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The aim of this paper is to prove a generalization of a well-known con-

vexity theorem of M. Riesz [8]. The Riesz theorem was originally deduced

by "real-variable" techniques. Later, Thorin [10], Tamarkin and Zygmund

[9], and Thorin [ll] introduced convexity properties of analytic functions

in their study of Riesz's theorem. These ideas were put in especially sugges-

tive form by A. P. Calderon and A. Zygmund [3]. It is the last mentioned

approach to the Riesz theorem which is our starting point. In the interpola-

tion theorem we shall prove, we vary not only over the Lebesgue spaces in

question, but we also vary the linear operators in question. An exact state-

ment will be found in Theorem 1.

Part II contains the first application of the interpolation theorem. We

shall consider "Bochner-Riesz" summability of multiple Fourier series and

Fourier integrals; we prove that we have Lp norm convergence (for Kp< 00)

for the Bochner-Riesz means below the critical index. These results are con-

tained in Theorems 3 and 4.

A second application will be found in Part III. We shall show that a

theorem of Pitt for Fourier Series may be proved for all uniformly bounded

orthonormal systems. The fact that Pitt's theorem may hold in general

circumstances was suggested by Professor A. Zygmund to the author. The

last result is interesting when reapplied to the case of Fourier series via the

familiar device of rearrangements. The result contains well-known inequali-

ties of F. Riesz and R. E. A. C. Paley, as well as an inequality recently proved

by I. I. Hirschman(2).

Part I. Interpolation theorems

1. The "three-lines lemma." The following fact is basic to the proof of

the M. Riesz theorem as given in [3]:

Let$(z) be analytic in the strip 0 <R(z) < I, and suppose that $>(z) is bounded

there. Let Mt = sup-„<v<x \$(t+iy)\. Then log Mt is a convex function of t,

O^t^l.
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(2) Note added in proof. After the acceptance of this paper for publication, a special case of
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We shall need a generalization of the above fact due to I. I. Hirschman

[5], which he used in another connection involving "interpolation." We shall

use the following definition: A function <I?(z) analytic in the open strip

0<R(z) <1, and continuous in the closed strip, will be called of admissible

growth if

(1.1) sup    sup   log I 4>(x + iy) |   ^ AeaT, a < it.

Lemma of Hirschman. Let $(z) be analytic in the strip 0<R(z) <1, con-

tinuous in the closed strip, and of admissible growth there. Let

log I $(iy) I g a0(y),        log | 4>(1 + iy) |   ^ «i(y)

then:

/+SO /»  +00a,(l - t, y)ao(y)dy + I      o>(t, y)ax(y)dy
-«j " -00

where O^t^l, and

1/2 tan (rt/2)

~  [tan2 (ir//2) + tanh2 (*-y/2)] cosh2 (ry/2) '

The proof of this lemma may be found in [5, p. 210].

2. The interpolation theorem. Suppose that we are given two measure

spaces M and N, with measures dm and dn respectively. We shall be inter-

ested in a family of linear transformations Tz (depending on the complex

parameter z). We shall call such a family an analytic family of operators, if

it has the following properties:

(i) for each z, Tz is a linear transformation of "simple" functions(3) on M

to measurable functions on N.

(ii) If \p is a simple function on M, and c/> is a simple function on TV, then

Q(z)=-fTz(yp)(pdn is analytic in 0<i\(z)<l, and continuous in 0^i?(z)gl.

We shall also say that the analytic family Tz is of admissible growth, if

<t>(z) = fTz(\p)4>dn is of admissible growth in the sense of (1.1). Here, however,

the constants A and a in (1.1) may depend on ^ and c/>.

The following is the main result of this part.

Theorem 1. Let Tz be an analytic family of linear operators of admissible

growth defined in the strip 0^R(z) ^ 1. Suppose that 1 ipx, p2, Qx, q2^ °° , and

that l/p = (l-t)-l/px+t/p2, l/q = (l-t)-l/qx+t/q2, where O^t^l. Finally

suppose

(2.D \\Ti*(f)L = My)\\f\\PV

and

(3) A simple function takes on only a finite number of nonzero values on sets of finite

measure.
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(2-2) \\Ti+<v(f)\\qt^Ai(y)\\f\\P,

for any simple f. We also assume that:

(2.3) log \Ai(y)\   g^e-l'l, a < r for i - 0, 1.

Then we may conclude that

(2.4) l|r.(/)ll.£ii,||/||,
where

/+oo n +0O

to(l -/, y)log40(y)<*y +  I      «('. y)log^i(y)rfy.
-00 ^ -00

3. Proof of Theorem 1. Let yp and <j> be arbitrary simple functions on M

and Nrespectively, subject only to the restriction that ||^||p = l, and \\tp\\q- = 1.

Then it is sufficient to show that:

(3.1) f Tt(yp)4>dn   £ At.

Nowleta(z) = (1 -z)-l/pi+z/p2,B(z) = (1 -z) -l/qi+z/q2,alsoa = l/p,B= l/q,

and let

Fz =  | yp |°(2)/° sign (^) if cc ^ 0,

F, = ^ if a = 0,

also

G, ==  | ^ | d-fl(«))/o-ffl sign (^) if /3 ̂  1,

= <£ if /3 = 1.

Then certainly: Ft=yp, and Gt=<p. Finally let:

(3.2) -*(2) =   f Tz(Fz)Gzdn.

Then using the linear character of Z2(), and its analytic dependence on z,

it is an easy matter to verity that:

(i) $(z) is analytic in the strip 0<i?(z) <1 and continuous on the closed

strip.

(ii) 4>(z) is of admissible growth in the strip 0^i?(z) gl. Moreover,

|*(*»| s ||r4,(F*)||jGj1j

^ ^o(y)||i?,-»||P1||G,-„||,:

^ Ao(y),

since ||i\v|U = l. and HC-j/H/, = 1-
Similarly:
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| $(1 + iy)\  ^Ax(y).

Therefore, making use of Hirschman's lemma we get

«(1 - t, y) log A0(y)dy + «(/, y) log Ax(y)dy,
-00 •'   -00

that is,

(3.4) f Tt(tli)*dn\ &A,.

The proof of Theorem 1 is therefore complete.

4. A special case of Theorem 1. From Theorem 1 we may deduce the

following interpolation theorem. In this theorem we vary the measures on

our measure spaces together with the exponents of the Lebesgue classes.

Let kx, k2 be two non-negative measurable functions on TV. Also let U\, u2

be two non-negative measurable functions on M.

Theorem 2. Let T be a linear transformation defined on simple functions of

M to measurable functions on  N.  Suppose  l^pi, p2, qi, q2^co, and 1/p

= (l-t)-l/pi+tl/p2, l/q=(l-t)-l/qi+t/q2, where 0^tg,l. Suppose that

for simple /(4)

(4.1) \\(Tf)-kx\\qi^Mx\\f-Ux\\PV

and

(4.2) \\(Tf)-k2\\q2^M2\\f-u2\\Pi.

Let k = k\~'k2, u = u\~lu2. Then we may conclude that T may be uniquely ex-

tended to a linear transformation on functions f, for which \\f-u\\p<<x>, so that

(4.3) HTf)-k\\9£Mt\\f-u\\,

with Mt = M\-'-M'2.

5. Proof of Theorem 2. By (4.1) and (4.2) T has a unique extension to

functions/, where either ||/-Wi||P1< °°, or ||/-W2||j>,< °°.

Now let E be any measurable subset of M, on which «i^e, and M2^e

(e>0). Let T' be the linear operator defined on functions/on AT which vanish

outside E by T'(f) = T(f), whenever the right side has meaning.

Now let UI(f)=k\-%T'(fu\-1-u2~l).

Then it is an easy matter to verify that Uz(-) verifies the conditions of

Theorem 1, and that

(5.1) \\Uiy(f)\\qx^Mx\\f\\Pl   and   ||CW/)||ft £ Jf.||/||M

whenever/ is a simple function vanishing outside E.

(4) The right-hand sides of (4.1) or (4.2) may be infinite for some/.



486 K. M. STEIN [November

Applying Theorem 1, we obtain

(5.2) \\V*f)\\,* Mt\\f\\v, for simple/.

This is clearly equivalent to

(5.3) \\(Tf)-k\\q^Mt\\f-u\\p

whenever/ u is simple, and/ = 0 outside E.

By the arbitrariness of E, (5.3) holds whenever fu is simple, and

||/-w||p< oo. Finally, by a well-known argument, T has a unique extension,

to those/'s where ||/m||p< oo, and the proof is complete.

6. Remarks.

Remark 1. M. Riesz's theorem is of course contained in Theorem 1 in the

case that the family Tz(-) does not depend on z.

Remark 2. Theorem 2 was given in a special case by I. I. Hirschman [6,

p. 49]. For the proof of Theorem 2 the full strength of Hirschman's lemma

is not needed, but the classical three-line lemma would be enough.

Part II. Mean convergence below the critical index

7. Bochner-Riesz means for multiple Fourier integrals. Let En denote

the euclidean space of dimension m^2. Let x=(xit x2, ■ ■ ■ , xn), and £ = (£i,

£2, • • • , £») be representative points in £„. We denote, as usual, by dx the

element of M-dimensional euclidean measure. Let also xl- = Xit;i+x2!;2 • ■ ■

+*»£» and \x\ =(x\+x\ ■ • ■ xn)U2.

Letf(x)ELi(En), and let F(& = l/(2ir)n!2JEne-iz'if(x)dx. Finally let,

(7.1) S*(f)=   f       [l-(|£[/ic)2]V1'^)^.

(7.1) has the equivalent form

(7.2) Sa(f) =   f   Kr(x - u)f(u)du
J En

where (6)

(7.3) Kr(x) = csRnKS(R\ x\),

while:

= *££>
-5+n/2

and

(6) Formulae (7.1), (7.2) and (7.3) may be found in [2, pp. 176-177] for «>(»-l)/2.
If f(x) is simple, the formulae are meaningful for R(S) SiO, and are valid by analytic continua-

tion.
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d = 25-"'2+1r(S + l)/r(n/2).

We remark that if fEL2(En) then SsR(f), 5^0, is always defined and SsB(f)

EL2(En).

The index 8 = n = (n —1)/2 is called, after Bochner, the critical index. Our

aim is to prove the following theorem.

Theorem 3. Suppose that 1 <p<2, and that R is fixed, and that 8> [(2/p)

— 1 ]k. Then SR(f) may be uniquely extended to a bounded operator taking LP(E„)

into itself. Furthermore,

(7.4) l|s*(/)L^P.o!!/ll,

where Ap,s does not depend on R and f.

Remark 1. If we now assume that 2 <p < <*>, the conclusion of the theorem

holds with 8> [(2/p') — 1 ]k. This may be proved directly as in Theorem 3, or

may be deduced from Theorem 3 by noting that Sg(f) is formally "self-ad-

joint."

Remark 2. From Theorem 3 follows the following: Let/£LP(£„), 1 <p<2.

Then ^(/)—>/ in Lp mean as R—><», whenever 8> [(2/p) —l]/c. Remark 2

follows from Theorem 3 by the Banach-Steinhaus "uniform boundedness"

theorem [l, p. 79], and the fact that SsR(f)—>f in 7pmean whenever/is smooth

enough and vanishes outside a bounded set. An analogous statement holds if

2<p< <*>.

8. Proof of Theorem 3. For a fixed R, we shall consider the family of

operators S5R(f), depending on the parameter 5. Let us pick an €>0, keep it

fixed, and define

(8.1) Tz(f) = SR+'U(f).

We notice first that

(8.2) \\TiV(f)\U* 11/11 *•

In fact, (8.2) follows from the fact that Tiy(f) is affected by multiplying

the Fourier transform of/ by [l — (|£| /R)2}iU+t)y, which is bounded by 1 in

absolute value.

Next we notice that Tz(-) is an analytic family; it is of admissible growth

because

(8-3) IJ Tz(+)d>dy   £ ||*||,||0||,, R(z)^0,

by Plancherel's theorem.

All that remains to be done in order to apply Theorem 1 to the family

Tz() is to prove an estimate
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(8-4) \\Ti+iv(f)\U = My)\\fh
where the growth of At(y) is sufficiently restricted. However

Ti+iy(f) =  f  Kn<v(u)f(x - u)du.
J En

It is therefore sufficient to estimate

(8.5) f   \KTV(u)\du,
JBn

which by (7.3) is equal to

(8.6) |Cl| ■  f    | [7,<B)(p)]/p'C)|p»-^p
<I o

where we have set:

a(y) = (k + e)(l + iy) + n/2,

ci= {2'<«"-"+»r[<r(y) - (m/2) + l]}/r(n/2).

We now quote the following known estimate in the theory of Bessel func-

tions (6).

Lemma. If v and y are real, v> —1/2, and p ^ 1, then:

(8.8) \jy+iy(P)\   <A,e2*M/pUi

where A, does not depend on y and p.

Applying (8.8), we deduce that the integrand of (8.6) is bounded by

(8.9) [^.e2»(«+.)li/i]/pi+«

ifp = l.
While by Plancherel's theorem we clearly have

(8.10) C | J„Up)/p°w Iv-^p ^ A.
J 0

Applying (8.10) when 0^p<l, and  (8.9) when p^l, we get as an

estimate for (8.6) [and therefore for (8.4)] the following:

(8.11) A.(y) g (A/e)-eir<■+'»*<.

Let us remember that e was fixed, arbitrary, but «>0.

Because of (8.11)  the transformation  T,(f) satisfies the conditions of

Theorem 1 with pi = gi = 2, and p2 = q2 = l. The result of applying Theorem 1

is:

(6) The proof of the lemma may be found in [12, pp. 217—218].
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(8.12) l|r«(/)||p^^.||/l|p

where l/p = (l-t)-l/2+t, and Kp<2.

However

Tt(f) = S*+t)'(f), while e > 0,

but otherwise arbitrary. It is clear, therefore, that (8.12) contains exactly

the statement of the theorem.

9. Bochner-Riesz means for multiple Fourier series. Let 7„ denote the

fundamental cube in E„, i.e. the set of xEEn so that — r^xt^r. If N

= (Nx, ■ • ■ , N„) denotes an integral component vector we shall denote by

N-x = NxXx-\- ■ ■ • -\-NnXn. As in the case of Fourier integrals we define

(9.1) Sa(f) =    Y   a*r[l -(J tf |/*)']•«"■*
|iV|SR

where

aN = 1/(2tt)"'2 f e-m-f(x)dx.
Jin

Then the following theorem holds.

Theorem 4.

\\s's(f)\\P ̂  ^,.,||/||,

whenever 8 > [(2/p) -1 ]k, ifl<p<2,or8> [(2/p') -1 ]k, if 2 <p < oo. [Again

K = (ra —1)/2.] AP,i is independent of f and R. Moreover. Sg(f)—*f in Lp mean,

whenever fELv, and the above conditions on 8 are satisfied.

The proof of Theorem 4 is exactly the same as the proof of Theorem 3.

Part III. Pitt's theorem for orthonormal systems

10. Pitt's theorem and its generalization. Let/(x) be defined on (— r, -\-r)

and f(x)ELx(— r, -fir); let

0n =   I      f(x)e~inxdx.

Pitt has proved the following [7]:

Theorem.

[n—h» -\1I<1 r    n +*■ ~\1Ip

Y   \an\"(\n\  + l)-»«        - A\ J      \f(*)\p\*\"pd*\

whenever 0^a<l/p', q^p, and, ~K = l/q + l/p — 1+cxgO.

The following special cases are noteworthy:



490 E. M. STEIN [November

(i) when a = X = 0. Then q=p', and we have the inequality of Hausdorff-

Young.

(ii) when q = p and a = 0. Then we have the inequality of Hardy and Little-

wood; similarly for q = p and X = 0.

Our aim is to prove the following:

Theorem 5. Let {<pn(x)} be an orthonormal system, taken over the interval

(0, h) with standard Lebesgue measure. Assume \<j>n(x)\ ̂ M. For any f(x)

ELi(0, h), set Cn= fof(x)<bn(x)dx. Then

[°° "l1'*      r /* * ~\iip
Y \cn\"n-^\     ^M   j     |/(x)|v*

whenever 0^a<l/p', q^p, and X = l/q + l/p — l+a^0. A depends only on

M, p, q, X, and a.

Remark. The special case when q = p and a = 0 is of course a well-known

result of R. E. A. C. Paley; similarly when q = p and X = 0(7). The case when

q=p = 2 has recently been obtained by I. I. Hirschman [4]. We shall make

use of Paley's results in proving Theorem 5.

We may strengthen (10.1) by increasing the left-hand side, and decreasing

the right-hand side in the following familiar manner:

We first rearrange the index of the system {<p„(:x:)} so that } |c»| } be-

comes a nonincreasing set. Next we subject the interval (0, h) to a measure

preserving transformation so that \f(x) \ becomes nonincreasing.

In this manner our orthonormal system {</>„(*)} becomes transformed

into another orthonormal system (0„(x)} and f(x) into another function

f(x). Applying Theorem 5 to {0n(x)} and/(x) we get

Corollary. If c* denotes a nonincreasing rearrangement of \cn\, andf*(x)

denotes the function equimeasurable with |/0*0| and nonincreasing, then using

the notation of Theorem 5, we have:

[oo -ll/, l-     ~h -|l/p

Y(cn)"n-^\      =M\     \j*(x)]vx-*dx\

where 0£a<l/p', q^p and\ = l/q + l/p-l+a^O.

Remark. We should point out that both (10.2) and (10.1) have analogues

when the roles of f(x) and c„ are interchanged. The proofs of these analogous

statements are completely parallel with the proofs of (10.1) and (10.2)

proper.

11. Proof of Theorem 5. In order to simplify the argument we shall break

up the proof into several special cases. This piecemeal approach will also

indicate the more interesting special cases involved. In what follows, expres-

(7) For proof? of 1'aley's theorems, see [13, pp. 202-207].
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sions like Ap will denote general constants depending only on the parameters

indicated.

Basic to the proof are the following two inequalities of Paley.

(11.1) (Y   \cn\rn*-2\     =»r(f    \f(x)\*dx\    , l<r^2,

and

(\i/«       / rh V*
E|c.|*)        =A\\        I /(*) |**-'<**)       . 2gS<».

Case 1, p = q = 2. Choose r and s, so that l/r + l/s = l, and (2—r)/2r=a,

where 0^a<l/2. Now apply Theorem 2 to the case where qx = px = r,

q2 = p2 = s, kx = n<-r-2)lT, k2 = l, ux = l, u2=xt-"~2)i\ and f = 1/2. The result is

(oo \l/2 /     n h \l/2

Y\cn\2n-2"\      ^Aal   J     \f(x)\2x2"dx\     ,   0 g a < 1/2.

Case 2, Kp=q^2. Rewrite (11.3) as

(\l/2 /    Ch V'2

Y I cn\hi-^\     ^j( \f(x) \2x^dx\    ,        0 ^ 0 < 1/2.

Suppose p, a, and X are given, with 1 <p5S2, a<l/p', and X = 2/p —1+a

^0.
Choose l/r = (l/p)+a, /3= (l/p)+a-l/2, and /=a/(l/p+a-l/2).

Then since (2/p)-1+a ^0, we have Og/3<l/2, and 0^/^l. Now inter-

polate between (11.1) and (11.4). The result is

Z|c„|"ra-XM       ^,,      I      |/(x)|*x»"rf*j

for Kp^2, a<l/p', and X = (2/p) -l+a^0.

Case 3, 2^p = q< <x. The argument is exactly parallel with that of Case

2, except we make use of (11.2) instead of (11.1).

Case 4, q = p', 1 ̂ p=S2. Here we make use of the inequality

(11.6) |c„|   ^ M |     \f\dx.
Jo

Choose t, so that l/p = (l—t)+t/2 and fit = a. Now interpolate between

(11.6) and (11.4). The result is

(°° \i/p' /  /• * \i/j>
Z I cn | "'«-«">' J       ̂  A „,a I J     | /(*) | *xa*dx \

where lgp^2, Oga<l/p'.
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Case 5, 1 <p^2. Rewrite (11.5) as follows

/ \Hp / Ch \I/r

(n.8)        [ Y |c»lp»-*"j   =j4"'»(J   l/(*)!p*o^*j

with   Kp-^2,  0^a<l/p',   p = (2/p)-l+a^0.   Choose   t,   so   that   l/q

= (l—t)-l/p'+t/p and interpolate between (11.7) and (11.8). The result is

/ \i/« /  /•/■ \i/p

(11.9) lY\cn\"n-^J     SAp,qA\     \f(x)\'x"dx\

with Kp^2, q^p, 0^a<l/p', and X = (1/p) +(l/q) -1+a^O.
Case 6, 2 ^p < °o. The proof is exactly parallel to that of Case 5, except

that instead of (11.7) we use

(\l/« /    fh \l/„'

Z|c»|%-XaJ      =^«.x(J     |/(*)|«V«'d*J

which is allowable since o^2.

Cases 5 and 6 together contain the full statement of Theorem 5.
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