of uniformizing parameters at U on W.
If w is regular at U, we have w= ZZ‘,I aidx;, with a;EQ(U/ V), by 1.2; hence
a;EQ(W/V), and wis regular at W. But then, by 1.2, o\ W = D™ | (wa;)dnx;;
now, ma;EQ(U/W), so that w\W is regular at U by 1.2, and the relation
(wNWYNU=wNU follows easily, Q.E.D.

A differential w on V is said to be of the first kind (on V) if it is regular
at each irreducible subvariety of V; by 1.4, if V has no singularity, and no
irreducible subvariety with inseparability >1, a differential on V is of the
first kind if and only if it has no poles (of dimension n—1 if # =dim V). Two
differentials w, w’ on V are said to be equivalent, in symbols w~w', if &' —w
is exact. A differential w on V is said to be of the second kind (on V) if for each
irreducible proper subvariety W of V there exists a differential w’~w which is
regular at W. From 1.5 we obtain:

1.6. COROLLARY. Let W be an irreducible subvariety of the irreducible vari-
ety V over the perfect field k, and assume each point of W to be simple on W and V.
Let w be a differential on V, regular at W; if w is of the first (second) kind, so is
WNw.

Two derivations D, A on V are said to commute if DAx =ADx for each
xCk(V); a differential w on V is said to be closed if D(wA)=A(wD) for each
pair {D, A} of derivations on V which commute. Any exact differential on
V is closed; and any differential on V is closed if dim V=1, as will clearly
appear from the following result:

1.7. LEMMA. Let V be an n-dimensional irreducible variety over k, of in-
separability 1. A differential w on Vis closed if and only if D;(wD;) = D;j(wD;) for
i,j=1, -, n, where {Di, - - -, D,} is a k(V)-basis for the derivations on V,
consisting of mutually commutative derivations.

Proof. If D= >_; a;D;, and A= Y_; b;D; are commutative derivations on
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V, with a;, b;Ek(V), we have Db;=Aa;, and D(wA) = »_; (Db;)wD;+b;D(wD;)
= >, (Aa))wD;+aA(wD;) =A(wD), Q.E.D.

It is evident that if w is closed, also WNw is closed if it exists.

Let V be an absolutely irreducible variety over k, and let K be an exten-
sion of k. If D is a derivation on V, there is a unique derivation Dg on Vg
such that Dgx = Dx for any xEk(V) CK(Vk). Likewise, if w is a differential
on V, there is a unique differential wx on Vg such that wxDx=wD for any
derivation D on V; in particular, dy x = (dvx)x for x&k(V). A somewhat
different situation arises in considering two irreducible varieties V, V' such
that 2(V)CEk(V’) and ins V=ins (k(V’):k(V))=1; in this case, for x&k(V),
we have dy:x=0 if and only if dyx=0; if w is a differential on V, and
w= Z; aidvx;, where a;, x;&Ek(V), then Z; adyx; gives a differential on V7,
which does not depend on the choice of the x’s, and which is 0 if and only if
w=0. Such differential is called the extension of w on V’. A particular case
arises when V’'=VXW, where W is another absolutely irreducible variety
over k (V being also absolutely irreducible in this case); then the extension of
w on V' will be denoted by w X W or WXw; there is an obvious one-to-one
correspondence w X W—wkg, for K =k(W). Also, w X W or wg are closed if and
only if w is closed.

1.8. LEMMA. Let V be an irreducible variety without singularities over the
algebraically closed field k; let K be an extension of k, and let w be a differential
on V; then wg is of the first (second) kind if and only if w is of the first (second)
kind.

Proof. Set n=dim V, d=dy, d’ =dy,; assume w to be of the second kind’
and let U be a nonempty irreducible subvariety of Vx; there exists a point
P&V such that Q(P/V)CQ(U/Vk), and there exists an fEk(V) such that
w—df is regular at P; in particular, f=0 if w is of the first kind. Thus, w—df
= Z,- adx;, where a;, x;©€Q(P/V), by 1.2; but then, again by 1.2, wxg—d'f is
regular at U, so that wg is of the second kind, or of the first kind if f=0.

Now, assume wx to be of the second kind; let U be a nonempty irreducible
subvariety of V, and let fE K(Vk) be such that wg —d’f is regular at Uk; here,
f=0if wg is of the first kind. Let v be any place of K over k, whose extension
w to K(Vk) over k(V) is such that w(f) 20, and denote by ~ the homomorphic
image of an element of R, mod P, Write wx—d'f= D aid'x; with
a;EQ(Uk/Vk), {xl, -+, %} being a set of uniformizing parameters at U
on V. The poles of wg —df are among the poles of the a; and the x;, by 1.4,
and none of them contains Uk, again by 1.4; hence, after a suitable choice of
v, none of the poles of any &; or any x; contains U, and therefore w—df is
regular at U, Q.E.D.

If V is an irreducible variety over the field k, we shall denote by D:(V),
Do(V), D(V) respectively the k-modules of the closed differentials of the
first kind on V, of the closed differentials of the second kind on V, and of the
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exact differentials on V; clearly, D:(V) and D.(V) are sub-modules of Dy(V),
their intersection being 0 if k2 has characteristic 0, by 1.4. If V is absolutely
irreducible, we shall say that an independent k-basis {wi, wy, * « - } of DUV
is an absolute basis, if {(wl) &, (W)g, * - - } is a K-basis of §,(Vk), for each
algebraically closed extension K of k. And a set {wi, w, - - - } of elements of
D:(V), whose images mod D.(V) form an independent k-basis of D(V)/De(V),
is said to represent an absolute basis, if the images of (w)x, (W), - - *,
mod D.(Vk), form a K-basis of Dy(Vk)/D.(Vk), for any algebraically closed
extension K of k.

If {wl, Wy, ot } is an absolute basis of D;(V), or, respectively, a repre-
sentative of an absolute basis of Dy(V)/D.(V), then {(wl) & (Wo)k, + * - } isa
K-basis of D,(Vk), or, respectively, represents a K-basis of Do(Vk)/D(Vk),
for any extension K of k. We shall give the proof of this statement in the
second, less obvious, case. Let K be an extension of k, and let wE Dy (Vk);
then, for a suitable finite extension H of K, we can find an x&H(Vy), and
elements a;, as, - - -+ ©H, such that wy—dy,x= Z; ai(w;)g. Let {b1= 1,
bz, - - -, by} be an independent K-basis of H; then {5} is also an independent
K(Vk)-basis of H(Vg). Write x= 2 ; x;b;, x;EK(Vxk), and a;= D_; a:jb;,
a;jEK. Then wy—dvﬂxl— Z,‘ a;l(w,-)H= Z;_,z (dVij+ Z,' a.'j(w,‘)y)bj. If D iS
any derivation on V, this gives wDg—Dgx;— Z.- aaw;D = er-z (Dgx;
+ E; a4iw;:D)b;; since the left member, and each Dgx;+ Z; a;w:D, for j>1,
belong to K(Vk), we conclude that wDg — Dgx; = E; aqaw;D, or that w—dy,x:
= > ; aa(w)x, as claimed.

1.9. THEOREM. Let Vi, Vs, be irreducible varieties without singular points
over the algebraically closed field k, and set V="V1XV,. For a given j (=1, 2),
assume w; S D;(Vy) (1=1, 2); then oy X VoFw, X V1E D;(V). If wi, w; are differ-
entials on Vi, Varespectively, and w=wi X Votw. X V1ED;(V) (j=1 or 2), then
w€ED;(V;) for i=1, 2; also, w1, w, are uniquely determined by w. If D:(V;) has
an absolute basis for i=1, 2, and k has characteristic zero, then (V) has an
absolute basis, and each element of (V) can be expressed in the form wi XV,
Fwe X V1, with 0. E D(V,). If there exists a representative of an absolute basts of
Do(Vi)/De(Vs) for =1, 2, and k has characteristic zero, then there exists a
representative of an absolute basis of D(V)/De(V), and each element of (V)
is equivalent (~) to an element of the form wi X Vo+w: X V1, with w;E D V)
(=1, 2), uniquely determined but for equivalence.

Proof. PART 1. Set n;=dim V;; if w=w; X Vo+w. X V1, any pole of w is of
type U1 X Vyor Uy X V1, with U; a pole of w;. Hence, by 1.4, 0ED;(V) (1 =1, 2)
if and only if w;ED(V;) for j=1, 2.

PART 2. Assume k to have characteristic zero, and let {aﬂ, Qigy * * }
represent an absolute basis of D(V;)/D(V:) (3=1, 2). Let 0 & D(V), and
write w= Z.' aidx;+ Zj bidy;, where a;, b;Ek(V), and {xl, sy, x,.l},
{yl, I y,.,} are algebraically independent (over k) elements of k(V)),
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k(1) respectively, such that k(Vy), k(V3) are finite separable extensions of,
respectively, k(x) and k(y). Set K=k(Vy), H=k(V)), d*=dwy, *
= z; aid*x;. Then w* is a closed differential on (V1) g; if W is an irreducible
subvariety of (V1)m at which w* has a pole, set W =Dy y,, so that W is a
subvariety of V such that Q(W'/V)=Q(W/(Vi)x). There exists a z&k(V)
such that w—dz is regular at W’; but then w*—d*z is regular at W. This
proves that o*€ED:.((V1)x); as a consequence, there exists an xEk(V) such
that w*—d*x is a linear combination, with coefficients in H, of, say,
(ar)m, -+ -, (). Set ag,= Z,- tyidixj, t,;EK; then there are elements
vy, - -+, v, of H such that w—dx= D i; viddx;+ O.; widy;, with w,Ek(V).
This is a closed differential; if D;, A; are the derivations on V such that
D;x,~=6.~,~, D,'yj=0, A,~x,~=0, A,'yj=5;j, we must have D,-w,~= thhiAﬂJ}.. This
implies that the poles of d*w; are all of the type Uy, with U an (#;—1)-
dimensional irreducible subvariety of V; consequently, by 1.4, the poles of
w; on (V1)y are of the same type, and therefore w;&E K X H (direct product
over k). Write then w;= Z, Cjsejs, With ¢;, €K, e;,EH, and ej, ejp, - - - lin-
early independent over &, hence over K. Then Y _s (Ajwa)tas = Diw;= > s einDicis;
this shows, by (99) of [1], that there are elements B €k such that A
= Zs thgejg, and that DiC,‘,= Eh thxt}”', so that dicjs = Z"i thst;.,-dlx;
= Z;, Binsan. Since aqy, - - -, oy, are independent over k£ mod D.(V;), we con-
clude that B;,=0, so that Ajp,=0, v,Ek; also, Dic;, =0, ¢;;Ek, and w;EH.
Thus w—dx =w; X Vo+ws X Vi1, where w; = Z; v;a; 1s a differential on V3, and
we= Y _; wydyy; is a differential on V,. By Part 1 of this proof, w; and w, are
closed and of the second kind; they are unique but for equivalence (~),
because if w=w; X Va+twsX V1~0, then, for a generic P,& Vs, also wi X P2
=wﬂ(V1XP2)~0

PART 3. The statement concerning the case in which w is of the first kind
is proved in the same manner (actually simpler) used in Part 2.

PARrT 4. The statement concerning the existence of absolute bases is a
direct consequence of Parts 3 and 4, Q.E.D.

2. Application to abelian varieties. Let G be a group-variety, without
singular points outside the degeneration locus F, over the field k. If P is a
rational point of G, ¢p and 7p will have the usual meanings (see [3] and [4]).
If D is a derivation on G, we shall denote by opD the derivation on G such that
(¢pD)(cpx) =ap(Dx) for any xEEk(G); TpD is similarly defined. When £ is
algebraically closed, and according to §5 of [4], D is left (respectively right)
invariant if and only if ¢pD =D (respectively 7pD=D) for any PEG—F.
Let w be a differential on G; we shall denote by ¢pw the differential on G such
that (¢pw)(cpD) =0p(wD) for any derivation D on G; in particular, opdx
=dopx for xEk(G); Tpw is similarly defined. If % is algebraically closed, w is
said to be left (right) invariant if o pw=w (if Tpw =w) for any PEG — F; if both
relations are fulfilled, w is said to be invariant. Under the same conditions,
w is said to be left (right) semi-invariant if for each PEG — F there exists an
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xpEEk(G) such that opw—w=dxp (respectively 7pw—w=dxp); if both rela-
tions are fulfilled (not necessarily for the same xp), w is semi-invariant.

2.1. THEOREM. Let A be an n-dimensional nonsingular abelian variety
over the algebraically closed field k. Then the invariant differentials on A are all
elements of D:1(A4), and form a k-module of order n. Also, each differential of the
first kind on A is invariant, hence closed, and D,(A) has an absolute basts.

Proof. Let D, - - -, D, be the invariant derivations on 4 defined in §5
of [4], and let w; be the differential on A defined by w;D;=8,;. Thenwy, - - -,
w, are invariant, and linearly independent over % (also over £(4)). If w is an
invariant differential on 4, set w= Z{Ll a;w;, with a;Ek(4); for PEA,
W=0pw= Z.- (opa;)w;, or apa;=a;, or a;&k. Hence the invariant differentials
on 4 form a k-module of order #. If w is one of them, and U is a pole of w,
opU is also a pole of w for each PEA4. Hence w has infinitely many poles,
a contradiction to 1.4. Therefore w is of the first kind; in order to show that
it is closed, it is sufficient to prove that each w; is closed; this will be a con-

sequence of 1.7 if we can prove that D;D;=D;D; (1,j=1, - - -, n).

For sake of brevity, we shall make use of the functional notation of
analysis, in spite of its ambiguous meaning. Let {x,, cee, x,,.} be a n.h.g.p.
of A such that x;=0 at E4 (identity), and that {xl, cee, x,.} form a regular

set of parameters of Q(E4/A). We shall consider an algebraically closed ex-
tension K of k, of sufficiently high transcendency over k, and shall say that a
point P of Ak, at finite distance for {x}, is general for A4, if the values
Y *++, ¥n&EK of, respectively, %1, - - -, xm, at P are such that k(y) is
isomorphic to k(x) over k, in an isomorphism in which y; corresponds to
x; (¢=1, - - -, m). There are rational functions g1, - - -, gm of two sets of
indeterminates {Xl, - ,X,,,}, {Yl, cee, Y,,,},such that, for generic points
P, Q of A, the co-ordinates of PQ are obtained by replacing, in g1, - * -, g,
the co-ordinates of P for {X}, and of Q for { ¥'}. Then §5 of [4] states that
Dixj= [0g;(x, t)/dt;]im0, if {l} are the co-ordinates of a point of Ak, general
for 4, and such that k(x, f) has transcendency 2z over k. The previous

formula is valid for =1, - - - ;mand j=1, - - -, m; for the purpose of com-
puting the partial derivatives, {41, - - -, £, must be considered as functions
of 4, - - -, ta. Then

DuDix; = Dy[dg;(x, £)/3t:]) im0

= Z [a2gf(x’ t)/atiaxr]t=0—0hx,

r=1

= 2 [0%(x, )/0t:9%: 1m0 [0g+(x, 2)/024] 1m0

2 [0%(g(x, 2), £)/0t:0g:(, 2) Jimsmoldg:(x, 2)/024) 1m0

r

[azgj(xr g(z, t))/aliazh]b-z-so;
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this expression remains unchanged after interchanging ¢ and k; therefore
DyD;=D;D;, as claimed. This proves completely the first statement of the
theorem.

Now, let w be a differential of the first kind on 4 ; let D be any invariant
derivation on 4, and set a=wD. If V is any (#n —1)-dimensional irreducible
subvariety of 4, Q(V/A4) is the join of the Q(P/4) for PEV. By Lemma
5.1 of [4], DxEQ(P/A) if xEQ(P/A); hence DxEQ(V/A) if xEQ(V/A).
If ¢t is a regular parameter of Q(V/4), the derivation ¢tD has a zero at V.
Since w does not have a pole at V, we conclude that ta =w(tD) EB(V/A4), so
that a€Q(V/A). This having to be true for any V, it follows that a&k.
If then {D;}, {w:} have the previous meaning, and wD;=a;Ek, we neces-
sarily have w= D :2w;E Dy(4), as claimed. The existence of an absolute
basis for D;(4) is an immediate consequence of this fact, and of 1.8, Q.E.D.

Before proceeding any further, we remark that the differentials on a
curve, in the language of [6], can be identified with our differentials thanks
to Theorem 6 of Chapter VI of [6]; also the definitions of “first kind” and
“second kind” are equivalent (see §8, Chapter VI of [6]). And it is apparent
that if C is an absolutely irreducible curve without singularities over &, D:(C)
has an absolute basis, and a representative of an absolute basis of D.(C)/D.(C)
exists. ©;(C) is a k-module of order g=genus of C, while D.(C)/D.(C) is a
k-module of order 2g if k has characteristic zero. In the latter case, the
k-modules D:(C)/D1(C)+ D(C) and D;(C) are dual to each other, by
Theorem 8 of Chapter VII of [6]; the duality operation is induced by the
operation j(we, w1), for w;E D;(C).

2.2. LEMMA. Let A be an n-dimensional nonsingular abelian variety over
the algebraically closed field k; then each semi-invariant differential on A is of the
second kind. If k has characteristic zero, the following statement is also true:
let w be a closed differential on A, such that for any (n—1)-dimensional ir-
reducible subvariety V of A there exists an fEk(A) for which w—daf is regular
at V; then w is semi-invariant, hence of the second kind. In particular, every
element of D(A4) is semi-invariant.

Proof. Let w be a semi-invariant differential on 4, and let U be an ir-
reducible subvariety of 4. Since w has finitely many poles by 1.4, for a
suitable P& A the differential opw does not have a pole at U; as o pw~w, we
conclude that w is of the second kind.

In order to prove the second statement, assume % to have characteristic
zero, and denote by D’ the set of the closed differentials on 4 having the
property described in the statement of the lemma. For any differential w on
4, let p(w) be its polar variety, that is, the join of all its poles, and let e(w)
denote the intersection of all the p(w+d4f) when f ranges in k(4); if w is
closed, we have w&E D’ if and only if dim e(w)<n—1. If PEA, we have
e(opw) =ape(w), so that spwE D’ if and only w& D',
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Since 4 is the homomorphic image of a jacobian variety, there exist a
curve C on k, without singularities, and a rational mapping ¢ of C into 4,
such that, for each PE A4, no proper group-subvariety of 4 contains op¢C,
¢C denoting the curve on 4 on which ¢ operates.

We shall now consider copies 4, A1, 4, of A, and assume k(42) Ck(4 X41)
as prescribed by the rational mapping of 4 XA4; onto 4, which gives the law
of composition on 4; as usual, and unless stated otherwise, if w is any entity
related to 4, w; shall denote the copy of w similarly related to 4. Let {x} , { y}
be n.h.g.p. of 4, 4, respectively, copies of each other; set H=Fk(4,), L=k(4),
K =Fk(C); let X be the point of 4y at which the co-ordinate x; assumes the
value y;, and let Z be the point of (4;) at which the co-ordinate y; assumes
the value x;; set also Y=¢{C} EA4x.

Quite in general, if w is a closed differential on the product UX V of two
irreducible varieties, w can be written uniquely as the sum wy+wy of two
differentials on UX V, such that wyD =0 for any derivation D of 2(UXYV)
over k(U), while wy is similarly related to V; we shall say that wy is the
U-component of w, and shall use this notation throughout this proof; wy
is not, generally, a closed differential. Under the same conditions, let wy/ be
the differential on Uy, such that wy/ D =wyD =wD for any derivation D on
Urw); then wi/ is closed, and will be called the Ugy-component of w.

We shall now consider a differential w € 9’, and shall denote by Q the
extension of w; on 4 XA;; we shall also write Q=Q4+Qy4,, these being the
A-component and the 4;-component of Q; let w* be the 4 y-component of .
Then we have w*=0%'wg, so that e(w*) =cx'e(wx); and of course, any com-
ponent of e(wy) is a subvariety of the extension over H of a component of
e(w). Since e(Cu Xw*) =Cgx Xe(w*), the previous result implies that the in-
tersection of ¢x and e(Cu Xw*), on Cy XAy, is empty. Since each point of
¢x is simple on Cy XAy and on ¢y, 1.4 and 1.5 apply to this case, and yield
that ¢ M (Cu Xw*) is a differential of the second kind on ¢u; as k(¢) can
be identified with K, there exists a unique differential a* on Cy, of the second
kind, such that (a*XAx)Nér=¢aMN\(CaXw*). Let {eu, - - -, .} be a
representative of an absolute basis of D;(C)/D.(C); then, for suitable elements
2,€H, we have a*~ ) _z,(a;) u; this means that there exists an fE£(CX41)
such that the Cx-component d*f of dcxa.f has the property a*= > ; z:(a) &
+d*f. Denote by ac the differential on CXA, such that acD =a*D for any
derivation D on Cy, while a¢D =0 for any derivation D on (4;)k; then

2.3 (ae X A) N (¢ X 41) = (¢ X A1) N (C X ),

and ac= D ; zi(es X A1) + (descarf) e

We want to prove that (¢ XA1)MN(CXQ) has no pole of the type ¢ X Uy,
with U an (n—1)-dimensional irreducible subvariety of 4. In fact, consider
a pole of this type; then, for any P& [, ¢ X Py is a subvariety of a pole of
(@ X A1) (CXQa), hence, by 1.5, also of a pole of CXQy; if V is any pole of
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w, V'=0%'Vy is a pole of w*, and V"' =Dy.,4, is a pole of Q4, so that CX V"’
is a pole of CX4. Conversely, each pole of C Xy is of this type, because it
operates on the whole 4;; consequently, if ¢ X P; is a subvariety of a pole of
CXQ4, YX(P1)k will be a subvariety of a Vg, where V" is of the previous
type; this means that ¥ and (Py)x correspond to each other in the algebraic
correspondence V¥; but V'[P;]=05'V (see §1 of [4]; in the notation of
that section, after exchanging G, G,, Gs with, respectively, 4,, 4., A4, V’
would be denoted by I'y, and V" by Tv), so that YE (65" V)x, or 0p, YE Vk;
this, in turn, implies 6p¢p CC Vg for any PE U, or oqU =V for each Q€¢C.
But this is impossible, since it implies that, for a fixed RE$C, oz '¢C belongs
to the proper group-subvariety of A consisting of the PEA such that
gpU=U. It is thus proved that no pole of (¢ XA1)N(CXQ,) is of the type
¢ X Uy; hence, by 2.3, (aeXA)M (¢ X A1) has the same property.

Now, for any (n—1)-dimensional irreducible subvariety U; of A4;, let
{&1, - - -, £} be a set of uniformizing parameters at Uy on A;; for a given
element z of K but not of %, there exists an element g&k(CX4,) such that
ac=g(dczX A1) =gdexa,?; hence, (acXA)N(PpXA1)=g(dszXA1) =gdyxa,z,
where z is now considered as an element of k(¢) in the identifica-
tion k(¢p)=K. A set of uniformizing parameters at ¢ X U; on ¢ X4, is
{z, Ey, - - v, E,.}, so that, by 1.2, the fact that ¢ X U, is not a pole of (a¢XA4)
M (¢ XA,) means that CX U; is not a pole of g; as a consequence, and for
the same reason, CX U, is not a pole of a¢, and this is valid for each U,. We
contend that, as a consequence, z;Ek for each 7. In fact, if it is not so, after
setting d*f=f'd*z for f'€k(CXA4,), let U; be a pole of some z; and let
pEP(U,/A41) be such that pz;, pf EQ(CX U/CX A1), one of them at least
not being in PB(CX U:/CX A4:1). Then

0= pacN(C XUy = Z (w(pz:)) (s X Ur) + (w(pf") (dexv 2)es

where 7 denotes reduction of Q(CX U1/C X A,) mod B(C X Ur/CXA,); hence,
2= (w(pz)) (@) m + (m(pf))deys = 0,

where M =k(U;). Since the (a;)u represent an M-independent basis for

D, (Cu)/ De(Chr), we conclude that w(pz;) =m(pf’) =0, against the hypothesis.

We have thus shown that z;&% for each 7, so that there exists an element
a= D zia; of D,y(C), and 2.3 can be written as

[ X 4 X 41 + dexaxa,f — C X Qaxe N (¢ X A1) = 0.
This also means that the ¢-component of
[OtXA XA1+dCxAxA,f—CX9]m(¢XA1)

is zero. As this is a closed differential, it must necessarily be of the type ¢ X8,
with 8 a closed differential on 4. The (4,) k-component of the above differen-
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tial is then Bx=(df—Qx)N\(YX(41)x), where d'=du,g, or also Bk
=(d'f—Q4,)N (Y X (A1) k). For any invariant derivation D on 4, denote by
D, also the extension of D; over K, or over k(CXA); then D, is regular at
Y X (41)x, and we have [(d'f—Q4 )N\ (Y X (A1)k) |D1=Dif —[(o; " (w1) ) D1],
where m now denotes the homomorphic mapping of Q(¥Y X (41)x/Ax X (41)k)
onto K((A1)x) whose kernel is P(Y X (41)x/Ax X (41)k); the last expression
coincides with

D,f — T[”;l((wl)LDI)] = D,f — U;Iﬁ:wle) = Df — (0;11(0«’1)K)D1;

thus, Bx=d'f—a§f(w1)x. Now, for any PEC, the above reasoning can be
repeated, and it gives B~(oq'w): if Q=¢[P]. If Sis a fixed point of ¢C, and
C'=05'¢C, let Qy, - -+, Q.EC'; then w~og'w, hence w~ag w~agow, etc.,
so that w~oz'w for R=0,0; - - - Qn; but as the Q; range over C’, R ranges
over A, so that w~aprw for any RE4, and w is semi-invariant, Q.E.D.

2.4. LEMMA. Let A be an n-dimensional nonsingular jacobian variety over
the algebraically closed field k of characteristic zero; then D:(A)/D.(A4) is a k-
module of order 2n, and there exists a representative of an absolute basis of it.

Proof(?). Let A be the jacobian of a curve C over k, without singular
points. Let Cy, - - -, C. be copies of C, and set V=C; X - - - X C,. Then, by
[9], £(4) is the set of the elements of k(V) which are invariant for all the
elements of the group G of the automorphisms of 2(V) over k& which permute
the k(C;) in all possible manners. Since there exists a representative of an
absolute basis of D.(C)/D.(C), 1.9 implies that there exists a representative
of an absolute basis of D(V)/D(V), and also that D (V)/D(V) is a k-
module of order 2#2. Let w& D:(4), and let w’ be its extension on V; then
w’ is a closed differential, invariant for each element of G; we contend that
o’ is of the second kind. Let W be a nonempty irreducible subvariety of V; by
Theorem 6 of [9], if ¢ is the rational mapping of V onto 4 generated by the
embedding k(4) Ck(V), the variety U on which ¢ [WW] operates is such that
Q(U/A)CQ(W/V). There exists a wy~w regular at U, and the extension
w! of wy on V is regular at W by 1.2, and clearly w/ ~«’. Hence ' is of the
second kind. Conversely, let o’ be a closed differential of the second kind on
V, invariant for each element of G. If xy, - - -, x,Ek(A4), and k(4) is a finite
extension of k(x), also (V) is a finite extension of k(x); write o’ = Z; adyx;,
a;€k(V). Then each a; is invariant for each element of G, and therefore
a;€k(4), and «’ is the extension on V of w= D_; aidsx:. We contend that w
has the following property: for any (z —1)-dimensional irreducible subvariety
W of A, there exists an fEk(4) such that w—df is regular at W. In order to
prove the assertion, we consider the distinct components Wy, Wy, - - - of

(®) (Added November 4, 1955). The author is indebted to the referee of Amer. J. Math. for
pointing out an error in the proof which the author had originally submitted for this lemma.
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the subvariety of V on which ¢ [IW] operates; they are all (n —1)-dimensional,
and conjugate to each other under the transformations of G (see §3 of [4]).
Since «’ is of the second kind, there exists an fi€k(V) such that o’ —dyf; is
regular at Wy; moreover, the Q(W,/ V) are disjoint valuation rings in the sense
of Krull, and therefore, by the independence theorem, it is possible to select
an f'€Nju Q(W;/V) such that fi—f'&€Q(W;/V). Let m be the number of
times W; (hence any W;) appears among the conjugates of Wj, under the
transformations g1, go, - - - of G, and set f=m=1)_; g;f’; then, since g’ =w’
for each j, o’ —dyf is regular at each W;; but fEk(A4), so that o’ —dyf is the
extension on V of w—df; since Q(W/A) =k(A)NQ(W,/V), we conclude that
w—df is regular at W, as claimed. Thus, by 2.2, 0o € D:(4).

We have thus established a 1-1 correspondence w—w’ between D,(4:), and
the k-module § of the elements of D,(V) which are invariant under the trans-
formations of G. The k-module 8 consists, by 1.9, of all the differentials of the
type

22CiX - XCiy X wf X Cig1 X - -+ X Co + dvf,

=1
where fEk(A) and wf is the copy on C; of a w*E D,(C); clearly, /SN D(V)
has order 2z, so that $,(4)/D.(4) has order 2n. As a consequence, there
exists an absolute basis of it, Q.E.D.

REMARK. In the notation of the preceding proof, and for a w & D,(4), let
' be the extension of w on V, and let w*& Dy(C) be such that

W~ CIX s X Cimg X ¥ X Ciyr X v+ X Ca

then the mapping w—w* induces an isomorphism between ©;(4)/D.(4)and
De(C)/ D(C), in which D;(4) and Di(C) map into each other.

Let A be an n-dimensional nonsingular abelian variety over the alge-
braically closed field k of characteristic zero;let C be a curve without singu-
larities over &, and let X be a rational mapping of Cinto 4. For any o & D:(4),
we shall consider the element A*(w)E&E Dy(C) such that (AW*(w)XA4)NA
= (C Xw)MN\, if these expressions have a meaning. Then, A* induces a homo-
morphic mapping of Dy(4)/D.(4) into D(C)/D.(C), such that D;(4) maps
into ™,(C). If, in particular, 4 is the jacobian of C, and A is a canonical map-
ping of Cinto 4, A*(w) is the differential on C denoted by w* in the preceding
remark (but for an exact differential); accordingly, in this particular case,
the mapping A*: w—A*(w) induces an isomorphism between D,(4)/D.(4)
and D:(C)/D.(C), in which D,(4) and D,(C) map into each other.

In general, N can be extended to a homomorphism « of the jacobian J
of Cinto 4; in other words, A =a¢, if ¢ is a canonical mapping of C into J. If,
in particular, @« maps J onto 4, then A*(w) =¢*(w’), if &’ is the extension of
won J, when k(4) Ck(J) as prescribed by a. Clearly, o' € Da(J) if o€ Dy(A4);
and of course W' € D1(J) if wE D1(4); also, if wE D(A4) and o’ € Di(J), then
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necessarily w & ::(4), by 2.1. Consequently, if « maps J onto A, or, equiva-
lently, if, for any PEA, no proper abelian subvariety of 4 contains epAC,
A* induces an isomorphic mapping of D:(4)/D.(4) into D(C)/D.(C), in
which $;(4) maps into §:(C), and in which no element of D.(4)/D.(4), but
not of D;(4), maps into an element of ,(C).

Now, for an arbitrary 4, let \, u be rational mappings of C into 4. We
shall denote by A+u the rational mapping » of C into 4 such that »[C]
=Q[C])([C]). We contend that (A4u)*~A*+u* in the sense that
A ) *(w) ~A* (w) +p*(w) for any wE Da(4). In fact, let 4, 42, A; be copies
of 4, and let D be the rational mapping of 4,X4, onto A; which gives the
law of composition on 4. Let wi, ws, wz be the copies of w, on, respectively,
A, A, As. We shall denote by \;, us, vs the copies of, respectively, N\, u, »
=A+u which map C on, respectively, 4;, A4z, As;. Then (w1 XA42XA4;
Fwe X A1 XA3—w3 X A1 X A2:)N\D~0, since w is semi-invariant, by 2.2. Also,
6= XAsXA5)N (2 X A1 X A5)N\ (3 X A1 X 4,) is a curve on D X C which, if
considered as an algebraic correspondence between C and D, operates on the
whole C. As a consequence, we have:

[(W* (@) + p*(@) — v*(@)) X 41 X 42 X 45] N 6
= {[(\*(w) X 4) " M] X 42 X A} Mo
+ {[(*(w) X 42) N pa] X Ay X 45} N6
- {[(V*(w) X Az N 1’3] X 41 X Az} me
= {[(CX o) N M] X 42 X A3} MO+ {[(C X wz) Npa] X 41 X A3} N8
- {[(Cxwa)nl’s] XA1XA2} mne
=[CX (01X A2 X A3+ wa X A1 X A3 — w3 X A1 X A2)] N6
=[CX(--H)NECxXDNo={cxX[(---)ND]}Ne~o.
Consequently, since 6 operates on the whole C, we conclude that AN*(w)
+u*(w) —v*(w)~0, as claimed.

2.5. LEMMA. Let A be an abelian subvariety of the nonsingular abelian vari-
ety B over the algebraically closed field k of characteristic zero; then (A4) is
the set of the w\A, when w ranges in Dy(B); also, Ds(A) is the set of the wNA
when w ranges over all the elements of Dy(B) which do not have a pole at A.

Proof. B is isogenous to A X C, for a suitable nonsingular abelian variety
C; assume k(4 X C)Zk(B) as prescribed by a homomorphism « of B onto
A X C of positive degree, such that a4 =A4. For any w& D,(4 XC), let «’ be
its extension on B; then the mapping w—w’ establishes an isomorphism be-
tween Do(4 XC)/De(A X C) and D:(B)/ D.(B), in which D;(4 X C) and Dy(B)
correspond to each other. Thus it is sufficient to prove the lemma when B is
replaced by 4 XC, and 4 by 4 X E¢. But in this case the lemma is a conse-
quence of 1.9, Q.E.D.
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2.6. LEMMA. Let o be a homomorphism of an abelian variety A over the
algebraically closed field k, into an abelian variety B over k, and, for a prime |
not equal to the characteristic of k, let M be an l-adic matrix related to o as in
Theorem 14 of [9]. Then the rank of M is twice the dimension of aA.

Proof. If dim a4 =#, there is an n-dimensional abelian subvariety C of
A such that aC=ad; we may replace 4 with an isogenous variety CXC’
without affecting ranks and dimensions, by Proposition 13 of [9]. Accord-
ingly, we shall assume 4=CXC’, and a(CXE¢)=ad, while a(Ec¢XC(C’)
= E.4. After a suitable selection of l-adic co-ordinates on CX C’, M assumes
the form (M1[ M,), where M, M, are the [-adic matrices related to, respec-
tively, [a; CXE¢, Bl and [a; E¢cXC, B]. But then, by Proposition 13 and
by Corollary 3 to Theorem 33 of [9], M, has rank 2%, and M,=0, Q.E.D.

Now, let J be the jacobian of a curve C, without singularities, over the
algebraically closed field k; by Corollary 2 to Theorem 22 of [9], there is an
isomorphism D—\ between the ring of the classes of algebraic correspond-
ences D between C and a copy C’ of C, and the ring ® of the endomorphisms
X of J. The interchange of C with C’ induces an involution A=\’ in ®, which
in turn induces an involution in the algebra @ of the endomorphisms of J
(=smallest algebra containing ®). This involution will be called the Rosati
involution (see [7]).

2.7. LEMMA. With these notations, N and N have the same characteristic
polynomial; if | is a prime different from the characteristic of k, and if L, L' are
the l-adic matrices related to \, N respectively, then L and L’ have the same rank
and the same characteristic polynomial.

Proof(®). We shall denote by @* the algebra of the l-adic matrices related
to the elements of G@. Let B be an abelian variety isogenous to J; by §54 of
[9], if u is a homomorphism of B onto J, the correspondence A—A; =u "N is
an isomorphism between @ and the algebra ® of the endomorphisms of B; if
L, L, M are the l-adic matrices related to, respectively, X\, A;, u, we have
Ly=M—'LM, and this proves that the isomorphism L—L, preserves the char-
acteristic polynomial and the rank. Moreover, if N\{ =u~"\’y, the mapping
M—)\ is an involution in ®. Theorem 25 of [9] implies that AA=0 if and
only if A\=0; consequently, A/ \; =0 if and only if A\;=0. Now, by Theorem 28
of [9], we can select B to be of the type BiX - - - XB,, where each B; is the
direct product of simple abelian varieties, isomorphic to each other, while no
abelian subvariety of B; (for =1, - - -, r) is isogenous to any abelian sub-
variety of B, if j5#4. If ®; is the algebra of the endomorphisms of B;, by
Theorem 29 of [9] ®; is a simple algebra, and ® is the direct sum of
®;, - - -, ®,; more precisely, this is so after identification of an endomorphism

(%) This result is also an immediate consequence of the last formula of §76 of [9];see how-
ever the remark which follows this proof.
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v of B; with the endomorphism »’ of B such that »'[P;X - -+ XP,]
=Eg, X -+ XEp;_  XvP;XEp, ;X -+ XEg,, for P;EB,;.

Let ®! be the transform of ®; in the involution ’ on ®; then ®/ must
coincide with some ®;, since the decomposition of a semi-simple algebra as
direct sum of simple algebras is unique. Should j be different from 7, an ele-
ment MNE®; would have the property that AMN[PiX - - - XP,]
=)\{[EB,>< ct XEB;_IXX1P;XEB,~+,X st XEB,.]=EB, or )\1,)\1=0, or
finally A\; =0. Consequently, ®/ = ®;, and the involution ’ induces an involu-
tion in each ®;. Now, for a suitable choice of /-adic co-ordinates in B, the
l-adic matrix L, related to Ai= 2_: A (\ii€ ®,) can be written in the form

Lll
Lu |

Llr

where Ly; is the [-adic matrix related to A\;;. When A; ranges in ®, Ly; ranges
in the algebra ®f of the l-adic matrices related to the elements of ®;; the
involution ’ induces an involution in each ®*, and ®* is a simple subring of
the algebra 91; of all the matrices, with /-adic elements, of the same order as
Lyi. Therefore, by a result on algebras(f), there exists an element NEN;
such that, for each Li;E ®*, L],= N-1(L;)1N, where _; denotes transposition
of matrices. Thus L{, and L;; have the same characteristic polynomial, also
the same rank; hence L; and L{, or also L and L’, have the same character-
istic polynomial and the same rank, Q.E.D.

REMARK. It may be noted that the preceding proof, and the preceding
lemma, are valid not only for the Rosati involution on a jacobian variety,
but also for any reciprocity ’ onto itself of the algebra @ of the endomorphisms
of an abelian variety, provided such reciprocity has the property that N'A=0
implies A=0 for A\EQ.

2.8. THEOREM. Let A be a nonsingular n-dimensional abelian variety over
the algebraically closed field k. Then the semi-invariant differentials on A are all
of the second kind. If, in addition, k has characteristic zero, D(A)/D.(4) is a
k-module of order 2n, and there exists a representative of an absolute basis of it;
also, each element of D(A) is a semi-invariant differential.

Proof. The first and last statements are part of 2.2. The second statement
is true, by 2.4, if A is a jacobian variety. There remains to be proved the
second statement for an arbitrary 4. Let then A be arbitrary, and & be of
characteristic 0. It is known that 4 is the homomorphic image of a jacobian

(*) The result which we have in mind is a slight modification of the theorem on the ex-
tension of isomorphisms in a normal simple algebra; as this modification does not seem to be
explicitly stated anywhere, we state and prove it in the Appendix at the end of this paper.
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variety; hence A is isogenous to an abelian subvariety of a jacobian variety;
since the k-modules of the closed differentials of the second kind, modulo
exact differentials, of isogenous abelian varieties are isomorphic, we may as-
sume 4 to be a subvariety of the (nonsingular) jacobian J of a curve C with-
out singular points. Let g=dim J be the genus of C. Let J; be a copy of J,
and let 4, be the copy of 4 which is a subvariety of Ji; let A be a homo-
morphism of J onto A4y, and let ¢ be a canonical mapping of C into J. Then
¢ is a rational mapping of C into 44, also into J1. Let C; be a copy of C, and
let ¢, be the copy of ¢ which maps C; into J;. According to Corollary 2 of
Theorem 22 of [9], \ is related to a class of algebraic correspondences be-
tween C and C;; let D be an element of this class, so that D is a virtual cycle
on CXCy. For any PEC, we have Ao [P] = m; exp:[Q:], if Z,- e,Q1=D{P} *.
let K be a finite extension of 2(C), such that (D{ C})K is a sum of (not neces-
sarily distinct) rational points A;, Ay, - -+ of (C)x. Then ((\¢){C})k
= H; (q.‘n)K{A.«}. Let B be a model of K over k, without singularities, and
let u be the rational mapping of B into J; such that ,u{B} =(\¢){CHk.
Then the previous formula can be written u= E,- ¢.D;, where D; is the ra-
tional mapping of B into C; such that D;{B} =A;. Therefore, in the notation
of the discussion preceding 2.5, u*= D_: (¢D;)*; this means that for any
wE Dy(J), and for its copy w; in Do(Jy), we have p*(w) = D: (¢*(w))?,
where ¥ denotes extension on B of a differential on C;, when k(C)) is con-
sidered as a subfield of K as prescribed by A;. Now, assume D = E; f:H:,
where the H; are distinct irreducible algebraic correspondences between C
and Cy; since p*(w;) is the extension on B of (A¢)*(wi), the previous formula
states that

2.9 (A$)* @) = T fiTearomo #1(@)) @,

where: (1) for each 1, k(C) and k(C:) are considered as subfields of k(H;) as
prescribed by H;; (2) the symbol ( ) denotes extension on H; of a differen-
tial on C, or on Cy; (3) T denotes trace.

Formula 2.9 can be simplified after introducing a different notation: we
shall denote by D;(D) (fori=1, 2, e) the direct sum »_; D;(H;); for Q€ D:(C)
(or Di(C1)), & shall denote the element D_; Q@ of Di(D); for Q€ D(D),
TD/cQ is deﬁned as ijka(Hj)/k(C)Qj, if Q= Zi Qj with QJE ﬁD,'(Hj); a similar
definition holds for Tp/c,Q. Finally, for Q€ D.(C) (or D:(C1)), D*(Q) is defined
to be Tp,c,¥ (or Tp;c’). Then 2.9 becomes

2.10 () *(w1) = D*(¢s*(w1)).

This coincides with the correspondence, described in [7], between differen-
tials of the first kind on curves related by an algebraic correspondence. If
w; ranges in D(J1), ¢*(w) spans the whole D;(Ci), while

(A)*(w1) = (A)* (w1 M 41);
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since w1/ A ranges over the whole D:(4,) by 2.5, and since no proper abelian
subvariety of 4 contains A¢C, (Ap)*(w1) spans a submodule of D;(C) of
dimension #; thus, by 2.6:

2.11. If Q ranges in D:1(C1), D*(Q) ranges over a submodule of D:1(C) whose
dimension n is such that 2n is the rank of the l-adic matrix (for an arbitrary
prime 1) related to the endomorphism of the jacobian of C which represents the
class of D.

Assume now w; to range over the set of the elements of D,(J;) which are
regular at Ay; let m <2g be the order of D:(41)/De(4:). Then, again, ¢ (w;)
ranges over the whole D.(Ci1), and (A@)*(w:) ranges over a submodule Z of
D:(C) such that Z/ZNMD,(C) has order m. Thus, Z is the k-module of the
D*(Q) when Q ranges over D,(C1), and we have m=ord Z/ZND,(C). Let V
be the k-module of the ' when @ ranges in $:(C;), and let W be the k-module
of the Q& Dy(D) such that T'p;cQE D(C). Then, obviously,

m=ordZ/Z N D,c)y=ord V/V N D(D)
—ordVNAW/VND(D) =2¢g —ordVNW/VND(D).

2.12

Now, let Z’, V', W’ be defined in the same manner as Z, V, W respectively,
after interchanging C with Ci, and set Zy,=Z'N\D,(C1), Vo= V'NDy(D),
Wo=W'NDy(D) =set of all Q& D;(D) such that Tp,c2=0. Let N\’ be the
correspondent of A in the Rosati involution on J. The set of all D*(Q), when
Q ranges in D:(C), is Zy; accordingly, by 2.11, 2.7 and 2.6, Z, has order #; on
the other hand, ord Zy=ord Vy—ord VN W,, so that

2.13 ord VoM We=o0rd Vo —n =g — n.

If Q€ D.(D) and ¥E Dy(D), and if Q= D Q;, ¥ = >, ¥, withQ,E Dy(H,),
V,& D,(H;), we shall define j(¥, Q) to be Z;f,j(\ll.-, Q,). Hence, if Q& D,(D)
is such that j(¥, 2) =0 for each ¥ & V, we also have j(Tp;c,¥, Tp/c,2) =0 for
each ¥&V, or j(¥, Tp/c,) =0 for each W& Dy(C)); therefore, Tp/c,2=0, or
Q& W,. Conversely, for Q& D,(D), ¥ &€ V, and for any Q* conjugate to Q over
k(Cy) (thatis, if @= D ;Qs, ;€ D(H.), then Q* = >, Q*, with Q* a conjugate
of Q; on k(Cy)), we have j(¥, Q) =j(¥, @*); hence j(¥, Q) =0 if QEW,. This
proves that Wy is the set of all the Q& D,(D) such that j(¥, Q) =0 for each
Y& V. Inlike manner we can prove that W+ D;(D) is the set of the ¥ & D,(D)
such that j(¥, Q) =0 for each Q& Vy; consequently, V, is the set of the
Q&€ (D) such that j(¥, Q) =0 for each YEW.

If g; is the genus of H,, set y = Y, g;; then, in view of the duality between
Di(D) and D:(D)/ Di(D)+ De(D), we have proved that

ord VA W/VNWN [DyD) + D.(D)

=y —ord Vo+ Wo= v — (ord Vo + ord W, — ord V, N\ W)
=y—g—odWo+odViN\Wy=v9—n— ord W, by 2.13.
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Now, the kernel of the homomorphic mapping Q@—7Tp,¢,Q, of Di(D) onto
D1(Cy), is W, so that ord W=+ —g, and

2.14 old VA W/ VN WN [D:(D) + D.(D)] = g — n.

But WN[Di(D)+ D.(D)] = [WND(D) |+ D.(D), so that

ord VA W/ VN WN [D:1(D) + D.(D)]

ord VN W/V N [(WN Dy«(D)) + D.(D)]

ord [VAW/VNDD)]/[VO(WNDUD)) + DuD))/V N DD)]
ord VN W/ VN D (D) —ord VN WND(D);

H

the last term, by the formula analogous to 2.13, has the value g —#, while the
first member, by 2.14, has the value g—=; hence ord VNW/VND.(D)
=2(g—mn). This, replaced in 2.12, gives m =2g—2(g—n) =2n, Q.E.D.

3. Factor sets. The definitions of factor sets, and of constant factor sets,
are given in §§3 and 4 of [4].

3.1. THEOREM. Let A be a nonsingular n-dimensional abelian variety over
the algebraically closed field k of characteristic zero; let V be a 1-dimensional vec-
tor variety over k; denote by T', Ty, I', the groups of, respectively, the factor sets
of A into V, the factor sets associate to the identity of I, and the constant factor
sets in I'. Denote by D, D. the k-modules of the elements of, respectively,
D:(A4), D(A) which are regular at the identity of A. Then T'/T; is isomorphic

to ©f ) Di(A), and in this isomorphism T'y/T. corresponds to D. .

Proof. Let 4, 4, be copies of 4, and let v be a n.h.g.p. of V such that the
law of composition on V is given by v3=9,+v,. Denote by « the point of V'
at infinity for v. It is readily seen that the multiplicative notation for the law
of composition on V can be extended to yield Pw = « if PEV — . The
associativity and commutativity properties remain true when meaningful. If
y&I'—T',, assume k(V)Ck(A1XA4:) as prescribed by v. Let A3 be another
copy of 4, and assume k(A4;) Ck(41XA4;) as prescribed by the law of com-
position on 4. Let W be the radical of the “denominator” of v on 4, X 4,; then
W=v[® ]. The relation

3.2 (‘Y[P1 + Q2R2])(’Y[Q1 X Rz]) = (’Y[Ple X Rz])(’Y[Pl'X Qz]),

which characterizes factor sets, is now valid when: (a) none of the point
PiX 2Ry, Q1 X Ry, P1O1X Ry, P1XQ; belongs to the fundamental locus C of 4
on A1 X 4., and (b) one factor at least on each side is not «. Let H be a com-
ponent of W, operating on the whole 4, X 4:; we contend that there is a com-
ponent of W of the type Y1 X A4,, where Yis an (z—1)-dimensional irreducible
subvariety of 4, such that H=Tj (see §4 of [4] for the definition of T%).
For if it were not so, it would be possible to find points P, Q, R of 4 such
that Pl XQgEH—(CﬂH), while PlQl><R2, P)XQng and Q1XR2 do not be-
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long to W; and this would contradict the previous formula. Conversely, let
Y be an (n—1)-dimensional irreducible subvariety of 4 such that ¥;X4.isa
component of W, but assume 7'y not to be a component of W. Then again it
is possible to find points P, Q, R of A such that P,Q:XR,EW —C, while
P X Q2 PiXQ:Ry, 01X R, do not belong to W. Hence, since y[P1XQ.] is
symmetrical in P, Q, we conclude that there are distinct irreducible (z —1)-
dimensional subvarieties W?, - - -, W of 4, none of which contains E4, such
that W is the join of all the W' XA4,, A1 X Wi, Tis.

If PEA,letop,, op, be the automorphisms of k(41X 4,) over, respectively,
k(A4:) and k(4.), which induce (op)1, (0p): in k(4,), k(A4,) respectively. If
P, Q€ A, denote by v(P;, Q) the element of k to which v is congruent
mod P(P1XQ:/A1XA4s), if vEQ(P1XQy/A1XAs). Denote also by v(Py),
9(Py) the elements of, respectively, k(4;), k(4:) to which v is congruent mod-
ulo, respectively, B(P1 X A2/A1XAs), B(A1XP:/A1XAs). Then formula 3.2
can be written

3.3 o + 9(01) = ogv + 9(Q2),

valid for QWU - - - U W,
It has been proved in §7 of [4] that, as a consequence of 3.3, there exists
a closed differential w on 4 such that

3.4 dAle,v = w;»,' - w{ - wz',

where w/! is the extension on 4;X 4, of the copy w; of w on 4;. This tells that
w is semi-invariant, so that w€ D/ by 2.8. The w which satisfies 3.4 is unique
but for an additive invariant differential; by 2.1, this means that 3.4 estab-
lishes a homomorphism y—w+ D:(4) of ' into DS /Di(4), if w is taken in
Di(A4) when yET.. It is also clear that v, ¥’ correspond to the same w+ D;(4)
if and only if the difference of the corresponding v, v’ has a differential =0,
that is, if and only if ¥ —y’ €T',; hence 3.4 establishes an isomorphic mapping
of I'/T; into DS /D:1(4). Finally, yET if and only if w can be selected in D/.

We must now prove that this isomorphic mapping is onto D{/D:(4);
given w€ DJ, we shall select any yET if € Dy(4); if not, let {x}, {y}, {2}
be n.h.g.p. of 41, 4,, A; respectively, copies of each other, and let X be the
rational point of (4s)ku, at which y;=x; By 2.8, we have (w2)iy
~ox (w)ray; let {v,l, -, u g (2=1, 2, 3) be k-bases for D,(4:), copies of
each other, and write w;= )_; alv!, with aJ€k(4;). Then there exists a
tER(A1X4;) such that 35 ai(@ry= 2 ; adWdeap— i (D) (Wh)rcap,
where {Dé} is the k-basis for the invariant derivations on (43)x4, such that
Dj(v5)kcap = 8:;. Set vy = (extension of v} on Ay X As) =v! X A;+vi X A;; then the
previous formula can be written:

3.5 > aws X A4, = P a;],:v; — daxat — 2 bvr X A,
j i J
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for suitable b;E k(41X A4,). This, in turn, gives, if D{ are the copies of Dj on
(ADkup:

Z bi(w)kapn = 2 a0 kup — 2 (D) (W) kaap;
J J j

this means that Y_; b;()kap~0F (w1)kap, where V is the rational point of
(Al)k(A?) at which x;=y,. Since U;l(wl)kmz)f\’(wl)kmz), it follows that
> bW kcapn~(@)kcap. Considering that the left side, and the first two terms
of the right side of 3.5, are closed differentials on 4;XA4,, we see that the
same is true of D_; bv!XAs, so that Dib;=0 for each 4, j, and therefore
b,Ek(4;). But then X.; bpl~wi, or D.; byl=wi+dat, for ' Ek(4)). If
u=t+4, 3.5 now gives

— 14 4 ’
3.6 iy xa,tt = w3 — w] — wg,

which is analogous to 3.4. Let v be the rational mapping of 4,X4, into V
generated by setting v=u; we contend that v is a factor set. If it is, it is
clearly unique but for an additive constant set, since % is determined but for
an additive element of k.

Now, v[E4,XEa4,] is a point 5  of V, because E4, X E4, does not belong
to a pole of wf —w{ —ws. Moreover, the operation of interchanging 4 with
A, transforms « into u+h, with AEk; application of the same operation again
shows that 2 =0, or £ =0. Hence v[P1 X Q:] =v[Q:1 X P;] for generic P, Q€ A.

For a generic PEA4, 3.6 implies that dwop v =0p,wi —wj, where d» indi-
cates construction of diﬁerential on (Az)lc(Al), also, dop, u=0pwi —a;zlwz’ :
hence dz(O'Plu opu) = =0p,w) —wy = ((0p'w—w)o)kay. But (0p'w—w);
=dsu(P1) by 3.6. Hence there exists a w&k(4:) such that w+a'p‘
=gp, u+u(Py). Since P is generic, the elements (G'P! #)(Ey,), (05,4)(Ea4,),
(w(Py))(E4,) exist, and equal respectively (o5")1(#(Ea4,)), #(P2), u(P1, Ey4,).
But #(E4,) €k, and therefore it coincides with #(P, Ea,). Hence w=u(P,),
so that op'u~+u(Ps) =op, u+u(Py). This is the same as 3.3, and is therefore
equivalent to 3.2, Q.E.D.

From 3.1, 2.8, and the fact that, by 2.2, Df /D1(4)+ D! = Dy(A4)/ D:1(4)
+ 9.(4), we obtain:

3.7. COROLLARY. Notations as in 3.1. Then T'/T is a k-module isomorphic
to Do(A4)/ D1(4)+ D.(A), and has order n=dim A.

Appendix (Added November 15, 1955). In the proof of 2.7 (see footnote in
that proof) we have made use of the following result:

THEOREM. Let @ be a total matrix algebra over the field F; let B, ®' be sub-
rings of @, such that ®\F=®'NF is a perfect subfield f of F, and assume &,
®' to be simple algebras over f, isomorphic to each other in an isomorphism o over
f. Assume also that for any element y of the center of B, or of &', the characteristic
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polynomial of the matrix vy has coefficients in f. Then there exists an inner auto-
morphism of @ which induces o between ® and ®’.

Proof. Let @, @’ be the centers of ®, ®' respectively; since f is perfect,
we have @=f(0) for a suitable §&€ e, and €' =f(#') if 8’ =0g0. For an indeter-
minate x, let g(x), go(x), c(x) be respectively the minimal polynomial of 6
over f, the minimal polynomial of § over F, and the characteristic polynomial
of the matrix 0; let g’(x) =g(x), gd (x), ¢/(x) have the same respective offices
for 6’. Then g, is a divisor of g, g is a divisor of ¢, and the zeros of g, (in some
algebraic closure of F) are all and only the zeros of ¢; since g is separable, and
has therefore distinct zeros, this implies that g =g,, and likewise g=g¢ ; also,
c=g" for some positive integer 7, and likewise ¢/ =g". Thus the matrices
and 6’ have the same characteristic polynomial, and of course F(0) and F(6")
are semisimple algebras. This suffices to show that there exists an inner auto-
morphism p of @ such that pf =6’; thus, p induces ¢ between € and €.

The smallest sub-algebra F(f) of @ which contains € and F is a semi-field,
that is, a direct sum of fields, say €;+ - - - +@,; likewise, the smallest sub-
algebra of @ which contains €’ and Fis €/ 4 - - - +¢€/, where @/ =p¢;;
since @ has the same degree over f or F, we have €+ - - - +€,=Cr=CXF
(direct product over f). This proves that the smallest sub-algebra of @ which
contains ® and Fis ® X F=®p, and it is known that Rr=®,+ - - - +®,, ®;
being a simple algebra over F, with the center @;; similarly, the smallest sub-
algebra of @ which contains ® and Fis ® XF=®p=®/ + - - - +®/. But
then, ¢ can be extended to an isomorphism of ®r onto ® over F, and we
have of course oc®;=®/. Let e; be the unit element of ®;, and set @;=e;Qe;;
then @; is a total matrix algebra over F, containing, as simple sub-algebras,
®; and p~lo®;, since o®; has the unit element ge; = pe;, and is therefore a sub-
algebra of (pe;)@(pe;) =p@;. Thus, by the theorem on the extension of iso-
morphisms between simple sub-algebras of a normal simple algebra, there is
an inner automorphism

Tiey — t.'yli—l
of @; which induces p~1¢ between ®; and p~l¢®;. Set t=#+ - - - +¢,, and let
7 be the inner automorphism y—tyt~! of @. For a yE®, write y = D y;, with
¥:E®;; then ay= D ; ay:= 2 : proyi=pry, Q.E.D.
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