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The main results of this paper are stated in 2.8 and 3.7; the notations and

language are those used by the author in his previous work; numbers in

brackets refer to the bibliography at the end of the paper. Although a few

results of §§1 and 2 are valid for any characteristic, this paper intends to treat

only the case of characteristic zero. The case of positive characteristic is

treated in a forthcoming paper, since it needs an analysis of the derivations

of higher order, and is connected to the rather surprising fact that an abelian

variety over a field of positive characteristic may very well possess exact

differentials of the first kind. §§1 and 2 contain the proofs of those properties

of the differentials of the second kind which are needed in §3; these properties

are familiar in classical algebraic geometry, but their algebraic proofs are

new. While our main interest, in §§1 and 2, rests with the differentials of the

second kind, certain properties of the differentials of the first kind are also

found, usually as special cases; the algebraic proofs of most of these properties

are not new, and can be found also in [S. Koizumi, On the differential forms of

the first kind on algebraic varieties, J. Math. Soc. Japan vol. 1 (1949) p. 273]

and [S. Nakano, On invariant differential forms on group varieties, ibid. vol. 2

(1951) p. 216].
1. The differentials of the first and second kind. Let V be an irreducible

variety over the field k; let W be an irreducible subvariety of V, and set

Q = Q(W/V), <$ = <$(W/V); let D be a derivation on V (see §5 of [4]). We

shall say that D is regular at Wit DxEQ when xEQ, and DxEty when xEty-

If, in addition, DxEty when xEQ, we shall say that D has a zero at W. Let

ir he the homomorphic mapping of Q into k(W) whose kernel is ^5; if D is

regular at W, for xEQ we see that ir(Dx) depends only on 7rx, and from this

follows the existence of a derivation xD on W such that (irD) (irx) = tt(Dx)

for xEQ; irD is called the derivation induced by D on W; clearly, 7rD = 0 if

and only if D has a zero at W.

1.1. Theorem. Let V be an n-dimensional irreducible variety of inseparabil-

ity 1 over the field k; let W be an m-dimensional irreducible subvariety of V,

simple on V, of inseparability 1. Set Q = Q(W/V), <$ = ty(W/V), and let ir be

the homomorphic mapping of Q onto k(W) whose kernel is ty. Let Xi, • • • , xm
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be elements of Q such that k(xx, ■ ■ ■ , xm)QQ, and that k(W) be an algebraic

separable extension of k(irxx, • ■ • , irxm); let {xm+l, • • • , x„} be a regular set of

parameters of Q. There exist derivations Dx, • • • , D„ on V such that DtXj = 8,j

(Kronecker's symbol) for i,j=l, ■ • ■ , n; these form an independent k(V)-basis

for the derivations on V. The derivations on V regular at W are all and only

those of the form Yt-i <*■<&*, w^ ^%EQ for i^m, and aiEty for i>m; among

these, those with a zero at W are all and only those for which atEty for i^m. The

derivations xD,- (t = l, • • • , m) form an independent k(W)-basis for the deriva-

tions on W.

Proof. Let F be the projective space over k whose n.h.g.p. (nonhomogene-

ous general point) is {xi, • • • , x„}; let {yx, • • • , yr} be a n.h.g.p. of V, for

which W is at finite distance, and let y0 be an element of Q. Let V be the

model of k(V) whose n.h.g.p. is {y0, • ■ • , yT}; then IF corresponds on V to

an irreducible variety IF' such that Q(W/ V) = Q. Let <p be the rational map-

ping of V onto F generated by the embedding of k(F) into k(V'); let

{ Fo, • • ■ , Yr} be the n.h.g.p. of the ambient space of <b[F], and let {/i(F,x),

f2(Y,x), • • • } be a basis of the ideal related to <j> in k[Y, x]. The Corollary to

Theorem 5.6 of [2] (modified to apply to nonhomogeneous co-ordinates) im-

plies then that the jacobian J(f(Y, x); Y) acquires the rank r + 1 when { Y}

is replaced by {icy} and {x} by {7rx}, hence also when { Y} is replaced by

{y} and {x} by {x}; this, in particular, indicates that ins (k(V):k(F)) = 1,

so that Dx, ■ ■ ■ , Dn exist and form an independent &(F)-basis for the deriva-

tions on V. From f,(y, x) =0 follows Dy/,(y, x) =0, or

[dfi(Y, x)/dx,]r-y + Y Wi(Y, x)/dYh}Y=yDjyh = 0.
h

If these are considered as equations in the unknowns D^yo, • • • , Djyr, the

previous remark on the rank of J (J; Y) shows that DjyhEQ, in particular

DjjoEQ, valid for any y0EQ. If yoEV, then y0 = Y*-m+i ^ixi, a»E<2> so that,

for j^m, Dyy0= Yt=m+i XiDjatEty; hence Dx, • - ■ , Dm are regular at IF.

Moreover, bDj (j = l, ■ ■ ■ , ra) certainly has a zero at IF if bEty.

Now, let Yl-i diDi be regular at IF; then Yi aiD{Xj = aj must be in Q if
j^m, and in ty if j>m; finally, if Yi aiP>t also nas a zero at W> lt must nec-

essarily be aiEty for i—1, • • • , w, as announced. The derivations 7rD<

(i = l, • ■ • , m) exist and are independent, since (irDi)(irx,) =5,7, Q.E.D.

The derivations Dx, • • • , D„ of 1.1, in this order, are said to form a

canonical W-basis for the derivations on V, related to the set \Xx, • • • , xn);

this set, in turn, is called a set of uniformizing parameters at W on V.

Let V be an irreducible variety over k; a differential of k(V) over k, or on

V, is a linear mapping co: D—^wD of the k(V)-module of the derivations on V

into k(V); linear in the sense that if D, D' are derivations, and xEk(V), then

uDEHV), co(D+D') =wD+wD', u(xD) =xuD. If co, u' are differentials on V,

and  xEk(V),  the   differentials co+co',  xco=cox   are  defined  by   (co+co')D
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= coD+co'D, (xco)D=x(coD) tor any derivation D on V. The differentials on

V thus form a &(F)-module (dual to the &(F)-moduIe of the derivations on

V). If ins V= 1, such module has order M = dim V. If xEk(V), dx (or, if neces-

sary, dvx) shall denote the differential on V such that (dx)D=Dx ior any

derivation D on V. A differential of the type dx is called an exact differential.

Let W he an irreducible subvariety of V; set Q = Q(W/V), ^ = ^(W/V),

and let co be a differential on V. We say that co has a pole at W if either coDEQ

for some derivation D on F, regular at W, or coD$$ for some derivation D

on V which has a zero at W; if co does not have a pole at W, it is said to be

regular at W. If this is the case, and if ir denotes the homomorphic mapping

of Q onto k(W) whose kernel is SJ3, then, for any derivation D on V, regular at

W, 7r(coD) depends only on irD, and therefore there exists at least one differen-

tial co' on W such that u'(irD) =ir(coD) tor any such D. If the 7rD are all the

derivations on W, as it is under the assumptions of 1.1, co' is unique, and is

then denoted by 7rco or af~\W or Wr\u, and called the differential on W in-

duced by co; co induces 0 on W,or has a zero at W,if ira = 0, or if uDEty for each

derivation D on V, regular at W.

1.2. Theorem. Let k, V, W, {x}, Q, 'JB, ir be as in 1.1; then the differentials

on V regular at W are all and only those of the form Yl-i cudxt, with aiEQ

(i— 1, • • • , m) ; and among these, those with a zero at W are all and only those

for which aiEty (* = L ■ ■ • , m). The differentials WC\dxi (i=l, • ■ • , m)
form an independent k(W)-basis for the differentials on W. If xEQ, dx is regu-

lar at W, and dirx = WC\dx; if xE^, dx has a zero at W.

Proof. For i = l, ■ ■ ■ , n, dxi is regular at W; in fact, if Du • • • , D„ have

the same meaning as in 1.1, and if D= Y> aiDi is regular at W, we have

(dXi)D = Dxi = ai, and this, by 1.1, belongs to Q, and also to ty if D has azero

at W. If co= Y> bidxi is regular at W, then coD = Yi °iai must belong to Q if

oil • • • i amEQ and am+i, ■ ■ ■ , anEty, and to ty if also Oi, • • • , amEty. This

is true if and only if bi, • • • , bnEQ: and u has a zero at W if and only if

Yi btaiEty for Oi, • • • , amEQ, am+u ■ ■ • , QnEV; this is true if and only if

bi, • • ■ , bmEty and bm+i, • • ■ , bnEQ- The differentials WC\dXi (i = 1, ■ ■ - ,m)
exist, and are independent over k(W); hence they form a ^(^-basis for the

differentials on W.

If xEQ, then dx= Y< (D&)dxi, and this is regular at W because DtxEQ

ior i = l, ■ ■ ■ , n; ii xEty, then x=Yl-m+i yixi, with y,EQ; hence dx
= YJi=m+i yjdxj+Xjdyj; since each dxj and each Xjdyj has a zero at W, the

same is true of dx. The statement WC\dx = dirx is obvious, Q.E.D.

The differentials dxi, • • • , dxn of 1.2, ordered so that those with a zero

at Ware the last n—m, are said to form a canonical W-basis for the differen-

tials on V, related to the set {xi, • • ■ , x„}.

1.3. Lemma. Let V, W be as in 1.1, and let a be a differential on V which
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has a pole at W; then co has a pole at some (ra — 1)-dimensional irreducible sub-

variety of V containing W.

Proof. Set Q = Q(W/V), ty = ty(W/V). If co has a pole at IF, then either
uDEQ for some derivation D on V, regular at IF, or uDEty for some deriva-

tion D on V with a zero at W. In the first case, set asD=qp~l, where qEQ,

pEty, and p, q have no common factors (here one should remember that every

minimal prime ideal of Q is principal; see [8]). If D' = pD, D' has a zero at

IF; let TJ be the center on V of a prime divisor v of V such that QC,RV and

that v(p)>0; then D'xEpQQtyv for xEQ, so that if a = xy~1ERv, with

XEQ, yEQ — pQ, we have D'a=y~1D'x— xy~2D'yEtyv Hence D' has a zero

at U; but coD'=puD = qEtyv, which proves that co has a pole at TJ. In the

second case, i.e. when coDEty and D has a zero at W, we may assume uD = q

to be a unit of Q, otherwise this case would fall within the first case. If

{Di, • • • , Dn} is a canonical PF-basis for the derivations on V, we have

D= Yi aiDi, aiEty, and q=oiD= Yt at<oDi. Unless co is such that the first

case applies, we must have uDiEQ for i^m, and therefore Yl-m+i atwDi is

a unit of Q, while each a;wD,- belongs to Q. As a consequence, a.coDi is a unit

of <2 f°r some i>m, say t = w. Now, let TJ, v be related to an as they were be-

fore to p; if D' =anDn, we have D'xEanQQtyv for xG(?> and therefore also for

xERv; hence D' has a zero at TJ, but coD'C^Pi- This proves that co has a pole

at U, Q.E.D.
The sentence "Uis a pole o/co" shall mean, from now on, that co has a pole

at TJ, and that Uhas dimension ra —1, if ra is the dimension of V.

1.4. Theorem. Let V be an n-dimensional irreducible variety over k; let W

be an irreducible proper subvariety of V, simple on V, and of inseparability 1;

let co be a differential on V. Then u has a pole at W if and only if W is a sub-

variety of a pole of co. If xEk( V), and V has no (n — 1)-dimensional singularity,

and no (n — 1)-dimensional irreducible subvariety of inseparability >1, each

pole of dx is a pole of x; under the same assumptions, co has finitely many poles.

If, in addition, k has characteristic 0, each pole of x is a pole of dx.

Proof. If co has a pole at W, then a pole of co contains IF by 1.3. If WQ TJ

and TJ is a pole of co, let {dxlt ■ ■ ■ , dxn} be a canonical IF-basis for the

differentials on V, and write co= Yi o,idxi; should co not have a pole at IF,

we would have aiEQ(W/V)rZQ(U/V) for each i by 1.2. Since, by 1.2, dxt

is regular at TJ, the s^me would be true of co, a contradiction. Hence oi has a

pole at IF. If TJ is now any (ra — 1)-dimensional irreducible subvariety of F,

simple on V, and if ins U=l, from xEQ(U/V) follows that dx is regular at

U by 1.2; hence each pole of dx, under the additional conditions mentioned in

the statement, is a pole of x. Therefore the poles of co are to be found among

the poles of Xi, • • ■ , xn, alt ■ ■ ■ , a„, and are finite in number. If k has char-

acteristic 0, and TJ is a pole of x, we can write x = uf, where u is a unit of

Q(U/V),   t   generates   ty(U/V),   and   r<0.   Then   dx = rut'-idt+trdu;   let
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{h, • • • , t„} be a set of uniformizing parameters at U on V, such that tn = t,

and let {Du • • ■ , Dn} be the canonical C/-basis for the derivations on V

which is related to {t}. Then (dx)(tDn) =rutT+tr+lDnu; since tDnuEty(U/V),

it follows that tr+1DnuEtr+1Q(U/V), while rutrE.tr+1Q(U/V); hence (dx)(tDn)

EQ(U/V), and therefore U is a pole of Jx, since tD„ has a zero at U by 1.1,

Q.E.D.

1.5. Theorem. Let U, W, V be irreducible varieties over k, such that

(1) UE WE V, (2) U is simple on W and V, and (3) ins U=l;letwbea differ-
ential on V, regular at U. Then co is regular at W, and coP\ U= (o>C\W)r\ U.

Proof. By conditions (2) and (3), if the dimensions of W, Fare m, n re-

spectively, it is possible to find a set of uniformizing parameters {xi, ■ • • ,x„}

at U on V which is also a set of uniformizing parameters at W on V, and such

that if it is the homomorphic mapping of Q(W/V) onto k(W) whose kernel

is yS(W/V), {irxi, • ■ • , TXm} is a set of uniformizing parameters at U on W.

If co is regular at U, we haveco= Y*t-i aadxi, with atEQ(U/V), by 1.2; hence

aiEQ(W/V), and co is regular at W. But then, by 1.2, cofW= YT=i (ira,)dirXi;

now, iraiEQ(U/W), so that u(~\W is regular at U by 1.2, and the relation

(coPiW)nU = coC\[/follows easily, Q.E.D.

A differential co on V is said to be of the first kind (on V) if it is regular

at each irreducible subvariety of V; by 1.4, if V has no singularity, and no

irreducible subvariety with inseparability >1, a differential on V is of the

first kind if and only if it has no poles (of dimension m — 1 ifM=dim V). Two

differentials co, co' on V are said to be equivalent, in symbols co~co', if co'—co

is exact. A differential co on V is said to be of the second kind (on V) if for each

irreducible proper subvariety W oi V there exists a differential co'~co which is

regular at W. From 1.5 we obtain:

1.6. Corollary. Let W be an irreducible subvariety of the irreducible vari-

ety V over the perfect field k, and assume each point of W to be simple on W and V.

Let co be a differential on V, regular at W; if co is of the first (second) kind, so is

wr\u.

Two derivations D, A on V are said to commute if DAx=ADx for each

xEk(V); a differential co on V is said to be closed if D(coA) =A(coD) for each

pair {D, A} of derivations on V which commute. Any exact differential on

V is closed; and any differential on V is closed if dim V=l, as will clearly

appear from the following result:

1.7. Lemma. Let V be an n-dimensional irreducible variety over k, of in-

separability 1. A differential oi on Vis closed if and only if Df(coD,•) = Dj(coD,) for

i,j = l, • ■ ■ ,n, where {Di, • • • , D„} is a k(V)-basis for the derivations on V,

consisting of mutually commutative derivations.

Proof. If D= Yi a-iDi, and A= Y< °iDi are commutative derivations on
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V, with ai, biEk(V), we have D6,=Aa,-, and D(coA) = Yi (Dbi)<oDi + biD(uDi)
= Yi (Aai)coD,+a,A(coDi)=A(coD), Q.E.D.

It is evident that if co is closed, also IFP\co is closed if it exists.

Let V be an absolutely irreducible variety over k, and let K be an exten-

sion of k. If D is a derivation on V, there is a unique derivation Dk on Vk

such that DrX = Dx for any xEk(V)C.K(V~K). Likewise, if co is a differential

on V, there is a unique differential cox on Vk such that 0)kDk=<x>D for any

derivation D on V; in particular, dyKx = (dyx)x for xEk(V). A somewhat

different situation arises in considering two irreducible varieties V, V such

that k(V)Qk(V) and ins F = ins (k(V') :k(V)) = 1; in this case, for xEk(V),

we have dyx = 0 if and only if dyx = 0; if co is a differential on F, and

co= Yi o-idyXi, where a,-, XiEk(V), then Yi atdyXi gives a differential on V,

which does not depend on the choice of the x's, and which is 0 if and only if

co = 0. Such differential is called the extension of co on V. A particular case

arises when F'= VXW, where IF is another absolutely irreducible variety

over k (V being also absolutely irreducible in this case); then the extension of

co on V will be denoted by coXlF or IFXco; there is an obvious one-to-one

correspondence coXlF—koa, for K = k(W). Also, coXlFor co*- are closed if and

only if co is closed.

1.8. Lemma. Let V be an irreducible variety without singularities over the

algebraically closed field k; let K be an extension of k, and let co be a differential

on V; then ur is of the first (second) kind if and only if u is of the first (second)

kind.

Proof. Set ra = dim V, d = dy, d' =dyK; assume co to be of the second kind'

and let TJ be a nonempty irreducible subvariety of Vk; there exists a point

FGFsuch that Q(P/V)CZQ(U/VK), and there exists an fEk(V) such that

co — df is regular at P; in particular,/=0 if co is of the first kind. Thus, co— df

= Yi o-idxi, where a,-, XiEQ(P/V), by 1.2; but then, again by 1.2, ooK — d'f is

regular at TJ, so that coa- is of the second kind, or of the first kind if/ = 0.

Now, assume wk to be of the second kind; let TJ be a nonempty irreducible

subvariety of V, and let fEK(VK) be such that co K — d'f is regular at TJa-; here,

/= 0 if uk is of the first kind. Let v be any place of K over k, whose extension

w to K(Vr) over k(V) is such that w(f)^0, and denote by _ the homomorphic

image of an element of Rw mod tyw. Write coa- — d'f= Yi a*d'xi, with

a,G<2(^Jc/Fx), {xi, • • • , xn} being a set of uniformizing parameters at TJ

on V. The poles of UK — d'f are among the poles of the a, and the x<, by 1.4,

and none of them contains Uk, again by 1.4; hence, after a suitable choice of

v, none of the poles of any di or any Xi contains U, and therefore co — df is

regular at TJ, Q.E.D.
If F is an irreducible variety over the field k, we shall denote by 3Di(F),

£>2(F), T>e(V) respectively the ^-modules of the closed differentials of the

first kind on F, of the closed differentials of the second kind on V, and of the
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exact differentials on V; clearly, £>i(F) and S)e(V) are sub-modules of £)2(V),

their intersection being 0 if k has characteristic 0, by 1.4. If V is absolutely

irreducible, we shall say that an independent &-basis [coi, co2, • • • } of Di(F)

is an absolute basis, if {(coi)x, (co2)k, • • • } is a i£-basis of £>i(VK), tor each

algebraically closed extension K of k. And a set {coi, co2, • • • } of elements of

SD2( V), whose images mod 2D«( V) form an independent &-basis of SD2( V)/S>e( V),

is said to represent an absolute basis, if the images of (coi)x, (co2)x, • • • ,

mod S>e(VK), form a if-basis of SD2(Fx)/3Dc(Fx), for any algebraically closed

extension K of k.

If {coi, co2, • ■ • } is an absolute basis of S)i(F), or, respectively, a repre-

sentative of an absolute basis of %h(V)/S),(V), then {(coi)x, (w2)k, • ■ • } is a

if-basis of S>i(VK), or, respectively, represents a i?-basis of 3)2(Fx)/SDe(Fx),

for any extension K of k. We shall give the proof of this statement in the

second, less obvious, case. Let K be an extension of k, and let o>E£>2(Vk);

then, for a suitable finite extension 77 of K, we can find an xEH(Vh), and

elements ai, a2, ■ ■ ■ EH, such that co# — dyHx= Yiat(ui)n- Let {&i = l,

b2, • • • , br} he an independent 7C-basis of 77; then {b} is also an independent

K(Fk)-basis of H(VH). Write x=Yi xi°i, XjEK(Vk), and af = Yi aa°i,

aijEK. ThencoH — dvHXi— Yiaa(f>>i)B= Y'i-2 (dvBXj+ Yi o<y("<)»)&,■. If D is
any  derivation  on   V,  this  gives uDk— DrXi— Yi anuiD=YUi   (DrXj

+ Yi aij03iD)bj; since the left member, and each DKXj+ Yt a-a^iD, for 7>1,

belong to K(Vk), we conclude thatcoD/f — DrXi= Yian°}iD, or that co — dvKXi

= Yi Oii(w,-)K, as claimed.

1.9. Theorem. Let Vi, V2 be irreducible varieties without singular points

over the algebraically closed field k, and set V= ViX V2. For a given j ( = 1, 2),

assume cOiE^>j(Vi) (i=l, 2); then coiX V2+co2X ViE£>j(V). 7/coi, co2 are differ-

entials on Vi, V2respectively, and co = coiX F2+co2X ViE£>j(V) (j= 1 or 2), then

co;G2D3(17) for * = 1, 2; also, coi, co2 are uniquely determined by co. If S>i(Vi) has

an absolute basis for * = 1, 2, and k has characteristic zero, then £>i(V) has an

absolute basis, and each element of S)i(V) can be expressed in the form coiX V2

+co2X Vi, with oiiES>i(Vi). If there exists a representative of an absolute basis of

^>2(Vi)/l)e(Vi) for i = l, 2, and k has characteristic zero, then there exists a

representative of an absolute basis of £>2(V)/S),(V), and each element of 3D2(F)

is equivalent (~) to an element of the form coiX F2+co2X Vi, with aiE£>2(Vt)

(i = l, 2), uniquely determined but for equivalence.

Proof. Part 1. Set Mj = dim Vt; if co = coiX F2+co2X Vi, any pole of co is of

type Ui X V2 or U2 X Vu with Ui a pole of co,-. Hence, by 1.4, coG SD<( V) (i = l,2)

if and only if UjE%>i(Vj) for j = l, 2.

Part 2. Assume k to have characteristic zero, and let {an, aa, • • • }

represent an absolute basis of £h(Vi)/S)e(Vi) (i = l, 2). Let co(E£)2(F), and

write co=Yi o-tdxi+Yi bjdyjt where at, bjEk(V), and {xi, • • • , xni},

{yu " " " , ynt}  are algebraically independent (over k) elements of k(V{),
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k(V2) respectively, such that k(Vi), k(V2) are finite separable extensions of,

respectively, k(x) and k(y). Set K = k(Vi), H=k(V2), d* = div1)H, &>*

= Yi ctid*Xi. Then us* is a closed differential on (Vx)h\ if IF is an irreducible

subvariety of (Vx)h at which co* has a pole, set W =Dw,v2, so that IF' is a

subvariety of V such that Q(W/V) =Q(W/(Vi)h)■ There exists a zEk(V)

such that 03 —dz is regular at IF'; but then co* — d*z is regular at W. This

proves that co*£3}2((Fi)#); as a consequence, there exists an xEk(V) such

that co* — d*x is a linear combination, with coefficients in TT, of, say,

(an)ff, • ■ ■ , (cxit)h. Set «i, = Yi I'jdiXj, tajEK; then there are elements

vi, ■ ■ ■ , vr of TT such that u> — dx= Ya VitijdXj+ Yi wjdyj, with WjEk(V).

This is a closed differential; if D„ Ay are the derivations on F such that

DiXj = 8tj, D,yj=0, A,Xj = 0, Atyj = 8{j, we must have D{Wj= YhhiAjVh. This

implies that the poles of d*Wj are all of the type TJh, with TJ an (rai —1)-

dimensional irreducible subvariety of F; consequently, by 1.4, the poles of

Wj on (Vx)h are of the same type, and therefore WjEKXH (direct product

over k). Write then Wj= Y* ci>Ri>, with Cj,EK, ejsEH, and eyi, ey2, • • • lin-

early independent over k, hence over if. Then^A (AjVn)thi = DiWj= Y,*ei>Dicu'<

this shows, by (99) of [l], that there are elements f3jh,Ek such that AjVh

= Ys Pjhsejs, and that DiCjt = Y» /Wm, so that aVy. = Yhi pWa.^i*.

= Yh PjhsOcih- Since an, • • • , alr are independent over k mod £>e(Vx), we con-

clude that j8j7,s = 0, so that AjVh = 0, VhEk; also, DtcJS = 0, citEk, and WjEH-

Thus co — dx=a>xX F2+co2X Fi, where coi= Yi viails a differential on Vx, and

co2= Yi wjd2yj is a differential on F2. By Part 1 of this proof, coi and co2 are

closed and of the second kind; they are unique but for equivalence (~),

because if co=coiX F2+co2X Fi~0, then, for a generic P2EV2, also coiXF2

= con(F1XF2)~0.

Part 3. The statement concerning the case in which co is of the first kind

is proved in the same manner (actually simpler) used in Part 2.

Part 4. The statement concerning the existence of absolute bases is a

direct consequence of Parts 3 and 4, Q.E.D.

2. Application to abelian varieties. Let G be a group-variety, without

singular points outside the degeneration locus F, over the field k. If P is a

rational point of G, ap and rp will have the usual meanings (see [3] and [4]).

f f D is a derivation on G, we shall denote by opD the derivation on G such that

(apD)(aPx) =ap(Dx) for any xEk(G); TpD is similarly defined. When k is

algebraically closed, and according to §5 of [4], D is left (respectively right)

invariant if and only if aPD = D (respectively rPD=D) for any PEG — F.

Let co be a differential on G; we shall denote by o>co the differential on G such

that (o-pco) (o-pD) =crp(coD) for any derivation D on G; in particular, apdx

= dapx for xEk(G); rpco is similarly defined. If k is algebraically closed, co is

said to be left (right) invariant if a>co = co (ifr.p<o=co) for any PEG — F; if both

relations are fulfilled, co is said to be invariant. Under the same conditions,

co is said to be left (right) semi-invariant if for each PEG — F there exists an
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xPEk(G) such that apO}—o: = dxp (respectively t>co— a> = dxp); if both rela-

tions are fulfilled (not necessarily for the same xP), co is semi-invariant.

2.1. Theorem. Let A be an n-dimensional nonsingular abelian variety

over the algebraically closed field k. Then the invariant differentials on A are all

elements of 3Di(.4), and form a k-module of order n. Also, each differential of the

first kind on A is invariant, hence closed, and 37>i(.4) has an absolute basis.

Proof. Let D\, • • • , D„ he the invariant derivations on A defined in §5

of [4], and let co,: be the differential on A defined by co,Dj = 5i;-. Then coi, • • • ,

co„ are invariant, and linearly independent over k (also over k(A)). If co is an

invariant differential on A, set co= J^?=i a;co,-, with atEk(A); ior PEA,

co = a>co= Yi (opo,-)ci>i, or aPai = ai, or atEk. Hence the invariant differentials

on A form a ^-module of order n. If co is one of them, and U is a pole of co,

opU is also a pole of co for each PEA. Hence a has infinitely many poles,

a contradiction to 1.4. Therefore co is of the first kind; in order to show that

it is closed, it is sufficient to prove that each co, is closed; this will be a con-

sequence of 1.7 if we can prove that D{Dj = DjDi (i, j= 1, • • • , n).

For sake of brevity, we shall make use of the functional notation of

analysis, in spite of its ambiguous meaning. Let (Xi, • • ■ , xm} be a n.h.g.p.

of A such that x* = 0 at EA (identity), and that {xx, • • • , x„} form a regular

set of parameters of Q(EA/A). We shall consider an algebraically closed ex-

tension K of k, of sufficiently high transcendency over k, and shall say that a

point P of Ak, at finite distance for {x}, is general for A, if the values

yu • • • i ymEK oi, respectively, Xi, • • • , xm, at P are such that k(y) is

isomorphic to k(x) over k, in an isomorphism in which y,- corresponds to

xt (i=l, • ■ • , m). There are rational functions gi, ■ ■ ■ , gm of two sets of

indeterminates {Xi, • ■ ■ ,Xm}, { Yi, ■ ■ ■ , Ym}, such that, for generic points

P, Q oi A, the co-ordinates of PQ are obtained by replacing, in gi, ■ ■ ■ , gm,

the co-ordinates of P for {X}, and of Q for { Y}. Then §5 of [4] states that

D(Xj= [dgj(x, t)/dti\t=o, if {t} are the co-ordinates of a point of Ak, general

for A, and such that k(x, t) has transcendency 2m over k. The previous

formula is valid for i=l, ■ ■ ■ , n and 7 = 1, • • ■ , m; for the purpose of com-

puting the partial derivatives, t„+i, ■ ■ ■ , tn must be considered as functions

oi h, • • • , tn. Then

DhDiXj = Dh[dgj(x, t)/dti\t=o

n

=   Y   [°2gj(x, t)/dtidX,]t=oDhXr
r-1

- Y [d2gi(x, t)/dlidXr]u.o[dgr(x, z)/dzh]z=0
r

= Y [o2gi(g(x, z), t)/dtidgr(x, z)]t=z=o[dgr(x, z)/dzA]2_0
r

= [o2gj(x, g(z, t))/dtidzh],.,^o;
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this expression remains unchanged after interchanging i and h; therefore

DhD, = DiDh, as claimed. This proves completely the first statement of the

theorem.

Now, let co be a differential of the first kind on A; let D be any invariant

derivation on A, and set a=coD. If V is any (ra —1)-dimensional irreducible

subvariety of A, Q(V/A) is the join of the Q(P/A) for PEV. By Lemma

5.1 of [4], DxEQ(P/A) if xEQ(P/A); hence DxEQ(V/A) if xEQ(V/A).
If t is a regular parameter of Q(V/A), the derivation tD has a zero at F.

Since co does not have a pole at V, we conclude that ta = u>(tD)Ety(V/A), so

that aEQ(V/A). This having to be true for any V, it follows that aEk.

If then {Di}, {coi} have the previous meaning, and o>Di = aiEk, we neces-

sarily have co= 2^iai«iG 2Di(yl), as claimed. The existence of an absolute

basis for £>i(A) is an immediate consequence of this fact, and of 1.8, Q.E.D.

Before proceeding any further, we remark that the differentials on a

curve, in the language of [6], can be identified with our differentials thanks

to Theorem 6 of Chapter VI of [6]; also the definitions of "first kind" and

"second kind" are equivalent (see §8, Chapter VI of [6]). And it is apparent

that if C is an absolutely irreducible curve without singularities over k, SDi(C)

has an absolute basis, and a representative of an absolute basis of S)2(C) / £)e(C)

exists. 3Di(C) is a ^-module of order g=genus of C, while SD2(C)/SDe(C) is a

^-module of order 2g if k has characteristic zero. In the latter case, the

^-modules 2D2(C)/3l>i(C) + 3Dc(C) and S>i(C) are dual to each other, by

Theorem 8 of Chapter VII of [6]; the duality operation is induced by the

operation/(co2, Wi), for C0iG2D,(C).

2.2. Lemma. Let A be an n-dimensional nonsingular abelian variety over

the algebraically closed field k; then each semi-invariant differential on A is of the

second kind. If k has characteristic zero, the following statement is also true:

let co be a closed differential on A, such that for any (n — 1)-dimensional ir-

reducible subvariety V of A there exists an fEk(A) for which oo — dAf is regular

at V; then co is semi-invariant, hence of the second kind. In particular, every

element of 2D2(^4) is semi-invariant.

Proof. Let co be a semi-invariant differential on A, and let TJ be an ir-

reducible subvariety of A. Since a has finitely many poles by 1.4, for a

suitable P£^4 the differential o>co does not have a pole at TJ; as crpco^co, we

conclude that co is of the second kind.

In order to prove the second statement, assume k to have characteristic

zero, and denote by 3D' the set of the closed differentials on A having the

property described in the statement of the lemma. For any differential co on

A, let p(o>) be its polar variety, that is, the join of all its poles, and let e(co)

denote the intersection of all the p(co+dAf) when/ ranges in k(A); if co is

closed, we have coG£>' if and only if dim e(co)<« —1. If PEA, we have

e(crpco) =ape(a>), so that a>co£ 3D' if and only coG 2D'.
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Since A is the homomorphic image of a jacobian variety, there exist a

curve C on k, without singularities, and a rational mapping </> of C into A,

such that, for each PEA, no proper group-subvariety of A contains apcpC,

<j>C denoting the curve on A on which <j> operates.

We shall now consider copies A, Ai,A2of A, and assume k(A2)Cik(A XAi)

as prescribed by the rational mapping of A XAx onto ^42 which gives the law

of composition on A ; as usual, and unless stated otherwise, if co is any entity

related to A, co,- shall denote the copy of co similarly related to A,-. Let {x}, {y}

be n.h.g.p. of A, Ax respectively, copies of each other; set H=k(Ai), L = k(A),

K = k(C); let X be the point of Ah at which the co-ordinate x< assumes the

value yi, and let Z be the point of (A,)l at which the co-ordinate y< assumes

the value x,-; set also Y = <p{C} EAK.

Quite in general, if co is a closed differential on the product UX V of two

irreducible varieties, co can be written uniquely as the sum uu+cov of two

differentials on UX V, such that u>uD = 0 for any derivation D of k(UXV)

over k(U), while uv is similarly related to F; we shall say that a>u is the

U-component of co, and shall use this notation throughout this proof; wu

is not, generally, a closed differential. Under the same conditions, let u>u be

the differential on Uktyi such that cou D = auD = u>D for any derivation D on

Uk(v)', then coj/ is closed, and will be called the U^ty^-component of co.

We shall now consider a differential u>E^', and shall denote by fi the

extension of u2 on A XAx; we shall also write Q = £Ia+Qax, these being the

.4-component and the .<4i-component of fi; let u* be the A ^-component of fi.

Then we have co*=ctx1coh, so that e(co*) =<Tx1e(co#); and of course, any com-

ponent of e(u>n) is a subvariety of the extension over TT of a component of

e(a>). Since e(C#Xco*) = C#Xe(co*), the previous result implies that the in-

tersection of <pH and c(ChXco*), on CHXAH, is empty. Since each point of

<j>H is simple on ChXAu and on <pH, 1.4 and 1.5 apply to this case, and yield

that <PhC\(ChXu>*) is a differential of the second kind on <f>H; as k(<b) can

be identified with K, there exists a unique differential a* on Ch, of the second

kind, such that (a*XAH)r\<p„=<f>Hr\(CHXco*). Let {alt •••,«,} be a

representative of an absolute basis of 2D2( C)/3De(C); then, for suitable elements

ZiEH, we have a*~Yizi(ai)H; this means that there exists an fEk(CXAi)

such that the C#-component d*f of dcx.ij has the property a* = Yi Zi(ai)H

+d*f. Denote by ac the differential on CX-4i such that acD=a*D for any

derivation D on Ch, while acD = 0 for any derivation D on (^i)a-; then

2.3 (ac X A) r\ (<b XAx) = (<p X Ai) C\ (C X QA),

and ac= Yi Zi(a>XAi) + (dcxAj)c.

We want to prove that (<j>XAx)C\(CX^Ia) has no pole of the type <pX Ux,

with U an (ra — 1)-dimensional irreducible subvariety of A. In fact, consider

a pole of this type; then, for any ?£ U, cpXPi is a subvariety of a pole of

((pXAx)r\(CX&A), hence, by 1.5, also of a pole of CX^; if V is any pole of
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co, V =cx1Vh is a pole of co*, and V" =Dv,ax is a pole of QA, so that CX V"

is a pole of CX^a- Conversely, each pole of CX&a is of this type, because it

operates on the whole Ai; consequently, if <pXPi is a subvariety of a pole of

CXQa, FX(Pi)x will be a subvariety of a V'£, where V" is of the previous

type; this means that Fand (Pi)k correspond to each other in the algebraic

correspondence V'i; but V"[Pi]=aplV (see §1 of [4]; in the notation of

that section, after exchanging Cn, G2, G3 with, respectively, .4i, A2, A, V

would be denoted by Tv, and F" by 7», so that YE(<rp1V)K, or <rpKYE Vk;

this, in turn, implies apcpCQ Vk tor any PE U, or <tqU = V for each QE<pC.

But this is impossible, since it implies that, for a fixed RE4>C, vr1<I>C belongs

to the proper group-subvariety of A consisting of the PEA such that

oPU= U. It is thus proved that no pole of (<pXAi)r\(CX&A) is of the type

<pXUi; hence, by 2.3, (acXA)!>\(<j>XAi) has the same property.

Now, for any  (m —1)-dimensional irreducible subvariety   Ui of Ai, let

l£i> ■•',?"} be a set of uniformizing parameters at Ui on ^4i; for a given

element z of K but not of k, there exists an element gEk(CXAi) such that

ac=g(dczXAi)=gdCxAlz; hence, (acXA)f\(4>XAi) =g(dj,zXAi) =gd4,yAlz,

where z is now considered as an element of k(<p) in the identifica-

tion k(<p)=K.  A set of uniformizing parameters at cbXUi on cbXAi is

{si £i, ■ • • , £„}, so that, by 1.2, the fact that <pX Ui is not a pole of (acXA)

P\(c6X^4i) means that CXUi is not a pole of g; as a consequence, and for

the same reason, CX Ui is not a pole of ac, and this is valid for each Uu We

contend that, as a consequence, ztEk for each i. In fact, if it is not so, after

setting d*f=f'd*z for f'Ek(CXAi), let Ui he a pole of some z,-, and let

pEty(Ui/Ai) he such that pzit pf'EQ(CXUi/CXAi), one of them at least
not being in ^(CX Ui/CXAi). Then

0= pacr\(CX Ui) = Y (n(pZi))(ai X UO + (ir(pf'))(dcxulz)c,
i

where ir denotes reduction of Q(CX Ui/CXAi) mod ty(CX Ui/CXAi); hence,

Y (ir(pZi))(ai)M + (ir(pf))dcMz = 0,

where M = k(Ui). Since the (ai)M represent an J7-independent basis for

£>-i(C M) / £>e(C M), we conclude that ir(pz,) =ir(pf) =0, against the hypothesis.

We have thus shown that ZiEk for each *, so that there exists an element

a= Y'zia' OI 3^(0, and 2.3 can be written as

[a X A X Ai + dcxAxAif -CX 0]axc C\ (4, X Ax) = 0.

This also means that the (^-component of

[aXAXAi + dcXAxAj -cxn]r\(<t>xAi)

is zero. As this is a closed differential, it must necessarily be of the type c6X/3,

with /3 a closed differential on Au The (yl1)x-component of the above differen-
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tial is then |8jr = (a"/—fijt)r\(FXG4i).K), where d'=d(Al)K, or also j3K

= (d'f—£lAi)r\(YX(Ax)K). For any invariant derivation D on A, denote by

Dx also the extension of Dx over K, or over k(CXA); then Dx is regular at

YX(Ax)K, and we have [(a"/-fiAl)n(FX(4i)x)]D1=D1/-7r[(crr1(co1)L)D1],

where ir now denotes the homomorphic mapping of f2(^X(^4i)x/^4x:X(^4i)A')

onto K((Ax)k) whose kernel is ty(YX(Ax)K/AKX(Ai)K); the last expression

coincides with

Dxf - t[jz\MlDi)] = Dxf- o-Y^coiDx) = Dxf - (<7y11(co1)K)D1;

thus, ^K = d'f—o-y^coi)k. Now, for any PEC, the above reasoning can be

repeated, and it gives /3~^(<jq1co)i if Q = <p[P]. If 5 is a fixed point of <pC, and

C'=as1<pC, let Qx, ■ ■ ■ , Q„EC; then ok^o-q/co, hence &>~(r^1co<~<T^gJw, etc.,

so that co^o^co for R = QxQ2 ■ • • Qn; but as the Qi range over C, R ranges

over A, so that co^orco for any REA, and co is semi-invariant, Q.E.D.

2.4. Lemma. Let A be an n-dimensional nonsingular jacobian variety over

the algebraically closed field k of characteristic zero; then 1)2(A) / £)e(A) is a k-

module of order 2ra, and there exists a representative of an absolute basis of it.

Proof(2). Let A be the jacobian of a curve C over k, without singular

points. Let Ci, • • • , C„ be copies of C, and set V= CxX • • • XCn- Then, by

[9], k(A) is the set of the elements of k(V) which are invariant for all the

elements of the group G of the automorphisms of k(V) over k which permute

the k(Ci) in all possible manners. Since there exists a representative of an

absolute basis of 3D2(C)/3De(C), 1.9 implies that there exists a representative

of an absolute basis of 2D2(F)/2De(F), and also that 3D2(F)/2D,(F) is a k-

module of order 2ra2. Let «G3D2(^4), and let co' be its extension on V; then

co' is a closed differential, invariant for each element of G; we contend that

co' is of the second kind. Let IF be a nonempty irreducible subvariety of F; by

Theorem 6 of [9], if <f> is the rational mapping of V onto A generated by the

embedding k(A)Qk(V), the variety U on which <j>[W] operates is such that

Q(U/A)QQ(W/V). There exists a &>i~co regular at U, and the extension

co/ of coi on V is regular at W by 1.2, and clearly coi'~co'. Hence co' is of the

second kind. Conversely, let co' be a closed differential of the second kind on

V, invariant for each element of G. If Xi, • • • , xnEk(A), and k(A) is a finite

extension of k(x), also k( V) is a finite extension of k(x); write u>' = Yt ctidyXi,

aiEk(V). Then each a,- is invariant for each element of G, and therefore

aiG&C4), and co' is the extension on F of co= Yt a.idAXi. We contend that co

has the following property: for any (ra —1)-dimensional irreducible subvariety

IFof A, there exists an fG&04) such that co— dAf is regular at IF. In order to

prove the assertion, we consider the distinct components Wi, W2, • • •   of

(2) (Added November 4, 1955). The author is indebted to the referee of Amer. J. Math, for

pointing out an error in the proof which the author had originally submitted for this lemma.
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the subvariety of Fon which cp [W] operates; they are all (n — l)-dimensional,

and conjugate to each other under the transformations of G (see §3 of [4]).

Since co' is of the second kind, there exists an fiEk(V) such that co'— dvfi is

regular at PF; moreover, the Q(Wj/ V) are disjoint valuation rings in the sense

of Krull, and therefore, by the independence theorem, it is possible to select

an/'efl^i Q(Wj/V) such that fi-f'EQ(Wi/V). Let m he the number of
times Wi (hence any Wf) appears among the conjugates of IFi, under the

transformations gi, g2, • • • of G, and setf = m~lYi Zif''< then, since gjco'=co'

for each j, co' — dvf is regular at each Wj; but fEk(A), so that co'— dvf is the

extension on Fof co — dAf; since Q(W/ A) = k(A)C\Q(Wi/V), we conclude that

co — dAf is regular at IF, as claimed. Thus, by 2.2, co£D204).

We have thus established a 1-1 correspondence co—>co' between 2)2(^4;), and

the ^-module S of the elements of D2(F) which are invariant under the trans-

formations of G. The ^-module S consists, by 1.9, of all the differentials of the

type
n

Y Ci X • • • X Ci-i X cof X Ci+i X ■ ■ ■ X Cn + dvf,
i-l

where fEk(A) and cof is the copy on C, of a co*£ £>2(C); clearly, S/SH SDe( V)

has order 2m, so that £>2(A)/£>e(A) has order 2m. As a consequence, there

exists an absolute basis of it, Q.E.D.

Remark. In the notation of the preceding proof, and for a coESi-2(A), let

co' be the extension of co on F, and let co*£ 3}2(C) be such that

«' ~ Y Ci X • • • X d-i X cof X Ci+i X • • • X C„;

then the mapping co—>co* induces an isomorphism between £>2(yl)/3X0yl)and

SD2(C)/SDe(C), in which S>i(A) and SDi(C) map into each other.

Let A be an M-dimensional nonsingular abelian variety over the alge-

braically closed field k of characteristic zero; let C be a curve without singu-

larities over k, and letX be a rational mapping of C into A. For any co£ £)2(A),

we shall consider the element X*(co)£ 2D2(C) such that (X*(co) XA)C\\

= (CXco)P\X, if these expressions have a meaning. Then, X* induces a homo-

morphic mapping of 1>2(A)/S)e(A) into 2D2(C)/SDe(C), such that 3Di(.4) maps

into 37>i(C). If, in particular, A is the jacobian of C, and X is a canonical map-

ping of C into A, X*(co) is the differential on C denoted by co* in the preceding

remark (but for an exact differential); accordingly, in this particular case,

the mapping X*: co—»X*(co) induces an isomorphism between £>2(A)/T>e(A)

and £>2(C)/£>e(C), in which SDi(yl) and ©i(C) map into each other.

In general, X can be extended to a homomorphism a of the jacobian J

of C into A ; in other words, X — ad), if cp is a canonical mapping of C into 77 If,

in particular, a maps J onto A, then X*(co) =c/>*(co'), if co' is the extension of

co on J, when k(A)Qk(J) as prescribed by a. Clearly, co'£ £)2(7) if co£ £>2(A);

and of course co'££>i(7) if co£ £>i(A); also, if co£5)2(A) and co'£ SDi(7), then
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necessarily uE£>i(A), by 2.1. Consequently, if a maps J onto A, or, equiva-

lent^, if, for any PEA, no proper abelian subvariety of A contains aP\C,

X* induces an isomorphic mapping of $h(A)/5),(A) into 2D2(C)/3De(C), in

which £>i(A) maps into S)i(C), and in which no element of £>2(A)/£>e(A), but

not of £)i(A), maps into an element of SDi(C).

Now, for an arbitrary A, let X, u he rational mappings of C into A. We

shall denote by X+« the rational mapping v of C into A such that v[C\

= (X[C])(p[C]). We contend that (X+p)*~X*+p*, in the sense that

(X+p)*(co)~X*(co)+p*(co) for any oE£h(A). In fact, let Au A2, A3 he copies

of A, and let D be the rational mapping of .4iX.42 onto A3 which gives the

law of composition on A. Let coi, co2, co3 be the copies of co, on, respectively,

Ai, A2, A3. We shall denote by Xi, p2, v3 the copies of, respectively, X, p, v

= X+p which map C on, respectively, Ai, A2, A3. Then (coiX-42X^43

+co2X^4iX.43 — co3X.4iX.42)nD~0, since co is semi-invariant, by 2.2. Also,

t7=(XiX^2X^3)^(p2X^iX^3)n(i'3X^iX^2) is a curve on DXC which, if

considered as an algebraic correspondence between C and D, operates on the

whole C. As a consequence, we have:

[(x*(co) + M*(co) - „*(«)) xAiXA2xA3]ne

= {[(x*(«) x Ai) r\ Xi] xA2xA3}r\e

+ {[(n*(u) xa,)nti2] xAiXA3}r\e

- {[(v*(u) x At) r\V3]xAiXA2}r\e

= {[(cxo>i)r\\i]xA2xA3}r\d+{[(cxa2)r\li2]xAiXA3}r\e

- {[(cxco3)r\v,] xAiXA2}r\e

= [CX («i X At X A3 + w2 X Ai X A3 - w3 X Ai X A,)] C\6

= [cx(---)]r\(cxD)r\e = {cx[(---)r\D]} ne~o.

Consequently, since 6 operates on the whole C, we conclude that X*(co)

+p*(co) — v*(co)~0, as claimed.

2.5. Lemma. Let A be an abelian subvariety of the nonsingular abelian vari-

ety B over the algebraically closed field k of characteristic zero; then 2Di(^4) is

the set of the aC\A, when co ranges in 37>i(B); also, £>2(A) is the set of the wC\A

when o) ranges over all the elements of ©2(5) which do not have a pole at A.

Proof. B is isogenous to A X C, ior a suitable nonsingular abelian variety

C; assume k(AXC)C.k(B) as prescribed by a homomorphism a of B onto

AXC oi positive degree, such that aA =A. For any co££)2(v4 XC), let co' be

its extension on B; then the mapping co—>co' establishes an isomorphism be-

tween 2D2(^ XC)/£>e(A XC) and T)2(B) / £>e(B), in which ^(AXC) and £>i(B)
correspond to each other. Thus it is sufficient to prove the lemma when B is

replaced by A XC, and A by A XEC. But in this case the lemma is a conse-

quence of 1.9, Q.E.D.
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2.6. Lemma. Let a be a homomorphism of an abelian variety A over the

algebraically closed field k, into an abelian variety B over k, and, for a prime I

not equal to the characteristic of k, let M be an l-adic matrix related to a as in

Theorem 14 of [9]. Then the rank of M is twice the dimension of aA.

Proof. If dim aA =«, there is an ra-dimensional abelian subvariety C of

A such that aC = aA; we may replace A with an isogenous variety CXC

without affecting ranks and dimensions, by Proposition 13 of [9]. Accord-

ingly, we shall assume A = CXC', and a(CXEc)=aA, while a(EcXC')

= EaA. After a suitable selection of /-adic co-ordinates on CXC', M assumes

the form (ATi| M2), where ATi, M2 are the /-adic matrices related to, respec-

tively, [a; CXEc, B] and [a; ECXC, B}. But then, by Proposition 13 and

by Corollary 3 to Theorem 33 of [9], Mx has rank 2ra, and AT2 = 0, Q.E.D.

Now, let J be the jacobian of a curve C, without singularities, over the

algebraically closed field k; by Corollary 2 to Theorem 22 of [9], there is an

isomorphism D—>X between the ring of the classes of algebraic correspond-

ences D between C and a copy C of C, and the ring (R of the endomorphisms

X of J. The interchange of C with C induces an involution X—>X' in (R, which

in turn induces an involution in the algebra CI of the endomorphisms of J

( = smallest algebra containing Oi). This involution will be called the Rosati

involution (see [7]).

2.7. Lemma. With these notations, X and X' have the same characteristic

polynomial; if I is a prime different from the characteristic of k, and if L, L' are

the l-adic matrices related to X, X' respectively, then L and L' have the same rank

and the same characteristic polynomial.

Proof (3). We shall denote by CI* the algebra of the /-adic matrices related

to the elements of (2. Let B be an abelian variety isogenous to /; by §54 of

[9], if ju is a homomorphism of B onto /, the correspondence X—>Xi=p-1Xp is

an isomorphism between (2 and the algebra 03 of the endomorphisms of B; if

L, Llt M are the /-adic matrices related to, respectively, X, Xi, p, we have

Lx = M~1LM, and this proves that the isomorphism L—>Lx preserves the char-

acteristic polynomial and the rank. Moreover, if Xi =p_1X'p, the mapping

Xi—>Xi' is an involution in 03. Theorem 25 of [9] implies that X'X = 0 if and

only if X = 0; consequently, Xi'Xi = 0 if and only if Xi = 0. Now, by Theorem 28

of [9], we can select B to be of the type BXX • • • XBr, where each Bi is the

direct product of simple abelian varieties, isomorphic to each other, while no

abelian subvariety of Bi (for i = l, ■ ■ ■ , r) is isogenous to any abelian sub-

variety of Bj if jy^i. If 03i is the algebra of the endomorphisms of Bit by

Theorem 29 of [9] G3j is a simple algebra, and 03 is the direct sum of

(Bi, • • • , 03r; more precisely, this is so after identification of an endomorphism

(3) This result is also an immediate consequence of the last formula of §76 of [9]; see how-

ever the remark which follows this proof.
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v of Bi with the endomorphism v' of B such that v'[PxX • ■ ■ XPr]

= EBlX • • • XEs^XvPiXEg^X ■ ■ ■ XEBr, for PyG-By.
Let 03,' be the transform of 03,- in the involution ' on 03; then 03/ must

coincide with some 03y, since the decomposition of a semi-simple algebra as

direct sum of simple algebras is unique. Should / be different from i, an ele-

ment XiG03; would have the property that Xi'Xi[PiX • ■ ■ XPr]

= \[[EBlX ■ ■ ■ XEm-xXXiPiXEBi+xX ■ • ■ XEBr]=EB, or Xi'Xi = 0, or
finally Xi = 0. Consequently, 03/ = 03,-, and the involution ' induces an involu-

tion in each 03;. Now, for a suitable choice of /-adic co-ordinates in B, the

/-adic matrix Lx related to Xi= Y* ^i« (AifG©,-) can be written in the form

Lxx

Liz

j

' Lit.

where Ln is the /-adic matrix related to Xn. When Xi ranges in 03, Ln ranges

in the algebra ffif of the /-adic matrices related to the elements of 03;; the

involution ' induces an involution in each 03;*, and 03 * is a simple subring of

the algebra 9TC, of all the matrices, with /-adic elements, of the same order as

Lx,. Therefore, by a result on algebras(4), there exists an element NE^Li

such that, for each Ti;G 03*, L'u = Ar_1(T,i,)_iA7', where _i denotes transposition

of matrices. Thus L'u and Lu have the same characteristic polynomial, also

the same rank; hence Lx and L[, or also L and V, have the same character-

istic polynomial and the same rank, Q.E.D.

Remark. It may be noted that the preceding proof, and the preceding

lemma, are valid not only for the Rosati involution on a jacobian variety,

but also for any reciprocity ' onto itself of the algebra Q, of the endomorphisms

of an abelian variety, provided such reciprocity has the property that X'X = 0

implies X = 0 for XGCl.

2.8. Theorem. Let A be a nonsingular n-dimensional abelian variety over

the algebraically closed field k. Then the semi-invariant differentials on A are all

of the second kind. If, in addition, k has characteristic zero, 3D2(^4)/2De(^4) is a

k-module of order 2ra, awa" there exists a representative of an absolute basis of it;

also, each element of 2D2(^4) is a semi-invariant differential.

Proof. The first and last statements are part of 2.2. The second statement

is true, by 2.4, if A is a jacobian variety. There remains to be proved the

second statement for an arbitrary A. Let then A be arbitrary, and k be of

characteristic 0. It is known that A is the homomorphic image of a jacobian

(4) The result which we have in mind is a slight modification of the theorem on the ex-

tension of isomorphisms in a normal simple algebra; as this modification does not seem to be

explicitly stated anywhere, we state and prove it in the Appendix at the end of this paper.
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variety; hence A is isogenous to an abelian subvariety of a jacobian variety;

since the ^-modules of the closed differentials of the second kind, modulo

exact differentials, of isogenous abelian varieties are isomorphic, we may as-

sume A to be a subvariety of the (nonsingular) jacobian 7 of a curve C with-

out singular points. Let g = dim J be the genus of C. Let Ji he a copy of J,

and let Ai be the copy of A which is a subvariety of 7i; let X be a homo-

morphism of J onto Ai, and let <p he a canonical mapping of C into J. Then

Xc/> is a rational mapping of C into Ai, also into 7i. Let Ci be a copy of C, and

let <p\ he the copy of <j> which maps G into Ju According to Corollary 2 of

Theorem 22 of [9], X is related to a class of algebraic correspondences be-

tween C and &; let D be an element of this class, so that D is a virtual cycle

on CXCi. For any PEC, we have X0[P] = in e,<pi[Qi], it Yi e,Q,=D{p} *;
let K he a finite extension of k(C), such that (D{ C})k is a sum of (not neces-

sarily distinct) rational points Ai, A2, • • • of (G)x. Then ((X<6){C})k

= IT> W>i)k(A,-}. Let B he a model of K over k, without singularities, and

let p be the rational mapping of B into Ti such that h{b} = ((\<f>) { C})k.

Then the previous formula can be written p= Yi </>iD», where D,- is the ra-

tional mapping of B into G such that Dt{B} =A(. Therefore, in the notation

of the discussion preceding 2.5, p* = Yi (•AiD,)*; this means that for any

co£©2(7), and for its copy coi in SD2(/i), we have p*(«i) = Yi (0i*(wi))(i>,

where (i) denotes extension on B of a differential on G, when k(C\) is con-

sidered as a subfield of K as prescribed by A<. Now, assume D = Yt fiHi,

where the 77,- are distinct irreducible algebraic correspondences between C

and Ci; since fi*(wi) is the extension on B of (Xc/>)*(coi), the previous formula

states that

2.9 04)*M = E/<rW0/*<o(*?(«i))<0,

where: (1) for each i, k(C) and k(Ci) are considered as subfields of £(77,-) as

prescribed by 77,; (2) the symbol ( )(i) denotes extension on 77,- of a differen-

tial on C, or on G; (3) T denotes trace.

Formula 2.9 can be simplified after introducing a different notation: we

shall denote by £>,(D) (for i = 1, 2, e) the direct sum Yi £>•(-#/) < for fi£ £>.(C)

(or SD.-(Ci)), fi' shall denote the element Yi ®(i) of $>i(D); for fiG£>,(D),

TD/Ctt is defined as YifiTHHj)ik{C$j, if fi = Yi fii with fiy£ 2D,(77y); a similar
definition holds for TD/C$l. Finally, for fi£ £>*(C) (or SD.-(Ci)), D*(fi) is defined

to be TD/c$l' (or TD/CQ'). Then 2.9 becomes

2.10 (X0)*(Wl) = D*(4>?M)-

This coincides with the correspondence, described in [7], between differen-

tials of the first kind on curves related by an algebraic correspondence. If

coi ranges in 3Di(7i), <6*(coi) spans the whole SDi(Ci), while

(X*)*(«0 = (Xc6)*(co1H^1);
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since coiPvli ranges over the whole 3Di(.4i) by 2.5, and since no proper abelian

subvariety of Ax contains X<£C, (X#)*(coi) spans a submodule of 2Di(C) of

dimension ra; thus, by 2.6:

2.11. If fi ranges in 2Di(G), D*(fi) ranges over a submodule of 3Di(C) whose

dimension ra is such that 2ra is the rank of the l-adic matrix (for an arbitrary

prime I) related to the endomorphism of the jacobian of C which represents the

class of D.

Assume now coi to range over the set of the elements of 3D2(/i) which are

regular at Ax; let razg2g be the order of 2D2(^4i)/3De(^4i). Then, again, <p*(ui)

ranges over the whole 2D2(Ci), and (Xc/>)*(coi) ranges over a submodule Z of

3D2(C) such that Z/Zf~\T)e(C) has order m. Thus, Z is the ^-module of the

D*(fi) when fi ranges over 3D2(Ci), and we have raz = ord Z/ZC\^)e(C). Let V

be the ^-module of the fi' when fi ranges in 3D2(Ci), and let IF be the ^-module

of the fiG2D2(D) such that TD/CtiE®e(C). Then, obviously,

m = ord Z/Z C\ 2De(C) = ord V/V C\ 3De(D)

- ordFfW/Fn2De(D) = 2g - ord Vf~\W/V C\ 3De(D).

Now, let Z', V, W be defined in the same manner as Z, V, IF respectively,

after interchanging C with &, and set Zo = ZT\2D1(Ci), F0= FT\2Di(D),

IF0=IFT\3D1(D)=set of all fiG2Di(D) such that Fc/Clfi = 0. Let X' be the

correspondent of X in the Rosati involution on /. The set of all D*(fi), when

fi ranges in 3Di(C), is Z0; accordingly, by 2.11, 2.7 and 2.6, Z0 has order w; on

the other hand, ord Z0 = ord F0 —ord Vo(~\Wo, so that

2.13 ord Fo H IFo = ord Fo - » = f - ra.

If fiG 2Di(D) and *G 2D2(D), and if fi = Yi Qi, * = Yi *«. with fi.G 2Di(iT;),
*;G2D2(TT<), we shall define j(V, fi) to be YtfdWt, Qi)- Hence, if fiG2Dj(D)
is such that j'(Sf/, fi) =0 for each Sf/G F, we also have j(TD/Cl^r, TD/ClQ) =0 for

each -&EV, or/(SI/, F0/C,fi) =0 for each ST/GSMd); therefore, FB/Clfi = 0, or

fiG IF0. Conversely, for fiG 2Di(D), Sf/G V, and for any fi* conjugate to fi over

k(Ci) (that is, if fi= YtQi, fi»G2Di(TT;), then fi*= YiQ?, with fi»* a conjugate
of fi; on k(Ci)), we have j(V, fi) =/(*, fi*); hence j(V, fi) =0 if fiGIF0. This
proves that IF0 is the set of all the fiG2Di(D) such that /(\f/, fi) =0 for each

Sf/G V. In like manner we can prove that IF+ 3Di(D) is the set of the Sf/G 2D2(D)

such that/(SP, fi)=0 for each fiGF0; consequently, F0 is the set of the

fiG2Di(D) such that/(SP, fi) =0 for each SI/GIF.
If gi is the genus of TT;, set y = Yi gi', then, in view of the duality between

3Di(D) and  3D2(D)/2Di(D) + 3De(D), we have proved that

ord fr\ w/vnwn [®i(d) + x>e(D)

= y - ord Fo + IF0 = y - (ord Fo + ord W0 - ord F0 T\ W0)

= y - g - ord IFo + ord F0 Pi IF0 = y - n - ord W0       by 2.13.
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Now, the kernel of the homomorphic mapping fi—>7,D/e1fi, of £>i(D) onto

Di(G), is IFo, so that ord W0 = y— g, and

2.14 ord F P\ W/V (~\W f~\ [&i(D) + 3D.(D)] = g - n.

But  Wr\[£>i(D) + X>e(D)]=[wr\£>i(D)] + S>e(D), so that

ord f r\ w/v r\w' r\ [sdx(d) + sd6(d) ]

= ord v r\ w/v n [(w n sdi(d)) + sd6(d) ]

= ord [vr\ w/vr\ »,(D)]/[vc\((wr\ sd^d)) + s>.(D))/vr\ s>e(D)]

= ord V r\ W/V r\ S>e(D) - ord Vr\WC\ 3Di(D);

the last term, by the formula analogous to 2.13, has the value g — n, while the

first member, by 2.14, has the value g—n; hence ord Vr\W/VC\T>e(D)

= 2(g — n). This, replaced in 2.12, gives m = 2g — 2(g — n) =2n, Q.E.D.

3. Factor sets. The definitions of factor sets, and of constant factor sets,

are given in §§3 and 4 of [4].

3.1. Theorem. Let A be a nonsingular n-dimensional abelian variety over

the algebraically closed field k of characteristic zero; let V be a l-dimensional vec-

tor variety over k; denote by Y, To, Tc the groups of, respectively, the factor sets

of A into V, the factor sets associate to the identity of T, and the constant factor

sets in T. Denote by 3D2 , 20/ the k-modules of the elements of, respectively,

S)2(A), £>e(A) which are regular at the identity of A. Then F/Fc is isomorphic

to SD2'/SDi(^4), and in this isomorphism r0/rc corresponds to 37)/.

Proof. Let Ai, A2 he copies of A, and let nbea n.h.g.p. of Fsuch that the

law of composition on F is given by v3=Vi+v2. Denote by «> the point of F

at infinity for v. It is readily seen that the multiplicative notation for the law

of composition on F can be extended to yield P co = 00 if PEV— =0. The

associativity and commutativity properties remain true when meaningful. If

7£T—Tc, assume k(V)Ck(AiXA2) as prescribed by 7. Let A3 he another

copy of A, and assume ^(^43)CZ^(^41X^42) as prescribed by the law of com-

position on A. Let IF be the radical of the "denominator" of v oniiX42; then

W = y [» ]. The relation

3.2 (y[Pi + Q2R2])(y[Qi X R,]) = (y[PiQi X R2])(y[PiX Q2}),

which characterizes factor sets, is now valid when: (a) none of the point,

PiXQ2R2, QiXR2, PiQiXR2, PiXQ2 belongs to the fundamental locus C of ^

on ^4iX^42, and (b) one factor at least on each side is not 00. Let 77 be a com-

ponent of W, operating on the whole AiXA2; we contend that there is a com-

ponent of IF of the type FiX^l2, where Fisan (m —l)-dimensional irreducible

subvariety of A, such that H=Tj (see §4 of [4] for the definition of Ty).

For if it were not so, it would be possible to find points P, Q, R of A such

that PiXQ2EH-(Cr\H), while PiQiXR2, PiXQ2R2 and QiXR2 do not be-
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long to IF; and this would contradict the previous formula. Conversely, let

Fbe an (w —l)-dimensional irreducible subvariety of A such that FiX^42 is a

component of IF, but assume T'Y not to be a component of W. Then again it

is possible to find points P, Q, R of A such that PiQiXR2EW—C, while

PiXQ2, PiXQ2R2, QiXR2 do not belong to IF. Hence, since y[PiXQ2] is
symmetrical in P, Q, we conclude that there are distinct irreducible (ra —1)-

dimensional subvarieties Wl, ■ ■ ■ , WT of A, none of which contains EA, such

that IF is the join of all the W\ XA2, AxXW\, Tfc.
If PEA, letopj, o>8 be the automorphisms of k(AxXAi) over, respectively,

k(A2) and k(Ax), which induce (ffp)x, (aP)2 in k(Ax), k(A2) respectively. If

P, QEA, denote by v(Plt Q2) the element of k to which v is congruent

mod ty(PxXQ2/AxXA2), if vEQ(PiXQ2/AiXA2). Denote also by v(Px),
v(P2) the elements of, respectively, k(A2), k(Ax) to which v is congruent mod-

ulo, respectively, ty(PxXA2/AxXA2), ty(AxXP2/AxXA2). Then formula 3.2

can be written

3.3 aQlv + v(Qi) = aQlv + v(Q2),

valid for QEWl\J ■ • • \JWr.

It has been proved in §7 of [4] that, as a consequence of 3.3, there exists

a closed differential co on A such that

3.4 dAlXAiv = ai — w{ — co2',

where co/ is the extension on AxXA2 of the copy co; of co on At. This tells that

co is semi-invariant, so that coG2D2 by 2.8. The a which satisfies 3.4 is unique

but for an additive invariant differential; by 2.1, this means that 3.4 estab-

lishes a homomorphism 7—»w+3Di(yl) of T into 2D2'/2Di(/l), if co is taken in

£>x(A) when 7GIY It is also clear that 7, 7' correspond to the same co+ 2Di(yl)

if and only if the difference of the corresponding v, v' has a differential = 0,

that is, if and only if 7— 7'Grc; hence 3.4 establishes an isomorphic mapping

of T/rc into 3D2 /S)x(A). Finally, 7GT0 if and only if co can be selected in 30/.

We must now prove that this isomorphic mapping is onto 2D2'/2Di(.4);

given coG2D2, we shall select any yGr,; if coG2Di(^4); if not, let {x}, {y}, {z}

be n.h.g.p. of Ai, A2, As respectively, copies of each other, and let X be the

rational point of (A2)kud at which y,=x,-. By 2.8, we have (co2)k(Al)

r^ax1(u2)k(A1); let {v], ■ • • , v"} (i=l, 2, 3) be &-bases for 3Di(^4,), copies of

each other, and write co,= Yi aWu with a{Ek(Ai). Then there exists a

/G£(^4iX^42) such that Yi ai(vl)kUl)=Yi a&v&kUx) — Yi C^OO^W,),
where {D2} is the &-basis for the invariant derivations on (^42)*(A!) such that

Di(vl)kuo = Sij. Set i»o = (extension of vl on AxXA2) =v{XA2+\^XAx; then the
previous formula can be written:

3-5 Y 02V2 X Ax = Y Wo — dAlxA2t — Y &;ui X ^2>
i i i
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for suitable bjEk(AiXA2). This, in turn, gives, if D{ are the copies of D'2 on

(Ai)k(Aty:

Y °iMk(A,)   =   Y  U3(vi) IHA,)   —   Y  (Dlt)(v'i)kUi)',
i i i

this means that Yi bj(v{)k(.A1ir^aYl(oii)ku^, where Y is the rational point of

(Ai)k(A,) at which x, = y,-. Since trp1(co1)fc(A2i~(coi)*(,42), it follows that

Yi 0i(vi)k(Ai)^/(<^i)k(A,). Considering that the left side, and the first two terms

of the right side of 3.5, are closed differentials on ^4iX^42, we see that the

same is true of Yi bjv(xA2, so that D26; = 0 for each i, j, and therefore

bjEHAi). But then Yi Mi~«i. or Yi bjv{=ui+dAlt', tor t'Ek(Ai). If
u = t + t', 3.5 now gives

3.6 dA,xA2u = co3  — coi  — coj ,

which is analogous to 3.4. Let y be the rational mapping of AiXA2 into F

generated by setting v = u; we contend that 7 is a factor set. If it is, it is

clearly unique but for an additive constant set, since u is determined but for

an additive element of k.

Now, y[EAiXEA2] is a point 5^ «> of F, because EAiXEa2 does not belong

to a pole of co3' -co/ —co2. Moreover, the operation of interchanging Ai with

A2 transforms u into u + h, with hEk; application of the same operation again

shows that 2h = 0,orh = 0. Hence 7 [Pi XQ2} = 7 [Qi XP2] for generic P,QEA.

For a generic PEA, 3.6 implies that d2ap^u=arp^w3 —co2, where d2 indi-

cates construction of differential on (A2)k(Al); also, d2ap11u=o-p11o}3 —ap^a>2 ;

hence d2(op*u—o-p*u)=o-p*a)2'—ui=((o-p1a)—u)2)k<A1). But (tr^co — co)2

= dA2u(P{) by 3.6. Hence there exists a wEk(Ai) such that w+ap^u

= a~P*u+u(Pi). Since P is generic, the elements (aplu)(EA2), (ap^u)(EAl),

(ti(Pi))(EA2) exist, and equal respectively (ap1)x(u(EA2)), u(P2), u(Pi, EAi).

But u(EAi)Ek, and therefore it coincides with m(Pi, EAi). Hence w = u(P2),

so that ap^u + u(P2) =ap*u+u(Pi). This is the same as 3.3, and is therefore

equivalent to 3.2, Q.E.D.
From 3.1, 2.8, and the fact that, by 2.2, S>J/£>i(A) + £>l ̂ S>i(A)/5h(A)

+ £)e(A), we obtain:

3.7. Corollary. Notations as in 3.1. Then r/r0 is a k-module isomorphic

to £>2(A)/'£>i(A) + '£>e(A), and has order M = dim A.

Appendix (Added November 15, 1955). In the proof of 2.7 (see footnote in

that proof) we have made use of the following result:

Theorem. Let (xbe a total matrix algebra over the field F; let (B, (B' be sub-

rings of a, such that <&r\F = (&T\F is a perfect subfield f of F, and assume (B,

(B' to be simple algebras over f, isomorphic to each other in an isomorphism a over

f. Assume also that for any element y of the center of (S>, or of <$>', the characteristic
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polynomial of the matrix y has coefficients in f. Then there exists an inner auto-

morphism of d which induces a between 03 and 03'.

Proof. Let 6, 6' be the centers of 03, 03' respectively; since/ is perfect,

we have 6=/(0) for a suitable 9E&, and &'=f(9') if 6'= ad. For an indeter-

minate x, let g(x), go(x), c(x) be respectively the minimal polynomial of 8

over /, the minimal polynomial of 8 over F, and the characteristic polynomial

of the matrix 6; let g'(x) = g(x), gQ' (x), c'(x) have the same respective offices

for 9'. Then go is a divisor of g, g is a divisor of c, and the zeros of go (in some

algebraic closure of F) are all and only the zeros of c; since g is separable, and

has therefore distinct zeros, this implies that g = go, and likewise g = go'; also,

c = gr for some positive integer r, and likewise c' = gr. Thus the matrices 9

and 9' have the same characteristic polynomial, and of course F(9) and F(9')

are semisimple algebras. This suffices to show that there exists an inner auto-

morphism p of ft such that pd = d'; thus, p induces a between © and ©'.

The smallest sub-algebra F(d) of ft which contains C and Fis a semi-field,

that is, a direct sum of fields, say Qx+ • • ■ +G„; likewise, the smallest sub-

algebra of Ct which contains &' and F is Q{ + • • ■ +6/, where 6/ =pQt;

since 9 has the same degree over / or F, we have 6i+ • • • +6„ = Qf = QXF

(direct product over/). This proves that the smallest sub-algebra of d which

contains 03 and Fis 03XF=A3j?, and it is known that 0$F = 03t+ • ■ • +A3,, 03;

being a simple algebra over F, with the center C,-; similarly, the smallest sub-

algebra of a which contains 03' and F is 03'XF = 03y = 03/ + • • • +03/. But

then, cr can be extended to an isomorphism of 03;? onto 03j? over F, and we

have of course <r03; = 03/. Let e,- be the unit element of 03,-, and set Ct; = e,Cle;;

then fl; is a total matrix algebra over F, containing, as simple sub-algebras,

03, and p-1cr05;, since cr03; has the unit element <Te,=pe;, and is therefore a sub-

algebra of (pei)d(pei) =p&i. Thus, by the theorem on the extension of iso-

morphisms between simple sub-algebras of a normal simple algebra, there is

an inner automorphism

Ti'.y—ttiytr1

of ft; which induces p_Icr between 03; and p-Vffi;. Set t = h+ ■ ■ • +ts, and let

t be the inner automorphism y^*tyt~x of a. For a yG03, write y = Yi yi, with

y;G03,-; then ay = Yi ayi= Yt pr^t^pry, Q.E.D.
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