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An abstract ring in which all finitely generated ideals are principal will be

called an F-ring. Let C(X) denote the ring of all continuous real-valued func-

tions defined on a completely regular (Hausdorff) space X. This paper is

devoted to an investigation of those spaces X for which C(X) is an F-ring.

In any such study, one of the problems that arises naturally is to deter-

mine the algebraic properties and implications that result from the fact that

the given ring is a ring of functions. Investigation of this problem leads

directly to two others: to determine how specified algebraic conditions on the

ring are reflected in topological properties of the space, and, conversely, how

specified topological conditions on the space are reflected in algebraic prop-

erties of the ring.

Our study is motivated in part by some purely algebraic questions con-

cerning an arbitrary F-ring S—in particular, by some problems involving

matrices over S. Continual application will be made of the results obtained

in the preceding paper [4]. This paper will be referred to throughout the

sequel as GH.
We wish to thank the referee for the extreme care with which he read

both this and the preceding paper, and for making a number of valuable sug-

gestions.

The outline of our present paper is as follows. In §1, we collect some pre-

liminary definitions and results. §2 inaugurates the study of F-rings and

F-spaces (i.e., those spaces X for which C(X) is an F-ring).

The space of reals is not an F-space; in fact, a metric space is an F-space

if and only if it is discrete. On the other hand, if X is any locally compact,

cr-compact space (e.g., the reals), then /3X—X is an F-space. Examples of

necessary and sufficient conditions for an arbitrary completely regular space

to be an F-space are:

(i) for every fdC(X), there exists kdC(X) such that/ = &|/| ; (ii) for

every maximal ideal M of C(X), the intersection of all the prime ideals of

C(X) contained in M is a prime ideal.

In §§3 and 4, we study Hermite rings and elementary divisor rings(2).
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A necessary and sufficient condition that C(X) be an Hermite ring is that

for all/, gCC(X), there exist k, ICC(X) such that/ = jfe|/|, g = l\g\, and
(*,/) = (l).

We also construct an F-ring that is not an Hermite ring, and an Hermite

ring that is not an elementary divisor ring. To produce these examples, we

translate the algebraic conditions on C(X) into topological conditions on X,

as indicated above. The construction of a ring having one algebraic property

but not the other is then accomplished by finding a space that has the

topological properties corresponding to the one, but not to the other.

In §§5 and 6, we investigate some further special classes of F-rings, in-

cluding regular rings and adequate rings(2). Appendices (§§7 and 8) touch

upon various related questions. A diagram is included to show the implica-

tions that exist among the principal classes of spaces that have been con-

sidered.

1. Preliminary remarks. Every topological space X considered herein is

assumed to be a completely regular (Hausdorff) space(3). To avoid trivialities,

we shall suppose that X contains at least two points. For every subset A of

X, the closure of A (in X) is denoted by A.

The ring of all continuous real-valued functions on X is denoted by

C(X), the subring of all bounded functions in C(X) by C*(X).

Definition 1.1. Let fCC(X); we define:

Z(f) = {xCX:f(x) =0};

P(f) = {xCX:f(x)>0};

N(f) = {xCX:f(x) <0}.

The set Z(f) is called the zero-set of/, and is, of course, closed, while each

of the sets P(f), N(f) is open.

Evidently, fCC(X) is a unit of C(X) if and only if Z(f)=0. (This is
not always the case, however, for/GC*(X).) Hence for/, gCC(X), we have

(/. S) = (l) if and only if Z(f)C\Z(g) = 0 (as usual, (/i, • • • ,/n) denotes the ideal
generated by/i, • • • ,/„).

An ideal 7 of C(X) is called free or fixed according as the set 0/^rZ(f) is

empty or nonempty.

Every completely regular space X can be imbedded in a compact space

fiX, called the Stone-Cech compactification of X, and characterized by the

following three properties [15; 2]: (a) fiX is compact, (b) X is (homeomorphic

with) a dense subspace of fiX, and (c) every function in C*(X) has a (unique)

continuous extension over all of fiX. By (c), C*(X) is isomorphic with

C(fiX)( = C*(fiX)).
In discussions involving both a space X and its Stone-Cech compactifica-

(') For references in topology, see [l; 10]; for algebra, see [l 1; 18]. For general background

in rings of functions, see [8].
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tion BX (with Xt^BX), we shall use the symbol A0 to denote the closure in

BX of any subset A of BX (reserving A to denote the closure in X of a subset

A of X).

Lemma 1.2 (Gelfand-Kolmogoroff) . A subset M of C(X) is a maximal

ideal of C(X) if and only if there is a unique point p dBX such that M coincides

with the set

Mp= [fdC(X):pdZ(f)'}.

For a proof of this result, see [5, Theorem 1 ]. It is clear that the maximal

ideal Mp is fixed or free according as pdX or pdBX—X.

Definition 1.3. Let p be any point of BX. The set of all fdC(X) for
which there exists a neighborhood fi of p such that ftflf^X) =0 is easily seen

to constitute an ideal of C(X); we denote this ideal by N". When pdX,

and when this fact deserves emphasis, we write Np in place of Np.

Theorem 1.4. Let X be a completely regular space, and let Mp be any

maximal ideal of C(X) (Lemma 1.2). Then the intersection of all the prime

ideals of C(X) that are contained in Mp is precisely the ideal Np.

Proof. Clearly, Z(f") = Z(f) for every fd C(X) and every positive integer

w. Hence if fdNp, then f"dNp, whence by Zorn's lemma, there is a prime

ideal containing Np but not/ (cf. [ll, p. 105]). Therefore Np is the inter-

section of all the prime ideals that contain it; and by [3, Lemma 3.2 and Theo-

rem 3.3 ff. ], these are precisely the prime ideals that are contained in Mp.

We close this section with several easy lemmas that will be found useful.

Lemma 1.5. Let X be any completely regular space. Then to every fdC(X),

there correspond/*, fodC(X), such that

(i)  \f*(x) | ^ 1 for all xdX, andf*(x) =f(x) wherever \f(x) | ^ 1,
(ii) /o is everywhere positive, and

(iii) /=/*/o—whence f* = (lIfo)f, so that f and f* belong to the same ideals

of C(X).

Proof. Define f*(x) =f(x) if |/(*)| gl, f*(x)= 1 if f(x) >1, /*(*) = -1 if

/(*)<-l,-/i(x)-l if |/W| £1, and/„(*) = !/(*)| if |/(*)| >1.

Lemma 1.6. Let X be any completely regular space, consider any function

(pdC(BX), and letf denote the restriction of <j> to X. Then P(fY = P(fY = P((f>Y
(andN(f)f> = N(fy = N((p)»).

Proof. Since P(f)dP(<P), we have P(f)dP(f)edP((pY. Hence P(fY
dP((pY- Conversely, let pdP(4>Y- Then every neighborhood (in BX) of p
meets P((p)f~\X (since P((p) is open, and X is dense in BX), hence contains

points of P(f). Therefore P(4>YdP(fYdP(fY-
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Lemma 1.7. Let Y be a subspace of a completely regular space X such that

every element of C( Y) has a continuous extension to X. Then C( Y) is a homo-

morphic image of C(X).

Proof. The mapping that takes every element of C(X) to its restriction

to F is obviously a homomorphism of C(X) into C(Y). The postulated ex-

tension property implies that this homomorphism is onto.

The Tietze-Urysohn extension theorem shows that, in particular, the

hypothesis of the lemma is fulfilled in case F is compact, or in case X is

normal and F is closed. (For then F is a closed subset of the normal space fiX

resp. X.)

Lemma 1.8. If a real-valued function is continuous on each of a finite number

of closed subsets of a topological space, then it is continuous on their union.

The proof of this well-known lemma is straightforward.

2. Rings in which every finitely generated ideal is principal.

Definition 2.1. A commutative ring S with identity is called an F-ring

ii every finitely generated ideal of 5 is a principal ideal. A completely regular

space X such that C(X) is an F-ring is called an F-space(A).

In this section, we obtain several characterizations of F-spaces (Theorems

2.3, 2.5 and 2.6), and we construct some examples of these spaces.

It is not hard to see that every discrete space is an F-space.

Obviously, every homomorphic image of an F-ring is an F-ring. Hence,

using Lemma 1.7, we have:

Theorem 2.2. Let Y be a subspace of an F-space X such that every element

of C( Y) has a continuous extension to X. Then Y is also an F-space.

Two subsets A, B of a space X are said to be completely separated if there

is a function kCC(X) such that k(A)=0 and k(B) = 1 (whence also A, B

are completely separated). Cech [2] showed that completely separated sub-

sets of X have disjoint closures in fiX. Urysohn's classical theorem states

that any two disjoint closed subsets of a normal space are completely sepa-

rated.

Our next theorem, and others later, involve the function |/|. This func-

tion has the following algebraic significance: |/| is the unique element g

such that g2=f2, and g+u2 is a unit for every unit u (uniqueness follows

from the fact that any such g must be non-negative).

Theorem 2.3. For every completely regular space X, the following statements

are equivalent.

(a) X is an F-space, i.e., every finitely generated ideal of the ring C(X) is a

principal ideal.

(4) Our terminology seems convenient, even though some of our terms are used elsewhere

with different meanings.
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(a*) fiX is an F-space, i.e., every finitely generated ideal of the ring C(fiX)

(or C*(X)) is a principal ideal.

(b) For all f, gCC(X), the ideal (f, g) is the principal ideal (|/| +1 g\).
(c) For allfCC(X), the sets P(f), N(f) (or P(f), N(f)) are completely sepa-

rated.

(d) For allfCC(X),fis a multiple of \f\, i.e.,f = k\f\ for some kCC(X)
(whence \f\ =kf).

(e) For allfCC(X), the ideal (/, |/|) is principal.

Proof. We first outline the proof, which is somewhat involved. We divide

it into three parts.

In I, we establish the cycle of implications (c)—>(d)—»(e)—»(c). (Inciden-

tally, these implications are "local," i.e., they hold for any one function/.)

In the course of the remainder of the proof, we shall also have to deal

with the following auxiliary propositions, concerning the space fiX.

(b*) For all 0, ipCC(fiX) (or C*(X)), the ideal (0,0) is the principal ideal

(kl+l-r-l).
(c*) For all (pCC(fiX), the sets P(0), N(<f>) are completely separated.

(d*) For all <pCC(fiX), 0 is a multiple of |0|.
Applying I to the space fiX, we obtain the result that (c*) implies (d*).

In II, we establish the chain of implications (b*)—>(b)—>(a)—>(c)—>(c*).

Applying this to the space fiX, we obtain the chain (b*)—>(a*)—>(c*). (The

parenthetical remarks in the statements (a*) and (b*) are justified by the

fact that C(fiX) and C*(X) are isomorphic.)
Finally, in III, we establish the implication (c*)—»(b*). This completes

the two chains of II into cycles. On now combining all our results, we obtain

the theorem.
I. (c) implies (d). By hypothesis, there is a function kCC(X) that is 1

everywhere on P(f), and —1 on N(f). Hence/ = &|/|. (Likewise, (d) implies

(c).)
(d) implies (e). Trivial.
(e) implies (c). By hypothesis, there is a dCC(X) such that (/, |/|) = (d).

Write f = gd, |/| =hd, and d = sf+t\f\. Then d = (sg+th)d. Therefore, since d

has no zeros on P(f)VJN(f), we have sg+th = l thereon. Next, g = h on P(f),

and g= — h on N(f). Hence if we put

ai = sg + tg, a2 = sh + th,

bi = sg — tg, 02 = - sk + th,

then we have

aia2 = 1 on P(f), aia2 ^ 0 on N(J),

hb2 ̂  0 on P(f),        hh = 1 on N(f).
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Define

k = max {aia2, 0} — max {bibt, 0};

then ife=lon P(f) and k = -1 on N(f). Therefore the setsP(f), N(f) are com-

pletely separated.

II. (b*) implies (b). Consider any/, gdC(X). By Lemma 1.5, there exist

/*, g*dC*(X), and everywhere positive functions/o, godC(X), such that

f=f*f°,g = g*go- By hypothesis, the ideal (/*, g*)—or (|/*|, |g*|)— of C*(X),
is generated by the element |/*| +|g*| of C*(X). Evidently, the ideal (f, g)

oi C(X) is generated by this same element (dC(X)). To show that this

ideal is generated by the element |/| + \g\, it suffices to show that the ele-

ments |/|+|g|, |/*|+|g*| are multiples of one another (in C(X)). Let

mdC*(X) satisfy |/*| =w(|/*| +|g*| )• We may certainly suppose that

O^w^l everywhere. Then the element u=fom+go(l— m) is everywhere

positive, hence is a unit of C(X). The observation that |/| +|g| =w(|/*|

+ |g*|) now completes the proof.

(b) implies (a). Trivial.

(a) implies (c). Trivially, (a) implies (e), and from I, (e) implies (c).

(c) implies (c*). Consider any function4>dC(8X). Let/denote its restric-

tion to X. By hypothesis, the sets P(f), N(f) are completely separated. Now

as remarked before, completely separated subsets of X have completely

separated closures in BX. Hence, by Lemma 1.6, the sets P((pY, N(cpY are

completely separated, q.e.d.

III. (c*) implies (b*). Consider any two functions <p, \pdC(BX); we are

to show that (<p, ̂) = (| <p | +1 \p \). Now as previously observed, our hypothesis

(c*) implies the condition (d*). From this latter, it is clear that (<p, \p) = (|<p|,

|^|). We may accordingly assume throughout the remainder of the proof

that both cp and \p are non-negative.

Define d=(f>+\f/. Then c?G(</>, ̂), so (8)d(<j>, $)• It remains, then, to show

that (0)D(cp, yp). To this end, it suffices to construct a (f>xdC(BX) such that

<p=<pi0 (for then \p=(l-(px)8). Since cp^O and ^0, we have 0j=O, and

8(x) =0 if and only if (f>(x) =\p(x) =0.

Define

(1) (t>i = —   on   P(8).
8

Then cpi is continuous on P(8). We shall first extend cp, to all of P(6Y.

Consider any fixed pdP(9)B—P(ff). Then 8(p) =0. For every real r, define

a function prdC(8X) by:

(2) Pr(x) = (p(x) - r8(x).

Obviously, if r>s, thenpr(x)^p,(x) for every xdBX (since 8(x) ^0). Further-

more, pr(p) =0 for every real r.
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For all xCPX, we have po(x) =<p(x) ^0; and for all xCP(0), and every

real e>0, we have pi+,(x) ^ —e0(x) <0. Therefore, since every neighborhood

of p meets P(0), we may put

(3)    <f>i(p) = sup {r: i*T(x) ̂  0 throughout some neighborhood of p}

(P C P(0Y - P(0)).

The function 0i is now defined on all of P(0)&.

To establish continuity of 0i on P(0Y, it suffices to establish its continuity

at any point pCP(0)"-P(0)- Write a =<j>i(p). By (3), for every r>a, and for

every neighborhood U of p, there is an xC U such that pr(x) <0. Since the

hypothesis (c*) applies to the function prCC(fiX), the sets P(pr)0, N(pr)& are

disjoint. Consequently, since pr(p) =0, there is a neighborhood V of p such

that pr(x) ^0 for all xCV.

On the other hand, by (3), for every s<a, there is a neighborhood IF of

p such that p,(x) S^O for all xCW. Thus, for every «>0, there is a neighbor-

hood U of p such that

pa+t(x) ^ 0^ pa-,(x) for all x C U.

With the substitution (2), this reads:

<p(x) - (a + t)0(x) ^ 0 g <p(x) - (a - e)0(x)     for all x C U.

Ii we further restrict x to lie in P(0), then, on applying (1), this last reduces

to:

I 0i(/>) ~ <t>i(x) I = e for all x C U H P(0).

From this, it follows further that |0i(p) -0i(a)| g2e for all qCU-P(0). We

now conclude that 0i is continuous on P(0)fi. Obviously, 0=0i0 thereon.

Finally, since fiX is normal and P(0Y is closed, 0i can be extended con-

tinuously over all of fiX. Since 0 ̂ 0, we have fiX-P(0YCZ(0) CZ(<p). There-
fore 0 =0i0 everywhere on fiX. This completes the proof of the theorem.

Corollary 2.4. ^4«y point of an F-space at which the first axiom of counta-

bility holds is an isolated point.

Proof. If the first axiom of countability holds at a nonisolated point y

of a space X, there is a denumerable subspace F= {yi, y2, • • • , y} of X in

which y is the only limit point. DefinefCC(Y) by:/(y„) = ( — l)"/n,f(y) =0.
Then yCP(f)r\N(f). Therefore Fis not an F-space. But Fis compact. Hence,

by Theorem 2.2 (see the remarks following Lemma 1.7), X is not an F-space.

In particular, a metric space is an F-space if and only if it is discrete.

Theorem 2.5. A completely regular space X is an F-space if and only if,

for every maximal ideal M of C(X), the intersection of all the prime ideals con-

tained in M is a prime ideal—in other words, if and only if, for every point
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pdBX, the ideal Np of C(X) (Definition 1.3) is a prime ideal.

The equivalence of the two formulations is a consequence of Theorem 1.4.

Proof. Obviously, an ideal 7 of C(X) is prime if and only if I(~\C*(X) is a

prime ideal of C*(X) (Lemma 1.5). Accordingly, in view of Theorem 2.3

(a, a*), there is no loss of generality in supposing that the space X is compact.

Assume, first, that X is not an F-space. Then there exists an fdC(X)

such that the sets P(f), N(f) are not completely separated (Theorem 2.3(a, c)).

Since X is normal, this means that the two sets are not disjoint. There ac-

cordingly exists a point pdZ(f) such that/ changes sign on every neighbor-

hood of p. Define g = max {/, 0}, h = min {/, 0}. Then gdNp and hd^p,
while gh = 0dNp. Therefore the ideal Np is not prime.

Conversely, suppose that there is a point pdX for which the ideal Np is

not prime. Then there exist g, hdC(X), and a neighborhood U of p, such

that gh vanishes identically on U, while neither g nor h vanishes identically

on any neighborhood of p. Hence if V is any neighborhood of p that is con-

tained in U, there must exist x, ydV such that g(x)^0, h(y)?*0. But then

h(x) =g(y) =0. The function/= |g\ — \h\(dC(X)) therefore changes sign on

V. Thus the sets P(f), N(f) are not disjoint (hence not completely separated).

Therefore X is not an F-space (Theorem 2.3(a, c)).

Theorem 2.6. A completely regular space X is an F-space if and only if,

for every zero-set Z of X, every function 8 dC*(X — Z) has a continuous extension

hdC*(X).

Proof. Suppose that the extension property holds, and consider any func-

tion/in C(X). Define8dC*(X-Z(f)) as follows: 8(P(f)) =l,8(N(f)) =0. The
continuous extension of 6 over all of X separates P(f) from N(f). Hence X is

an F-space (Theorem 2.3(a, c)).

Conversely, let X be an F-space, and consider any zero-set Z of X. Say

Z = Z(/) (/GC(X)).SinceZ(|/|) =Z(f), we may assume that/ is non-negative.

First, let 8 be any non-negative function in C*(X — Z). Define g on X as fol-

lows : g =f9 onX—Z, g(Z) = 0. Since8 is bounded, g is continuous, i.e., gGC(X).

Since both / and g are non-negative, we have (/, g) = (f+g) (Theorem 2.3

(a, b)). LetfidC(X) satisfy f=fi(f+g). Since f+g =/(l +8) on X-Z, we
have/i = 1/(1+0) thereon. Since 0 is bounded (on X — Z),fi is bounded away

from zero on X—Z; say/i(x)^5>0 for all xdX — Z. Then the function

/2 = max {/i, 5} coincides with/i on X — Z, and is bounded away from zero

everywhere on X. The function h = (l/f2) —1 is then a continuous extension

of 0 over X. In the general case, with 0 an arbitrary element of C*(X—Z), we

define 0i = max {0,0} and0s=— min {0, 0}. Then 0,-has a continuous exten-

sion hi over X, as just described, whence hi — ht is a continuous extension of

0 over X, as required.

As a corollary, we observe that if Z is any zero-set of an F-space X, then
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X — Z is also an F-space. For C*(X) is an F-ring (Theorem 2.3(a, a*)); and

the extension property of Theorem 2.6 implies that C*(X — Z) is a homo-

morphic image of C*(X). Hence C*(X — Z) is also an F-ring, whence, by

Theorem 2.3 again, X — Z is an F-space. (Cf. Theorem 2.2.)

We now introduce an extensive class of F-spaces. Here (and later) we

shall make use of the well-known fact (which can be established without

difficulty [10, p. 163]) that a (Hausdorff) space X is locally compact(5) if

and only if X is open in fiX.

Theorem 2.7. For every locally compact, a-compact(6) space X, fiX — X is

a compact F-space.

Proof. Since X is locally compact, fiX — X is closed in the compact space

fiX, and is therefore compact. Since X is a-compact, fiX — X is a closed Gs in

the normal space fiX; therefore fiX — X is a zero-set of fiX (see [2])—say

fiX-X = Z(r)(TCC(fiX)). We may suppose that 0^r(p) gl for all pCfiX.
Let t denote the restriction of r to X. Then / vanishes nowhere, so s = l/t is

in C(X).
Define Sn = {xCX: n^s(x) gw + 1} (« = 1, 2, • ■ ■ ). We notice that each

Sn is compact: for since r vanishes precisely on fiX — X, Sn is the closed subset

T_1([!/(« + !). !/«]) of the compact space fiX. Evidently, U„ S„=X.

Consider any function FCC(fiX — X); we are to show that the sets P(F),

N(F) are completely separated (Theorem 2.3(a, c)). Let 0 denote any con-

tinuous extension of F over all of fiX, and denote the restriction of 0 to X by

/. For each w = l, 2, • • • , define a function enCC(X) as follows:

' 1/re if f(x) ^ 1/re,

(4) en(x) = ■ f(x) if  |/(*)| g 1/re,

. -1/re if f(x) g - 1/re;

and define e according to:

e(x) = (re + 1 — s(x))en(x) + (s(x) — n)en+i(x) (x G Sn)

(re = l, 2, • • • ). One may easily verify, with the aid of Lemma 1.8, that e is

continuous everywhere on X. Since |c„(x)| gl/re on Sn, we see that \e(x)\

g 1/re on Sn. Thus eCC*(X). We also have:

0 < en+i(x) g e(x) g e»(x)    on    Sn f| P(J),

(5) ■ 0 = en+i(x) = e(x) = en(x)    on   Sn f) z(f),

0 > e„+t(x) ^ e(x) ^ en(x)    on   Sn f) N(f).

We shall show first that the continuous extension e of e over all of fiX

(6) Every locally compact (Hausdorff) space is completely regular.

(() A space is a-compact if it is expressible as the union of denumerably many compact

spaces.
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vanishes everywhere on BX — X. Indeed, let p be any point of BX — X, and

let w be any positive integer. There is a neighborhood £2„ (in BX) of p that

misses the closed set U£_i Sk. Since \e(x)\ =T/w only on this set, we have

\e(x)\ <l/w on £lnr\X. It follows that we must have e(p) =0.

Now define/'=/—e, and denote the continuous extension of/' over all

of BX by cp'. Since X is dense in BX, the given functional relation is pre-

served in the extension, that is, we have <p'=cp — e. Since e vanishes every-

where on 8X—X, <p' coincides with cp thereon; thus cp' coincides on BX — X

with the originally given function FdC(BX-X).

We now show that the sets P(f'), N(f') are completely separated. This

will complete the proof. For then, by the theorem of Cech quoted at the be-

ginning of this section, their closures in BX are completely separated. Thus,

by Lemma 1.6, the sets P(cp')", N((p'Y are completely separated. Hence, a

fortiori, so are the sets P(F), N(F), q.e.d.

Write kn=nen (w = l, 2, • • • ), and define k by

k(x) = (w + 1 — s(x))kn+i(x) + (s(x) — n)kn+2(x) (x d S„)

(w = l, 2, • • • ). One may easily verify, with the aid of Lemma 1.8, that k is

continuous on all of X. Now let x be any point of P(f'). Then f(x) >e(x).

Let m be such that xdSm. By (5), either f(x)>em+i(x) or f(x)>em(x).

Now by (4), for any w, f(x)>en(x) implies that f(x)> 1/w. Hence, in either

of the preceding cases, we find that/(x)>l/(wz + l). Thus, again by (4), we

have em+i(x) = l/(m + l), and em+2(x) = l/(m+2). Therefore km+x(x) =km+2(x)

= 1. Hence k(x) = 1. Thus i=lon P(f'). Similarly, k = -1 on N(f'). There-
fore k separates these two sets, as required.

We have observed that every discrete space is an F-space. Now, with the

help of the preceding theorem, we can construct a connected F-space.

Example 2.8. A compact connected F-space. Let R+ denote the space of

non-negative reals. By the preceding theorem, /3i?+ — R+ is a compact F-space.

We shall show that it is connected. Suppose the contrary, and let FdC(8R+

— R+) assume each of the values 0 and 1, but no other values. Let <p denote

any continuous extension of Trover all of 8R+- Then c/> assumes values arbi-

trarily near to 0, and values arbitrarily near to 1, at arbitrarily large xG7^+.

Since R+ is connected, <p assumes the value 1/2 at arbitrarily large xG7^+.

Therefore (p(p) =1/2 for at least one pdBR+~R+, a contradiction.

3. Hermite rings and T-spaces. A completely regular space X is called

a T-space if the ring C(X) is an Hermite ring (for definition, see GH, Theo-

rem 2). Hence every T-space is an F-space (GH, Theorem 2 ff.). In this sec-

tion, we obtain necessary and sufficient conditions that a space be a T-space,

we construct a connected T-space, and we present an example of an F-space

that is not a T-space. This last yields the algebraic result that the condition

that all finitely generated ideals be principal is not sufficient to insure that a com-
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mutative ring with identity be an Hermite ring. While this result is not surpris-

ing, it is new as far as we know.

Clearly, every homomorphic image of an Hermite ring is an Hermite

ring. Hence, using Lemma 1.7, we have:

Theorem 3.1. Let Y be a subspace of a T'-space X such that every element

of C( Y) has a continuous extension to X. Then Y is also a T-space.

The main theorem on T-spaces is:

Theorem 3.2. For every completely regular space X, the following statements

are equivalent.

(a) X is a T-space (C(X) is an Hermite ring), i.e., for allf, gCC(X), there

exist fi, gi, hCC(X) such thatf=fih, g=gih, and (ft, gi) = (1) (see GH, Theorem

3).
(a*) fiX is a T-space (C*(X) is an Hermite ring).

(b) For all f, gCC(X), there exist k, ICC(X) such that f = k\f\ , g = ̂ |g|,
arecZ (k,l) = (l).

Proof. We establish the cycle of implications (a*)—>(a)—>(b)—*(a*).

(a*) implies (a). Note first that the parenthetical statement in (a*) is

justified by the fact that C(fiX) and C*(X) are isomorphic.

Consider any/, gCC(X). By Lemma 1.5, there exist/*, g*CC*(X), and

units fo, go of C(X), such that/=/*/o and g=g*go- By hypothesis, there exist

/', g', h, s', t'CC*(X) such that f*=f'h, g*=g'h, and s'f' + t'g' = l. Define

/i=/'/o, gi=g'go, s = s'/f0, t = t'/go. Then f=fih, g=gih, and sfi + tgx = l, as

required.

(a) implies (b). Consider any/, gCC(X). Since X is a T-space, it is an

F-space; therefore (/, g) = (|/| +|g|) (Theorem 2.3(a, b)). Let/i, gi, h be as

in (a); in virtue of GH, Lemma 4, we may suppose that A=|/| +|g|- In

particular, then, h^O, so we have P(f)CP(fi), and N(f)CN(ft). Moreover,

|/i(*)| =1 wherever/(x) f^O, so by Lemma 1.5, we may assume that |/i(x)|

g 1 everywhere.

The sets P(fi), N(fi) are completely separated (Theorem 2.3(a, c)); let

sCC(X) be such that s(P(fi)) = l, s(N(fi))=0. Let mCC(X) satisfy/ = w|/|

(Theorem 2.3(a, d)). Now define

k = s max {m,fi} + (1 — s) min {m,fi}.

Then kCC(X),f = k\f\, and Z(k)CZ(fi). Similarly, define ICC(X) such that
g = /|g| and Z(l)CZ(gi). Since Z(/,)P\Z(gi) =0, we have Z(k)C\Z(l) = 0.

(b) implies (a*). Given 0, iPCC(fiX), we are to find 0i, \pu 0CC(fiX) such
that 0=0it7, 0=0i0, and (0i, 00 = (1). Let/, g denote the restrictions of 0, 0,

resp., to X. We shall find/i, gi, hCC*(X) as in (a), and, in addition, such

that |/i|+|gi| is bounded away from zero; their continuous extensions

0i, 0i, 0 to fiX will then be as required.
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Let k, /be as in (b). By (b) again, there exists, tdC(X) such that& = s|&|,

l = t\ l\, and (s, t) = (1). We may evidently suppose that s and t are bounded.

Clearly, f=s\f\, g = t\g\.
Next, let A=|/|+|g|. Then there is an f'dC(X) such that |/| =f'h

(Theorem 2.3(b, d)). We may assume that/' is bounded. Now define

»=   I    ■'     |f|(l- \t\+2\t\f).
1*1 + Ml

Then |/| =uh. To see this, note that |s| =1 where f^O, \t\ =1 where g^O,

/' = 0 where/=0 but g^O, and/' = l where g = 0 but/?^0. With these sub-

stitutions, we find that u=f wherever h7*0. It follows that |/| =uh every-

where.

Observe, further, that w=0 where s = 0, that m = 1 where t = 0, and that

udC*(X).

Now let p, qdC*(X) satisfy s=p\s\, t = q\t\. Then f = p f\, g = q\g\.
Define fx=pu, gx=q(l—u). We shall first verify that |/i| +|gi is bounded

away from zero. Where \p\ <1, we have 5 = 0; hence m = 0; also, t?*Q, so

\q\ =1; therefore |gi| =1. And where \u\ <1, we have t^O, so \q\ =1; hence

where \u\ £1/2, we have |gi| ^1/2. It follows that |gi| =T/2 wherever

|/i| £1/2. Thus |/i| +|gi| ^1/2 everywhere.

Finally, we have fxh=puh=p\f\ =/, and gxh = q(h— uh) =q(h—1/|)
= ff|g| =g- This completes the proof of the theorem.

Example 3.3. A compact connected T-space. The space8R+—R+ of Exam-

ple 2.8 is a compact and connected F-space. We shall show that it is a

T-space. Let F, GdC(8R+-R+). By Theorem 3.2, it suffices to find K,

LdC(8R+-R+) such that F = K\F\, G = L\G\, and (K, 7) = (1).
The proof of Theorem 2.7 shows how to construct a function fdC*(R+)

(called /' there) whose continuous extension to 8R+ coincides with F on

BR+ — R+, and such that P(f)r\N(f)= 0. If/ never changes sign on R+, then

F never changes sign on BR+ — R+. Then F = K\F\ for K=+\. Since

BR+ — R+ is an F-space, there is an L such that G = L\G\. Then (K, L)=(l).

Henceforth, then, we shall assume that/does change sign on R+. Let us

designate as an j"-interval any closed interval dZ(f) one of whose end points

is in 7(f) and the other in N(f). Since P(f)C\N(f)= 0, there is an /-interval

between any two points at which / has opposite signs. Only finitely many

/-intervals are contained in any bounded set, for a limit point of/-intervals

would be in both P(f) and N(f).

Correspondingly, we find a g, and define its g-intervals. As above, we

shall assume that g changes sign on R+.

We now define functions k, ldC*(R+). First, with every /-interval

7= [a, b], we associate a subinterval 7'= [a', b'], as follows. If 7 is entirely

contained in some g-interval, we take 7' to be the middle third of 7; if not,

we take it to be the middle third of some subinterval of 7 that is disjoint
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from every g-interval. We define k(a') = +1, and k(b') = +l, according as

aCP(f) or N(f), and we take k to be linear on I'. Having thus defined k on

7' for every /-interval 7, we extend k continuously so that \k\ =1 on the

remainder of R+. Then J = l on P(f) and —1 on N(f). Hence k = 1 on P(fY

and —1 on N(fY, where k denotes the continuous extension of k over fiR+.

Therefore, denoting the restriction of n to fiR+—R+ by K, we see that

f=k\f\.
Next, any g-interval J contains only finitely many/-intervals. We choose

as J' the middle third of some subinterval of J on which | k\ = 1 (cf. the con-

struction of k). Then we define / to be 1 and —1 at the end points of /', and

linear on /', and then +1 elsewhere, analogously to the definition of k. We

extend / to X on /32?+, restrict X to 7, on fSR+—R+, and we have G = L\ G\.

By our construction, there is no point of 2?+ at which both | k and | /| are

gl/2. Therefore there is no point of fiR+—R+ at which both K~\ and \L\

are gl/2. Hence (K, L) = (l). This completes the proof that f3R+-R+ is a

T-space.

Example 3.4. An F-ring that is not an Hermite ring. Let X denote the

strip of the euclidean plane consisting of all points (x, y) for which x^O and

\y\ =1- We shall show that fiX—X is an F-space, but not a T-space.

In fact, we know from Theorem 2.7 that fiX—X is a compact F-space.

To show that it is not a T-space, we shall find functions F and GCC(fiX—X)

such that, for all K and LCC(fiX-X) satisfying F = K\F\, G = L\G\, we
have (K, 7)^(1) (Theorem 3.2).

We define F and G as follows. Let/, gCC*(X) be given by:/(x, y) =y,
g(x, y)=cos irx. Let 0, 0 denote the continuous extensions of/, g, respec-

tively, over all of fiX. Then F, G are taken to be the restrictions to fiX — X of

0, 0, respectively.

Let A denote the subset {(x, 1): x S: 0} of X, and B the subset {(x, — 1):

x^o}. Since/=1 on A, we have F=l on A*— X. Likewise, F= —1 onB^—X.

Let K be any element of C(BX-X) such that F = 2C|F|. Then K = l on

P(F); therefore 2C=lon A»-X. Likewise, K= -1 on B^-X.

Since fiX—X is closed, K has a continuous extension k defined over all

of fiX. Let k denote the restriction of k to X. Then k must approach 1 on the

set A, as x—><». Likewise, k—> — 1 on 25. Hence there is a number x0^0 such

that £(x, 1)^1/2, and £(x, -1)^-1/2, forallx^x0.

Next, let Vx denote the vertical line segment at x: Vx= {(x, y): \y\ S= 1}.

Let L be any function in C(fiX — X) such that G = L\ G\, letX be any continu-

ous extension of L over all of fiX, and let I denote the restriction of X to X.

As above, we see that there is an integer reoi^xo such that, for all w^w0, we

have l(p) ^ 1/2 for all pCV2n, and l(q) ̂  -1/2 for all qC V2n+i.
A simple topological argument shows that for every re^«o, the rectangle

cut off from X by the lines F2„, F2„+i contains a common zero of k and l(7).

(7) The result may be inferred from [9, p. 43, B].
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Hence the set Z = Z(k)C\Z(l) contains points (x, y) with arbitrarily large x.

Therefore Z(K)C\Z(L) contains the nonempty set Z»-X. Thus, (K, L) ^(1).

4. Elementary divisor rings and D-spaces. A completely regular space

X is called a D'-space if the ring C(X) satisfies the condition D' of GH,

Theorem 6; X is called a D-space ii C(X) is an elementary divisor ring (for

definition, see GH, Theorem 2). Hence X is a D-space if and only if it is both

a T-space and a D'-space (GH, Theorem 6).

In the present section, we obtain a necessary condition that a space X

be a D'-space, we construct a connected D-space, and we present an example

of a T-space that is not a D-space. This last yields the algebraic result that

not every Hermite ring is an elementary divisor ring. Again, as far as we know,

this result is new.

Clearly, every homomorphic image of an elementary divisor ring is an

elementary divisor ring. Hence, using Lemma 1.7, we have:

Theorem 4.1. Let Y be a subspace of a D-space X such that every element of

C( Y) has a continuous extension to X. Then Y is also a "D-space.

We do not know whether C(X) an elementary divisor ring implies C*(X)

an elementary divisor ring, or conversely.

The condition D' seems of little significance in itself, without T. Never-

theless, we shall find a use for the result, now to be established, that BR+ is

a D'-space (even though, obviously, it is not even an F-space).

Lemma 4.2. The space 8R+ (where R+ denotes the non-negative reals) is a

D'-space.

Proof. Let cp, xp, 8dC(8R+), with (<p, if/, 8) = (1). By compactness, these

functions are bounded in absolute value, say by 1; also, there is a number

5>0 such that |cp| +\p2+82^35. Denote the restrictions to R+ by /, g, h,

resp. Let

S= {xdR+: \f(x)\ £5};

then g2+h2^25 on S. Cover S with an open set U such that \f(x)\ g25

everywhere on U. Express U as the union of disjoint open intervals (the

components of U). By adding to the set U any point that is a common end

point of two such intervals, we secure the condition that the components

(of the enlarged set) have disjoint closures. Let V denote the union of those

components that meet S(8). Only finitely many components of V can be con-

tained in any bounded set: for a limit point of components of V would be

in the closed set S, hence in V, and the component containing this point

would meet other components of V.

We shall first define two auxiliary functions, s' and t', on V. For every

(8) If S is empty, then 4> is a unit, and the whole problem is trivial.
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component (a, 6) of F(9), we proceed as follows. Since V is open, there exist

a', b' such that a<a'<b'<b, and with |/| >5 on (a, a') and on (b', b). We

shall work first with [a', b]. Define s'=g on [a', »']. Define 5' on [b', b] so

that it is continuous there, and subject to the following.

(i) If gs=0 on [6', b], define s'(b) = l, and let 5 be arbitrary on (b', b),

subject to continuity on [b't b], and the condition \s'\ gl.

(ii) If there is a biC(b', b) for which g(bi) >0, choose b2C(bi, b] such that

g>0 everywhere on [61, 62]. Then construct s' on [6', b] so that s'=g on

W, 01], g(x)^s'(x)^l tor all xC[bi, b2], and j' = lon [h, b].

(iii) If neither of these possibilities occurs, construct s' so that s'(b) = — 1,

and with g(x) ^s'(x) ^ — 1 for all xG [»', »].

Define t' = h on [a', b]. We shall show that | s'f\ + s'g+t'h\ ^ 5 on [a', 0].

On [a', b'], we have s'g+t'h = g2 + h2^o. On [b', b], we consider the three

cases. In (i), we have s'g+t'h=g2+h2^d. In (ii), we consider the three sub-

intervals. On [6', 61], we have s'g+t'h=g2+h2^8; on [61, b2], we have

s'g+t'h^g2+h2^b; on [b2, b], we have \s'f\ = |/| =0. Case (iii) is similar

to the second subcase of (ii).

Now, on [a, a'], we define t' = h, and we define s' in a manner analogous

to its definition on [b', b]. We then have \s'f\ +\s'g+t'h\ §8 everywhere on

k b].
We are now prepared to define s and t. Choose any component (a, b) oi

V. Define s = s' and t = t' on [a, b]. In case no component of V follows (a, b),

define s=s'(b) (and, say, ts=t'(b)) on (6, °o); then \sf\ = |/| ^5 there.

Otherwise, let (c, d) be the next following component of V. Define

s= +s' and t= +t' on [c, d], according as s'(c) = ±s'(b). Define s=s'(b) on

[b, c], and let t be arbitrary on [b, c], subject to continuity and the condition

\t\ gl. Then on [b, c], we have \sf\ = \f\ =i5.
It is now clear how to define s, tCC*(R+) so that \sf\ +\sg+th\ ^5 every-

where on R+. Their continuous extensions a, r to f}R+ therefore satisfy

Z(o-<p)r\Z(oiP+T0) = 0, i.e., (a0, a0+T0) = (l), q.e.d.
We remark that a simplification of the foregoing proof shows that R+

itself is also a D'-space. And both proofs generalize to arbitrary linearly

ordered spaces, although there they are more complicated.

Let a, b, c be elements of a commutative ring S with identity; by the

symbol ((a, b, c)), we shall mean that there exist p, qCS such that (pa,

pb+qc) = (l). Thus lis a D'-space if and only if ((/, g, h)) holds for all

/, g, hCC(X) for which (/, g, h) = (l).

Lemma 4.3. Let f, g, hCC(X), with (J, g, h) = (1). Suppose that there exist

a connected subset Z/ of Z(f), and a connected subset Zk of Z(h), whose intersec-

tion meets both P(g) and N(g). Then ((/, g, h)) fails (whence X is not a D'-

space) .

(9) In case a = 0 or b= =0, some obvious modifications must be made in the proof.
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Proof. Let xdZ,r\Zhr\P(g), and ydZ,(~\Zhr\N(g). Consider any
s,tdC(X). If (s, h) t* (I), then (sf, sg+th)^(l). If (s, h) = (1), then s is oi one

sign on the connected subset Zk of Z(h); then sg+th has opposite signs at x

and y, hence has a zero on the connected subset Zs of Z(f), whence again

(Sf, Sg+th) 9^(1).
Definition 4.4. A completely regular space X is called a C-space if the

intersection of any two closed connected subsets of X is connected(10).

Lemma 4.5. Every normal D'-space is a C-space.

Proof. Let X be a normal space that is not a C-space. Then there exist

two closed connected sets, Zs and Zk, whose intersection is not connected.

Write Z/r\Zn=AKJB, where A, B are disjoint nonempty closed subsets of

Zff~^\Zh, hence closed subsets of X. Since X is normal, there are open sets

UaDA, and Ub2>B, whose closures are disjoint. Put U= Ua^-JUb. The closed

sets Zf—U, Zh—U are disjoint, hence are contained in disjoint open sets

Vf, Vh, resp. There exist/, g, hdC(X) such that/(£>)= 0 andf(X- V,- U)

= 1, h(Zk)=0 and h(X-Vh-U) = l, g(UA) = l and g(UB)=-l. Then/, g, h

satisfy the hypotheses of Lemma 4.3, whence it follows that X is not a

D'-space.

Obviously, every linearly ordered space is a C-space (as well as a normal

D'-space). The converse of Lemma 4.5 is false, however, as is shown by the

example of the following noncompact subset of the plane: the union of the

sequence of segments {(x, —1/w): |x| £l} (w = l, 2, •••) with the semi-

circle y = (1 —x2)1'2. (The reasoning is like that in Lemma 4.3.) We conjecture

but have been unable to prove that every compact C-space is a D'-space.

The proofs of the next two lemmas are easy and are therefore omitted.

Lemma 4.6. Let a, b, c be elements of a commutative ring with identity. Then

((a, b, c)) if and only if ((c, b, a)).

Lemma 4.7. For any f, g, hdC(X), the following are mutually equivalent:

(if, g, h)), ((l/l, g, h)), ((/, g, | h\)), ((l/l ,g,\h\)).
Lemma 4.8. Every compact subspace of a normal D'-space is a D'-space.

Proof. Let F be a compact subspace of a normal D'-space X, and let

F, G, HdC(Y), with (F, G, 77) = (1). We are to show that ((F, G, 77)). By
Lemma 4.7, we may assume that 72^0. Let g, h be arbitrary continuous ex-

tensions to X oi G, 77, resp., and let F' denote the restriction of F to Z(G)

C\Z(H). There is a 5>0 such that 7 = 5 on Z(G)C\Z(H). Therefore F' can be

continuously extended to a function <p, defined on all of Z(g)C\Z(Jt), and =5

there. Now define/' on the set Y\J(Z(g)C\Z(h)), by setting/' = F on F, and

/'=<p on Z(g)(~\Z(h). Evidently,/' is well-defined and continuous. Finally, let

/ be any continuous extension of/' over all of X. Obviously, (/, g, h) = (l).

(I0) Cf. the concept of unicoherence [14].
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Therefore, by hypothesis, we have ((/, g, h)). Restriction to F yields

((F, G, 27)).
Example 4.9. A compact connected D-space. The space fiR+ — R+ of Exam-

ple 3.3 is a compact connected T-space. Since fiR+ is a D'-space (Lemma

4.2), so is fiR+-R+ (Lemma 4.8). Therefore fiR+-R+ is a D-space.

Applying Lemma 4.5, we obtain:

Corollary 4.10. The intersection of any two closed connected subsets of the

connected space fiR+ — R+ is a connected set.

Example 4.11. An Hermite ring that is not an elementary divisor ring. We

may regard R+ as the subset {(x, 0): x 2g 0} of the plane. Let

S+ = {(x, sin tx) : x ̂  0},

and define X = R+VJS+. (Notice that X is not a C-space.) We shall show that

fiX —X is a T-space, but not a D-space.

First of all, by Theorem 2.7, fiX — X is an F-space. The fact that it is also

a T-space may be established by an evident extension of the argument given

in Example 3.3 to show that fiR+—R+ is a T-space. To show, finally, that

fiX — X is not a D'-space, it is sufficient, by Lemma 4.5, to show that it is

not a C-space. We shall make use of Cech's theorem that if Y is a closed sub-

set of a normal space X, then the closure of F in fiX is identical with fi Y[2 ].

Thus, (R+Y is identical with fiR+. Therefore the set ZF=(R+Y~R+ is closed

and connected (Example 2.8). Likewise, Zh = (S+Y~S+ is closed and con-

nected.

Now consider the function gCC*(X) defined by g(x, y) =cos irx, and let

0 denote the continuous extension of g to fiX. Since g(«, 0) = ( — l)n

(n = 1, 2, • • ■ ), 0 assumes both the values 1 and — 1 on ZfC\Zh. Now the set

of all pCR+ for which | g(p) \ g 1/2 is a closed subset of the normal space X

that is disjoint from the closed set S+; therefore these two sets have disjoint

closures in fiX. Hence 0 has no zeros on ZfC\Zh- Thus ZpC\ZH is not con-

nected. Therefore fiX — X is not a C-space, q.e.d.

5. U-rings and U-spaces.

Definition 5.1. Let X he a completely regular space. The ring C(X)

(resp. C*(X)) is called a TJ-ring if for every fCC(X) (resp. C*(X)),f and  f

are associates, i.e., there is a unit u of C(X) (resp. C*(X)) such that/ = re /

(whence |/| = «/). If C(X) is a U-ring, then X is called a U-space.

As already pointed out, u is a unit of C(X) if and only if Z(u) is empty.

Thus every discrete space is a U-space. Obviously, every U-space is an

F-space (Theorem 2.3(a, d)).

Theorem 5.2. For any completely regular space X, C(X) is a TJ-ring if

and only if C*(X) is a TJ-ring. Equivalently, X is a U-space if and only if jiX

is a U-space.
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The equivalence of the formulations is a consequence of the isomorphism

between C(8X) and C*(X).

Proof. Suppose, first, that C*(X) is a U-ring, and consider any fdC(X).

Let/*,/0 be as in Lemma 1.5. By hypothesis, /*=w|/*| for some u that is a

unit of C*(X), hence a unit of C(X). Since/=/*/o, and/0>0, we have/ = w|/|.

Conversely, suppose that C(X) is a U-ring, and consider any (pdC*(X)

dC(X). By hypothesis, cp = w|<p| for some unit u oi C(X). Define vdC*(X)

by: v(P(u)) = l, v(N(u)) = -l. Then v is a unit of C*(X), and <p=o|<p|.

Theorem 5.3. Every H-space is a D-space (hence a T-space and an F-space).

Proof. We must show that every U-ring is an Herm-te ring that satisfies

the condition D' of GH, Theorem 6. Consider any 1 by 2 matrix [f g].

Applying U, we see from Theorem 2.3(b, d) that (|/|, |g|) = (|/| +|g|). Let

u, v be units satisfying |/| =w/and |g| —vg, let gi satisfy |g| =gi(|/|+|g|),

and define

Then PQR is nonsingular, and [f g]PQR= [|/| +|g| 0]. Thus every 1 by 2

matrix can be diagonalized. Therefore C(X) is an Hermite ring (GH, Theo-

rem 2 ff.). Now consider any/, g, h with (f, g, h) = (1). By U, we have | g| =sg,

| h\ =th, where 5 and t are suitable units. Obviously, (sf, sg+th) = (1). There-

fore D' holds.

The following lemma is well known. We omit the proof, which is straight-

forward.

Lemma 5.4. For any completely regular space X, the following statements are

equivalent.

(a) .4wy two completely separated subsets of X are contained in disjoint open

and closed sets.

(b) BX is zero-dimensional^1).

Theorem 5.5. An F-space X is a TJ-space if and only if BX is zero-dimen-

sional.

Proof. Recall that X is an F-space if and only if BX is an F-space (Theorem

2.3(a, a*)).

Assume, first, that 8X is a zero-dimensional F-space, and consider any

fdC(X). By Theorem 2.3(c), the sets P(f), N(f) are completely separated.

By Lemma 5.4, there is an open and closed subset V oi X that contains P(f)

but is disjoint from N(f). Let u satisfy: u(V) = 1, u(X — V) = — 1. Then u is

a unit of C(X), and/ = w|/|. Hence X is a U-space.

Conversely, assume that AT is a U-space, and let A, B be any two com-

(u) I.e., has a base of open and closed sets.
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pletely separated subsets of X. There is an fCC(X) such that f(A) = l,

f(B) = — 1. Since X is a U-space, there is a unit u of C(X) such that/ = re|/|.

Then P(u) is an open and closed subset of X that contains A but is disjoint

from B. Therefore, by Lemma 5.4, fiX is zero-dimensional.

It follows that every U-space is zero-dimensional, hence disconnected.

Therefore we have:

Example 5.6. A D-space that is not a U-space. The D-space of Example 4.9

is connected, hence cannot be a U-space.

We close this section with two algebraic characterizations of U-spaces.

Theorem 5.7. For every completely regular space X, the following statements

are equivalent.

(a) X is a U-space.

(b) For any f, gCC(X), there exist ft, gu h, tCC(X) such that f = fih,
g=gih, and fi+tgi is a unit.

(c) (i) X is an F-space, and

(ii) for any f, gCC(X), with (/, g) = (1), ^ere exists tCC(X) such that

f+tg is a unit.

Proof. We shall show, in turn, that each of the first two properties is

equivalent to the third.

(a) implies (c). By Theorem 5.3, (a) implies (i). To establish (ii), consider

any/, g with (f, g) = (l). By (a), we have/ = w|/|, g = »|g|, where u (and v)

are suitable units. Then uf+vg= \f\ +\g\, which is a unit, whence f+(v/u)g

is a unit, as required.

(c) implies (a). Let A, B he completely separated subsets of X, and let

fCC(X) he such that f(A) = l,f(B) = -1. If g = l-/», then g(A) =g(B)=0,
and (f, g) = (l). By (ii), there is a tCC(X) such that f+tg is a unit, i.e.,

f+tg vanishes nowhere on X. Then P(f+tg) is an open and closed subset of

X that contains A but is disjoint from B. Thus, by Lemma 5.4, fiX is zero-

dimensional. Hence, by (i) and Theorem 5.5, X is a U-space.

(b) implies (c). Obviously, (b) implies (i). Now consider any /, g with

(/. £) = (!)• By (b), there exist/i, gu h, t such thatf=fih, g = gih, and/i+<gi

is a unit u. Then f+tg = uh, from which it follows that (/, g) = (h), and there-

fore that h is a unit. Hence f+tg is a unit. This establishes (ii).

(c) implies (b). By a previous part of the proof, (c) implies that X is a

U-space; hence, by Theorem 5.3, X is a T-space, i.e., C(X) is an Hermite ring.

Consider any/, gCC(X). By GH, Theorem 3, there exist/i, gi, h such that

f=fih, g = gih, and (Ji, gi) = (l). By (ii), there is a t with/i+jgi a unit. Thus

(b) holds.
6. Regular rings and P-spaces.

Definition 6.1. A commutative ring 5 with identity is called a V-ring

if every (nonzero, proper) prime ideal of 5 is a maximal ideal. A completely

regular space X such that C(X) is a P-ring is called a V-space.
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A point pdX is called a P-point of X if for all fdC(X),f(p) =0 implies
that / vanishes on an entire neighborhood of p.

The following theorem was proved by the authors in [3, Lemma 3.2 and

Theorem 5.3 ff.].

Theorem 6.2. For every completely regular space X, the following statements

are equivalent.

(a) X is a P-space, i.e., every prime ideal of C(X) is maximal.

(b) Every prime fixed ideal of C(X) is maximal.

(c) For every pdBX, the ideal Np of C(X) (Definition 1.3) is maximal.

(d) For every pdX, the ideal Np of C(X) is maximal.

(e) Every point of X is a P-point of X, i.e., every zero-set of X is open.

(f) Every countable intersection of open subsets of X is open.

(g) Every ideal of C(X) is an intersection of maximal ideals,

(h) C(X) is a regular ring (GH, Definition 9).

Obviously, every discrete space is a P-space. Several examples of non-

discrete P-spaces—in fact, of P-spaces containing no isolated points whatso-

ever—are given in [3],

The fact that every P-space is an F-space can be seen in many ways: e.g.,

every regular ring is an F-ring—in fact, an elementary divisor ring (GH,

Remark 12). But the following theorem tells more.

Theorem 6.3. (a) Every P-space is a TJ-space (hence a D-, T- awd F-space).

(b) There exist XJ-spaces that are not P-spaces. In particular, if X is an

infinite P-space (e.g., an infinite discrete space), then BX is a \3-space but not a

P-space.

Proof, (a) is immediate from (e) of the preceding theorem. As for (b), if

X is a P-space, then by (a), it is a U-space, and BX is also a U-space (Theo-

rem 5.2). But every compact P-space is finite [3, Corollary 5.4], so if X is

infinite, then BX cannot be a P-space.

There exist non-normal P-spaces [3, Theorem 7.7], hence non-normal

U-spaces.

An interesting comparison between F-spaces and P-spaces is afforded by

Theorems 2.5 and 6.2(c): for an F-space, every ideal Np is prime; for a

P-space, every Np is maximal.

Using Theorem 2.3(c), it is not hard to see that in order for a linearly

ordered space X to be an F-space, it is necessary and sufficient that no point

of X be the limit of an co-sequence, either increasing or decreasing. But this is

precisely the condition that X be a P-space (cf. [3, Corollary 7.2]). So we

have:

Theorem 6.4. A linearly ordered space is an F-space if and only if it is a

P-space.
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Another algebraic characterization of P-spaces is given by the following

theorem.

Theorem 6.5. A completely regular space X is a P-space if and only if C(X)

is an adequate ring (GH, Definition 7).

Proof. If X is a P-space, then C(A^) is regular (Theorem 6.2(h)), hence

adequate (GH, Theorem 11). (One may also give a direct proof for C(X):

given/and g, define /i = l and h = 0 on Z(f)C\Z(g), and/i =/and h = l else-

where; then/=/]&, (ft, g) = (l), and no nonunit divisor h' of h is relatively

prime to g.)

Conversely, suppose that X is not a P-space. Then there exist a function

gCC(X) and a point pCZ(g) such that g vanishes on no entire neighborhood

of p (Theorem 6.2(e)). Choose any point q^p, let U be a neighborhood of p

such that qCU, and constructfCC(X) such that/(F) =0 and/(g) =1. (Then

f^O.) Now consider any/i, hCC(X) with the properties (i) and (ii) of condi-

tion A (GH, Definition 7), i.e., such thatf=fih and (/i, g) = (1). We shall show

that (iii) of condition A must fail. We have fi(p) t±0 (since g(p) =0). Hence

there is a neighborhood V of p, with FC U, such that/i vanishes nowhere on

V. Then h(V) =0 (since f=fih). By definition of g, there is a yG V tor which

g(y)?^0. Then there is a neighborhood W of y, with WCV, such that g

vanishes nowhere on IF. Now construct h'CC(X) such that h'(y)=0,

h'(X — W)=l. Clearly, h = hh'. Therefore h' is a nonunit divisor of h. But,

obviously, (h', g) = (1). Hence condition A fails, so C(X) is not adequate.

Referring to Theorem 6.2(a, h), we have:

Corollary 6.6. For a ring C(X), the following algebraic conditions are

equivalent: the ring is adequate, it is regular, every prime ideal is maximal.

Corollary 6.7. Not every elementary divisor ring is adequate.

Proof. By Theorem 6.3(b), there exist D-spaces that are not P-spaces.

Corollary 6.8. Every'adequate ring C(X) is an elementary divisor ring

(cf. GH, Theorem 8).

Proof. By Theorem 6.3(a), every P-space is a D-space.

Appendices

7. Some further examples of rings. Examples readily come to mind to

show that not all the above implications that hold for a ring C(X) carry over

to arbitrary commutative rings with identity.

Every regular ring (commutative, with identity) is adequate (GH, Theo-

rem 11), and is a P-ring (since, clearly, every homomorphic image of a regular

ring is regular, and every regular integral domain is a field). On the other

hand, the ring of integers is an adequate P-ring that is not regular.

The ring of entire functions is adequate [6], but neither regular (since it
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is not a field), nor P [7, Theorem 1(a)],

Examples of P-rings that are not even F-rings are familiar from the theory

of algebraic integers—e.g., the ring of all a+b( — 5)1/2, where a and b are

rational integers (see, e.g., [13, Theorem 8.7 and proof of Theorem 7.11]).

The following example, in a slightly different connection, may also be of

interest. Consider any F-ring C(X) that is not an Hermite ring (Example 3.4).

Then, a fortiori, C(X) is not an elementary divisor ring. Yet every homo-

morphic image C(X)/P, where P is a prime ideal, is an elementary divisor

ring. For C(X)/P, as a homomorphic image of an F-ring, is an F-ring, and

C(X)/P contains a unique maximal ideal [3, Corollary 3.4]; and it is easily

seen that any such ring is adequate. Being an integral domain, C(X)/P is

therefore an elementary divisor ring [6].

8. Some further topological spaces. The principal spaces discussed thus

far are, in decreasing order of generality, F, T, D, U, P. We conclude our

paper by comparing these with some further classes of topological spaces (for

which, however, we have no algebraic counterparts).

Definition 8.1. A completely regular space X is called a P'-space if for

all fdC(X), and all pdZ(f), there is a deleted neighborhood U' of p such that

either/(U') = 0 or/(U')>0 or/(U')<0.

Obviously, every P-space is a P'-space (Theorem 6.2(e)).

Particularizing, pdZ(f) is a P'-point of f if a deleted neighborhood U'

exists as above, and p is a P'-point of X ii pis, a P'-point of every / for which

pdZ(f). Thus X is a P'-space if and only if every point of X is a P'-point of X.

Let/, gdC(X). Define/£g to mean (as heretofore) that/(x) £g(x) for all

xdX. Then C(X) becomes a partially ordered set, and, in fact, a lattice.

An arbitrary lattice is said to be conditionally complete ii every nonempty

subset that has an upper (resp. lower) bound has a least upper (resp. greatest

lower) bound, a-complete if the corresponding conditions hold for countable

subsets. M. H. Stone [16; 17] and H. Nakano [12] have investigated rela-

tions between topological properties of a space X and completeness properties

of the lattice C(X).

Definition 8.2. A completely regular space X is said to be extremally dis-

connected^2) ii any of the following equivalent conditions holds: the closure

of every open set is open, any two disjoint open sets have disjoint closures,

C(X) is a conditionally complete lattice.

The equivalence of the first two properties is elementary; these properties

were first investigated by Stone. For the proof of their equivalence with con-

ditional completeness, see [17] or [12].

Theorem 8.3. For any completely regular space X, the lattice C(X) is

a-complete if and only if, for every fdC(X), the set P(f) is open.

The proof may be obtained from the proof of Stone [17, Theorem 15]

(u) This term was introduced by Hewitt.
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by relaxing his requirement of normality of X to complete regularity, and

compensating for this by considering only sets of the form P(f) (fCC(X)),

rather than arbitrary Fa's.

Equivalently, the sets 7(f), N(f), interior of Z(f) are mutually disjoint,

and each is open and closed.

Theorem 8.4. If X is a V-space, then C(X) is a a-complete lattice. In turn,

if the latter condition obtains, then X is a U-space (hence a zero-dimensional

D-space).

The proof follows easily from Theorem 8.3.

We shall now consider some examples.

8.5. Let N denote the denumerable discrete space {ei, e2, ■ ■ • }, let e be

any fixed point of fiN, and define E to be the subspace NVJ {e} of /32V. This

notation will be retained throughout the remainder of our discussion. We

shall refer to e as the fi-point of E. We remark on the topology of E. Every

point e„ is, of course, isolated. Deleted neighborhoods of e constitute a

maximal family (Z,)g^s having the finite intersection property, each Zs being

infinite, and with fit^s Z, = 0 (see Lemma 1.2 and [8, Theorem 36]).

There is no countable base of neighborhoods at e [2].

Example 8.6. An extremally disconnected P'-space that is not a P-space.

E is such a space. Obviously, it is extremally disconnected. Every e„ is iso-

lated; and e is a P'-point of E because for any/, exactly one of P(f), N(f),

Z(f) is a neighborhood of e. But e is not a P-point of the function g defined

by:g(e„) = l/re, g(e)=0.

8.7. We denote by L the space of all ordinals ^a>i (the smallest non-

denumerable ordinal), under the following topology: neighborhoods of coi are

as in the interval topology, while every other point is isolated. It is well

known that (in our terminology) L is a P-space.

J. R. Isbell has proved (written communication) that every extremally

disconnected P-space is discrete, provided only that the cardinal number of

the space is nonmeasurable(13). Here is a simple example of a nondiscrete

P-space:

Example 8.8. A P-space (hence a P'-space) that is not extremally discon-

nected: two copies of the space L, with their limit points (there is one in each)

identified. (Any linearly ordered P-space having at least one point that is

a limit from both sides will also serve; see [3, §7] for examples.)

Example 8.9. An extremally disconnected space that is not a P'-space

(hence not a P-space): fiX, for any infinite discrete X, is such a space. It is

(1S) A cardinal m is measurable if a nontrivial, countably additive, two-valued measure can

be defined on the set of all subsets of a set of power m. Most cardinals encountered in practice

are known to be nonmeasurable, and no example of a measurable cardinal is known. See

[3, p. 352] for discussion and references. {Added in proof.) For Isbell's result, see T6hoku Math.

J. (2) vol. 7 (1955) pp. 1-8.
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extremally disconnected, since X is discrete [8, Theorem 25]. Suppose that

it is a P'-space. Since BX—X is closed, every function in C(8X—X) can be

extended continuously over all of BX. Therefore BX—X is also a P'-space.

But BX—X cannot be a P-space, as every compact P-space is finite [3, Corol-

lary 5.4]. So there is a point pdBX—X that is a P'-point, but not a P-point,

of BX — X. Then p is an isolated zero of some function, and is therefore a

Gj-set. But this contradicts Cech's result that for any completely regular

space X, every nonempty closed Gs of BX—X is infinite(14).

Example 8.10. A U-space X for which C(X) is not a-complete. Such a space

can be constructed by identifying the /3-point e of E (8.5) with a nonisolated

point of any (nondiscrete) P-space. E.g., let X be obtained by identifying e

with the point coi of L (8.7): every point x^e is isolated, while a neighborhood

of e is the union of a neighborhood of e in E with a neighborhood of e in L.

It is easily verified that X is a U-space. But the set NdE is a P(f), and its

closure, E, is not open; therefore C(X) is not cr-complete (Theorem 8.3).

Example 8.11. A space X that is neither a P'-space nor extremally discon-

nected, but for which C(X) is a-complete. The space X = LXE (8.5, 8.7) has

these properties. If g is defined by: g(a, e„) = l/w and g(a, e)=0, for all

a=coi and all w <co, then gdC(X), and the point (wi, e) is not a P'-point of g.

The set

{(f, p):£ < ui, £ even; p d E}

is an open set whose closure is not open, whence X is not extremally discon-

nected. Finally, letfdC(X), and consider any point (a, p)dP(f). It is easily

seen that P(f) contains a neighborhood of (a, p) in case p^e. li (a, e)dP(f),

there is a deleted neighborhood U' oi e (in the space E) such that/(a, a)>0

for all qdU'; this implies the result for a<cox. Finally, if (a, p) = (wi, e), then,

since ax is not cofinal with «, there is a y<wi such that f(S, q)>0 for all

5>y and all qd U', which implies the result in this case. It follows that P(f)
is open. Hence, by Theorem 8.3, C(X) is cr-complete.

Finally, we consider a more extensive class of spaces.

Definition 8.12. A completely regular space X is called an F'-space if

for all fdC(X), the sets 7(f), N(f) are disjoint.

Thus, every F-space is an F'-space (Theorem 2.3(c)), and, for normal

spaces, the concepts coincide.

Examination of the proof of Theorem 2.5 leads to:

Theorem 8.13. A completely regular space X is an F'-space if and only if,

for every point pdX, the ideal Np of C(X) is a prime ideal.

The two theorems may be compared thus. Let N(M) denote the inter-

(") Cech proved [2, p. 835] that every such set is of power &c; Hewitt [8, Theorem 49]

strengthens this to &2C (and gives an example in which the equality holds).
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section of all the prime ideals contained in the maximal ideal M. Then X is

an F'-space if and only if, for every maximal fixed ideal M of C(X), the ideal

N(M) is prime, while X is an F-space if and only if, for every maximal ideal

M of C(X), free or fixed, the ideal N(M) is prime. (In either case, the replace-

ment of prime by maximal characterizes AT as a P-space; see Theorem

6.2(c, d).) It should be noted, however, that fixed and free are not algebraic

concepts.

Example 8.14. A (nonnormal) F'-space that is not an F-space. Define

L' to be the space of all ordinals ^co2, with each y<w2 an isolated point, and

neighborhoods of co2 as in the interval topology. Define Y = L' XL — {(w2, «i)},

where L is as in 8.7. Next, introduce new distinct points da,n (a<coi, re<w);

and ior each a<osi, write da= (u2,a), andlet Da=da,o, da,i, • • • , da be a copy

of E, with da its j3-point (8.5). Finally, define X = Ua 7><AJF, with the follow-
ing topology: neighborhoods of points other than the aVs are the same as

originally, while for each a, a neighborhood of da is the union of a neighbor-

hood of da in F with a neighborhood of da in Da.

It is easily seen that X is an F'-space. Now define fCC(X) as follows:

f(da,n) = + l/« according as a is even or odd, and/( F) =0. Then P(f) = U„ D2a,

N(f) = U„ 7>2a+i. Let A, B be any two disjoint open sets such that AZ)P(f)

and BZ)N(f). By a familiar cofinality argument, their closures have a com-

mon intersection with the set {(y, cdi):7<cd2}. Therefore P(f), N(f) are not

completely separated. Thus X is not an F-space.

8.15. The following diagram shows the implications among the principal

spaces considered in this paper. As we have seen, none of these implications

can be reversed.

P-^P' D -* T -* F -> F'
/• \ /

discrete er-complete —> U
\ ,. /" \

extr. disconn. zero-dim.
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