
HILBERT SPACE METHODS IN THE THEORY
OF HARMONIC INTEGRALS(1)

BY

MATTHEW P. GAFFNEY

The theory of harmonic integrals was created by Hodge [15], and the

theorem which bears his name is the central result of the subject. Kodaira

[17] and—independently—de Rham and Bidal [l] used the generalized

harmonic operator A in their treatments of the theory. A was also used by

Milgram and Rosenbloom [19] in their study of harmonic integrals with the

heat equation. It is our purpose to develop the properties of A from the point

of view of Hilbert space theory, thus arriving at Hodge's theorem without the

use of a generalized integral equation theory. In addition, in §2 we study A

on a class of open manifolds—those with negligible boundary; these include

all complete manifolds. §3 contains a proof of the fundamental differentiabil-

ity lemma.

We wish to express our appreciation to Professor M. H. Stone, who sug-

gested this topic to us. He provided us with the proof (in §2) that I+88*-\-dd*

is self-adjoint, and he suggested the application of Rellich's results to the

proof of the complete continuity of the Green's operator.

1. Compact manifolds; Hodge's theorem. We assume familiarity with the

basic concepts of differential forms on Riemannian manifolds. Expositions of

this material are contained in [l], [4], [7], [13], and [15].

The index notation of Kodaira considerably simplifies some of the nota-

tional problems of tensor calculus. A capital letter is to denote a set of p

indices: 7= (t'i, • • • , iP). When a capital letter appears where there is room

for only one index a multiplication is implied. Thus dxI = dx'1/\ ■ ■ • /\dxlr

and g7.J = g"'i • • • g»p'p. For summations, we shall use £ (or £*) to indi-

cate summation over all permutations of the indices p at a time, while 2I'

indicates that from each combination only one permutation is used; we shall

take the one in increasing order. £ or 52' without a subscript applies only

to indices which occur both above and below. In this notation a form ct is

written out asa= ^'Aidx1; indices are raised by PJ= ^,gI,JTj.

In this section we consider a compact, oriented, Riemannian manifold M
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whose Riemann tensor is of class Ck, k = 5, • • • , oo. (As a manifold M must

be C*+1.) 8 = (— l)np+n+1 *d*(p is the degree of the form to which 5 is applied;

n the dimension of M), and A=d8 + 8d. (For functions A is the negative of

the Laplace-Beltrami operator.) Inner products are defined by (a, /3) =fa */3.

A corollary of Stokes's theorem is that d and 8 are adjoint (cf. §2). In fact,

from the product formula for d and the definition of 5,

d(a*f3) = da* (3 — a*8j3,

where

a = a",       /3 = /3p+1;

since by Stokes's theorem the integral of the left side is zero, one obtains

(&r, ft-(a, 8/3).
Let 7*" be the class of harmonic forms—those forms which A maps into 0.

Since (Aa, a) = (da, da) + (Sa, da), one sees that harmonicity is equivalent

to da = 0 and Sa = 0. Therefore F is orthogonal to both *R.(d) (= range of d)

and <RX&).
%.(d) and 'Rfb) are themselves orthogonal, for consider (da, 5/3): if either

a or /3 (say a) is C2, then (da, 5/3) = (dda, /3) =0. Even when a and /3 are both

C1 it is true that (da, 5/3) =0; this can be demonstrated with the aid of a good

smoothing operator such as the Friedrichs mollifier. An alternative would be

to restrict the domains of d and 5 to C2 forms; the domain of A must then be

correspondingly restricted.

We follow Bidal and de Rham [l ] in noting that the uniqueness assertion

of de Rham's theorem together with the adjointness of d and 5 already

implies the uniqueness of harmonic integrals with prescribed periods. (The

period of a p-iorm on a p-cycle is the value of the integral of the form over the

cycle.) For if a is harmonic with zero periods, then by de Rham's theorem

a = d6. But then (a, a) = (a, d$) = (8a, 9) = (0, 0) =0, so a is zero.

The Hilbert space Hp is the class of all measurable p-forms a such that

(a, a) is finite, provided with the above inner product and the usual equiva-

lence relation (compare the definition in [13]). A is a densely defined linear

operator on 77p and because of the adjointness of d and 5 it is symmetric

[(Aa, j8) = (a, A/3) ]. (The C* forms are dense in 77p even when M is open. One

way of establishing the density is to use a smoothing operator. See [12] and

[13].)
Following Kodaira [18, p. 605] we establish the weak decomposition

formula:

(1) H" = !{(d>-i) +1{(8'>+1) +F'.

The bar indicates closure; we are able to leave it off Fv since if a sequence of

harmonic forms a* approaches a (in the Hilbert space norm), then
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(A6, a) = lim (Ad, ai) = lim (6, Aa.) = 0

for all 6 of class C2. By the fundamental differentiability lemma (§3) a be-

longs to Fp.

To prove (1) one need only establish that ^(A) is dense in (FP)L, the set

of all elements orthogonal to the harmonic forms. Suppose that 7 is orthogonal

to the range of A, so that (A6, 7) =0 for all 0 of class C2. It has just been re-

marked that (Ad, 7) =0 implies 7 belongs to F". This means that no nonzero

form in (F")-1 is orthogonal to 11(A), nor to the larger set ^(d"-1) +%(8P+1);

therefore no nonzero element is orthogonal to the closed linear manifold given

by the right-hand side of (1). But in a Hilbert space a closed linear manifold

to which no non-zero element is orthogonal is the whole space.

It is possible [18] to obtain Hodge's existence theorem from (1) and de

Rham's theorem. We shall wait until we have the full decomposition theorem,

from which it follows more easily. (The complete continuity of G will be

used to obtain the full theorem.)

We wish to prove that A, the closure of A, is self-adjoint. (The closure of

A is defined as follows: take the graph of A in HPXHP; close it. This closure

is the graph of A. "Self-adjoint" means: equals its maximal adjoint operator.)

Let A^A+7. Since

A+7 = A~+7,

the notation Ai is unambiguous. The self-adjointness of A is equivalent to

that of Ai, and it is the latter we examine. Ai is semibounded in accord with

the inequality

(Aicc, a) = (da, da) + (da, 8a) + (a, a) ^ (a, a).

From the inequality it is seen that Ai is one-to-one. Furthermore, the map-

ping in the other direction (Af1) may not (a priori) be densely defined, but

at least it is bounded, since (from the semiboundedness inequality)

||a||2^ ||Aia||||«|| (or ||a|| ^ ||Aia||).

(The norm of a is given by ||a|| = (a, a)l/2.) Therefore Ai maps onto a closed

subset of Hv. The only way this subset could fail to be all of 77p is that there

exist a nonzero form a orthogonal to the range of Ai, that is, (Ai0, a) =0 for

all C2 forms 6. But by the fundamental differentiability lemma (§3; take

X= — 1) this would imply that a is C2 and Ai« = 0. Since Ai is one-to-one a

must be zero, so Ai maps onto Hp itself. Therefore (Ai)-1 is a bounded, sym-

metric operator defined on all of Hp and must be self-adjoint, forcing its

inverse Ai to be so too. From this we obtain the

Proposition. On a compact, orientable, Riemannian manifold A is self-

adjoint.
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We proceed to develop an inequality which will be useful in establishing

the complete continuity of (Ai)-1- Consider C2 forms a vanishing outside a

coordinate neighborhood K; and define the Dirichlet integral

r ^  /dAi(x)\2

In euclidean space, where A acts componentwise,

(a°",) = -/S'[^-4'w]"'w,";

integrating the right side by parts we find that (in euclidean space)

D(a) = (Aa, a) = (da, da) + (8a, 8a)

(cf. Friedrichs [ll], where the idea for the inequality was obtained).

In the general case it will be proved that:

Every point P of M is contained in a coordinate neighborhood K such

that for all C2 forms a vanishing outside K

(2) D(a) g C[(da, da) + (8a, 8a) + (a, a)]

where C is a constant depending on K.

Select a coordinate system in the neighborhood Ki of P with the property

that gij(P)=8{ (see appendix). Introduce a new euclidean tensor in K~i by

defining its components in this coordinate system to be g'v = 5<. We shall use a

prime to indicate that a quantity has been computed with respect to this

tensor, as ||a||'. As with any two Riemann tensors, we have ||a||'2^Ci||a||2,

etc. Thus

D(a) =  ||<fa||'2 + ||5'a||'2 :g Ci[||<fa||* + ||5'a||2]

= 2C1[||<*a||2 + ||Sa||2 + \\8'a - 8a\\2].

We need to know that

\\S'a - 5a||2 ^ C2\\a\\2 + e(K)D(a),

where e(K) approaches zero as the neighborhood K shrinks to the point P.

It suffices to prove the corresponding inequality for a typical term from a

component of 5'a — 5a,

/        d d      \ d
(77'-G' - H-G)Ar+ (H'G' - HG) — At.
\       dx' dx*    / dx*

Let ei(K) be the upper bound of \H'G'— HG\ on K. Since the continuous

function H'G'— HG is zero at P one sees that ti(K) does approach zero.

Continuing, one obtains the above inequality for ||5'a — 5a||2 and therefore

has
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D(a) g 2C1[||rfa||2 + ||5a||2 + C2||<*||2 + t(K)D(a)].

Take A so small that 2Ci«(A) <l/2, thus obtaining (2).

With the aid of (2) we shall give a direct proof that (Ai)-1 is completely

continuous, and from this obtain the complete continuity of the Green's

operator(2).

We must prove that if a sequence of forms (ai) has the property that

((Ai)a,) is defined and bounded in norm, then a subsequence of (a,-) con-

verges (in the Hilbert space norm). It will suffice to consider the case in

which the forms a,- are in the domain of Ai.

From the hypothesis and the relation

(Axa, Ai«) = (Aa, Aa) + 2(da, da) + 2(8a, So) + (a, a)

it follows that (on), (da,), and (Sa<) are bounded. The latter statement will

still be true if we replace at by <pa,, where <p is a component of a partition of

unity. (We shall take the partition so fine that our Dirichlet integral in-

equality is valid.) To see that (8<pai) is bounded consider separately (<j>8ai),

which   clearly  is  bounded,   and    *[d#*ai],   which   satisfies   || *-[i0 *a,-]||

££||<«||.
The individual components of (<pai) are bounded in norm, and so also are

their first partial derivatives, as the Dirichlet integral inequality shows. But

the hypothesis of the Rellich selection theorem [21 ] is just that a sequence

(fi) of functions along with the first derivatives is bounded in norm; the

conclusion is that a convergent subsequence (f,t) can be selected. From here

we easily backtrack to get the complete continuity of (Ai)-1.

We give Rellich's proof (for cubic domains). The proof is based on the

inequality

(3) j fdx 5i - [ J* /<**] + J s2 j* £ [df/dx*] 2dx,

where/ is an arbitrary C1 function on some cube of width 5, and the integra-

tion is taken over the cube.

To prove (3) observe that

[/(*) - fiy)Y = \ f Me, x2,---, %*)d? + f My1, ?. *•.••-. *W
L J yi J y*

+ ■■■ +f~My1, •••. y-1, €•)«"]

^ »* 23 I   fAy , • • •, y   , €, *   , • • •, x)dz'.
j-X J 0

(*) Added in proof. In a recent note [26] Yosida has obtained this same proof.
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Integrating, and changing the order on the right,

// [/(*) ~f(y)Uxdy ^ nsYJ/i(z)dz-sn+1.

Since ff[f(x) -f(y)]2dxdy = 2jf2(z)dz sn-2 [Jf(z)dz]2, we have (3).
To continue with Rellich's proof, consider a cube K of width a, which we

cover with a sequence of nets. Let the mth net be obtained by dividing each

side of K into m equal segments, thus obtaining mn congruent cubes of width

s = a/m. The step function obtained by replacing a function g on each small

cube of this net by its average value on that cube will be called the mth

approximation to g, denoted by gm. (Thus for each m there is a sequence of

step functions (/?).) On each small cube,

is bounded with respect to i. A bounded set of real numbers has an ac-

cumulation point, and therefore a subsequence of (/J") converges on the small

cube. By a limited diagonal process one obtains a subsequence which con-

verges uniformly on the cube K.

The above result is true for each m. By a full diagonal process select (i,)

in such a way that for each m the sequence (/J|) converges uniformly and

therefore in the L2 norm. We want to prove that (fi,) converges; this will

be done if we show that /{" approaches /,• uniformly in i as m approaches oo.

Consider /it (/J* — fi)2ds. Split the integration into integration over the

small cubes of the net corresponding to m and apply (1). Since the average

value of f?—fi is zero on each cube, (3) takes a simpler form; we obtain

The right-hand integral is uniformly bounded, so the right side approaches

zero uniformly in i as m approaches oo. This proves the convergence and

completes the proof.

Since the self-adjoint operator (Ai)-1 is completely continuous, its spec-

trum consists of an infinity of characteristic values, each of finite multi-

plicity, which are bounded and have zero as their sole limit. The spectrum of

Ai again consists of characteristic values, which are respectively the re-

ciprocals of those of (Ai)-1; in this correspondence multiplicity is preserved.

The characteristic values of Ai have no accumulation points and do not in-

clude zero. The spectrum of A is obtained from that of Ai by a translation

of 1 unit to the left, with a preservation of multiplicities. Therefore the char-

acteristic values of A have no accumulation points. Furthermore, while zero

may be a characteristic value, it has finite multiplicity, so we see that the
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number of linearly independent harmonic forms of degree p is finite.

If we restrict A to FL, the orthogonal complement of the harmonic forms,

it becomes one-to-one and has an inverse—it is this inverse which is under-

stood by the notation A-1. Either by the earlier proof or by the fact that an

element orthogonal to the range of a self-adjoint operator is in its null space,

the domain of A-1 is dense in F1. Since the characteristic values of the re-

stricted A have no accumulation point, A-1 has a bounded spectrum (finite

multiplicities) with 0 the sole accumulation point. A-1 is therefore a com-

pletely continuous transformation. Being completely continuous it is

bounded; it is therefore defined on all of F1.

The Green's operator G, introduced by de Rham [6], is defined to be A-1

on Fx and 0 on F itself. There follows immediately the

Proposition (de Rham). The Green's operator G on M (compact) is com-

pletely continuous.

The fact that A maps onto F1, combined with the fundamental lemma,

gives us

The full decomposition theorem (Bidal and de Rham). Any form yp

of class C1 can be written as a sum

yP = d(8a) +8(da) + F(yp),

where a is of class C2 and F(yp), the projection of yp on F, is of class Ck~k (or C2

if k = 5). (Ifypis Cm, l^m^k-5, then a is Cm+1.) Therefore <R,(d)+<R,(8) + F
is not only dense in Hp, but actually contains all C1 forms.

Since yp — F(yp) is in Fx it is in the range of A, so there exists a with Aa

= yp — F(\p). But yp — F(yp) is of class Cm, and by the fundamental lemma a

must be Cm+1 and hence in the domain of A itself. Therefore

yP - F(yp) = Aa = d(8a) + 8(da).

Bidal and de Rham [l ] used this result to establish the existence part of

Hodge's theorem. Given a set of /3P (pth Betti number) independent cycles

on M with real periods prescribed, there exists a unique harmonic p-form whose

integral on each cycle gives the prescribed period^).

The uniqueness has already been shown. By de Rham's theorem (a proof

for small k is given by Weil [22]) there exists a closed form yp of class C1

which takes on the prescribed periods. Since yp is closed, it is orthogonal to

the range of 5 and in the decomposition we have only

yP = d(8a) +F(yP).

(3) Added in proof. In [25] we obtain a different proof which does not use complete con-

tinuity.
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But by Stokes's theorem d(8a) integrates to zero on every cycle, so that F(\{/)

has the same periods as \p, giving the existence.

de Rham [6] has shown that the full decomposition theorem will give

the existence theorem directly without using de Rham's theorem. Hodge's

[16] uniqueness proof is also independent of de Rham's theorem.

With p = 0 (functions) Bochner [2] established the complete continuity

of (Ai)-1 by the integral equation method as one of the steps in his proof that

when k=co (analyticity) M can be analytically embedded in euclidean

(2«+1) -space.

2. Open manifolds. The assumption of compactness which was made on

M will now be dropped. In the study of differential operators on open mani-

folds we shall pay much closer attention to the domains of the operators in-

volved ; the definition of an operator on a Hilbert space must not only specify

what is done, but also precisely which elements it is done to, and there is

greater latitude in the selection of the domains of d, 8, and A on open than

on closed manifolds.

With d and 5 (but not A) restricted to compact carried C1 forms the

weak decomposition theorem can be extended to the Hilbert space 77" of

measurable, square-integrable forms on M. (See Kodaira [18].)

For the remainder of this section we shall understand by d the exterior

differential operator with domain restricted to C1 forms a such that both

||a|| and \\da\\ are finite; 5 is similarly defined. According to standard Hilbert

space conventions for combining operators (the domain of ST consists of

those <r in the domain of P such that Ta is in the domain of S; the domain

of S+T is the intersection of the domains of S and P), the domain of A is

determined by those of d and 5.

Immediately the difficulty arises that with these domains d and 8 will

not in general be adjoint and A will not be symmetric(4). The trouble is that

the integral of the w-form d(a *8) (see §1) is not necessarily zero; indeed, on

the open unit sphere in euclidean w-space it is equal to the boundary integral

of a * 8. We are therefore led to replace the missing compactness assumption

with the assumption that d and 8 are adjoint (forcing A to be symmetric);

we then say that the manifold has negligible boundary. Fortunately, a good

many manifolds have this property; in particular, every complete Riemannian

manifold has negligible boundary (see [14]). All the formal properties of

orthogonality and symmetry which were stated in §1 will be valid with the

new assumption, which is maintained for the rest of this section. For example,

since (Aa, a) = (da, da)+(8a, 8a), it follows that Aa = 0 if and only if da = 0

and Sa = 0. (The mere writing of Aa implies that a is in the domain of A as

given above.) As in §1, one has the alternative of proving that d = d2 (we

shall assume this done) or dealing with d2 and 82 from the start. (The sub-

script indicates that the domain is restricted to C2 forms, with the norm

(4) Added in proof. But see [25].
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requirements unchanged.)

The adjoint T* of a densely defined operator T on a Hilbert space is de-

fined as follows: the domain of T* consists of all elements a such that there

corresponds a* with (Td, <r) = (6, a*) for every d in the domain of T; the value

of T*a is a*. According to a theorem of von Neumann (see Nagy [20, p. 30]),

if T is a densely defined closed linear transformation, then TT* and T*T

are each self-adjoint. The method of proof is to show that (7+JT*)-1 is a

bounded self-adjoint operator. Since the inverse of a self-adjoint operator is

self-adjoint, this proves that 7+7T* and therefore TT* are self-adjoint.

Thus dd* and 55* are self-adjoint. (They are extensions of d8 and 8d

respectively.) However, this does not imply directly that their sum is self-

adjoint; to prove that it is the idea must be borrowed of examining the in-

verse of I+dd*+88*. That this operator is one-to-one follows from the

(semi-boundedness) inequality

([7 + dd* + 88*]a, a) = (a, a) + (d*a, d*a) + (8*a, 8*a) ^ (a, a).

For the inverse we shall establish the identity

(1) (7 + dd* + 88*)-1 = (I + dd*)-1 + (I + 88*)~l - I = S.

By the theorem cited, 5 is a bounded self-adjoint operator defined on all of

77p; therefore 5_1 is also self-adjoint.

The selection of 5 as the value of the inverse can be motivated. Let

A=dd* and 73 = 55*. In view of the adjointness of d and 5, one has d* an

extension of 5 and 5* an extension of d. Formally, A and B can be multiplied

in either order to give 0 (actually ABGO and BAGO; see below), and

7 7 _ 7

I + A + B " T+~T+B~+AB  " (I + A)(I + B)

I I
=-H-7.

I + A      7 + 73

The proof of (1) begins with the observation that 8*dGO (i.e. 5*J is a

contraction of the operator 0) and has as domain precisely the domain of d.

For suppose a in the domain of d: then there is a sequence of C2 forms (a')

approaching a such that (<7a*) approaches da. Therefore

(89, da) = lim (89, da{) = lim (9, dda,) = 0

for all 0 in the domain of 5; that is, 5*(<fa) =0. The corresponding result is

valid for d*8; an immediate consequence of these two facts is that ,473 = 0 on

the domain of 73, and 73^4 =0 on the domain of A.
It will now be shown that (I+A +73)5 = 7. Begin by observing that since

(7+73)-1 is defined on all of H" (see above),

(7 + 73)-1 - 7 = (7 - [7 + 73])(7 + 73)-» = - 73(7 + B)~\
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and similarly

(7 + ^)-1-7= -A(I + A)-K

These two facts imply that

AS = A(I + A)-1 + A[(I+ B)~l - 7]

= 7 - (7 + A)'1 - AB(I + B)~l = I - (I + A)-1.

Similarly,

BS = I - (I + B)-1.

Consequently,

(7 + A + B)S = (I + A)-1 + (I + P)-i -7 + 7
- (7 + A)-» + I - (I + P-)-1 = 7.

Since, as was already noted, I-\-A-\-B is one-to-one, this equation reveals

that it is precisely S~l; therefore I+A-\-B is self-adjoint and maps onto Hp.

It is now possible to show that A itself is self-adjoint (and therefore equal

to its extension dd*+88*). For Ai=A+7 is a contraction of dd* + 88*+I.

Therefore Ai is one-to-one and the inverse mapping is bounded; further-

more, (Ai)-1 is defined on a closed set. To show that this closed set is all of

Hp it will suffice to prove that every C1 form y in 77p (the C1 forms constitute

a dense subset of Hp) is in the range of Ai. Whether y is C1 or not, there is a

form a such that (dd*-\-S8*-\-r)a = y, as has just been seen.

Consider (Ad, a): since a is in the domain of dd*-\-88* one has

(AO, a) = (50, d*a) + (dO, 8*a) = (0, [dd* + 8~8*]a) = (0, y - a).

By the fundamental differentiability lemma (§3) it follows that a is C2.

ff one forms 5a pointwise, then on every compact set N the form 8a—d*a

is orthogonal to the dense class of C1 forms whose carriers are contained in

the interior of N. Therefore 8a = d*a everywhere, and similarly da = 8*a;

consequently (dd*-\-88*)a reduces to Aa. Therefore Aia=7, the range of A,

is dense, and so Ax = dd*-\-88*-\-I. Since the latter operator was seen above

to be self-adjoint, so is Ai and with it A = Ai — 7.

Theorem. On an orientable Riemannian manifold with Ck Riemann tensor

(k = 5, ■ ■ ■ , oo) and negligible boundary, the closure of A is self-adjoint.

If d and 5 had been restricted to forms of class Cm, 1 ̂ m^k — 5, the same

proof could have been carried through. The closure of A is thus independent

of the value of m.

By our original method (see [12; 13]), using the Friedrichs mollifier, we

obtained the self-adjointness of A when k = 2.

One use of the self-adjointness of A should be the extension of the heat
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equation method of Milgram and Rosenbloom [19] to open manifolds

with negligible boundary. By the spectral theorem A=J~\dE\; one would de-

fine Wt=fe~(KdE\ and hope to derive the properties of W, directly from this

representation (6).

Since A is self-adjoint, A-1 is densely defined on FL, the orthogonal com-

plement of the space of harmonic forms. (For an element orthogonal to the

range of a self-adjoint operator is in its null space.) Define G as in §1. One

can show that

dAGAd

(i.e. dA is a contraction of Ad) and use this to show that on the domain of d

dG C Gd (on domain of d).

In particular, dG = Gd whenever both are defined. On the other hand, if G

is a bounded operator, as it is for compact manifolds, dG will also be a

bounded operator defined on all of 77" and will satisfy GdGdG.

3. The fundamental differentiability lemma(6). In this section we shall

drop our previous convention and use A to denote the pointwise operator

with no norm restrictions. We wish to prove the

Fundamental differentiability lemma. Let M be an orientable Rie-

mannian manifold with Riemann tensor of class Ck, k = 5, ■ ■ ■ , <x>;

Let a be a measurable p-form such that fa* a is finite over every compact sub-

set of M;
Let \3—y+\a, where y is a Cm p-form, l^m^k — 5 (when k = 5 take m = l),

and X is a real number;

Assume that (Ad, a) = (6, /3) for every Ck~2 p-form 9 with compact carrier;

Then a is (equal almost everywhere to) a Cm+1 form and Aa = /3.

See [7], [18], and [23].

If for the moment A is viewed as a linear transformation with domain re-

stricted to compact carried Ch~2 forms, the last hypothesis can be stated:

A*a = j3.

The conclusion Aa = j3 will follow easily when a is known to be C2. For

then (Ad, a)=(0, Aa), and since (A0, a) also equals (6, /3), one obtains

(6, Aa—/3) = 0 for all compact carried C2 forms 6. But the C*-2 forms vanishing

outside a fixed compact set K form a dense subset of the corresponding

Hilbert space of p-forms on K, so that Aa— /3 = 0 almost everywhere on K.

Therefore Aa —/3 = 0 almost everywhere on M.

Assume that k^6 (in the appendix a very brief outline is given of the

modifications  necessary when  k = 5).  The  standard   ([l],   [7],   and [16])

(6) Added in proof. This has now been carried out; see [25].

(») We are indebted to Professor K. Kodaira for his helpful suggestions.
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Kneser parametrix is the double p-form

S Piy, x)r2~n(y, x)
">(y, x) =-r- Ai.j(y, x)dy'dxJ

p\(n — 2)nvn

whose detailed definition is given in the appendix. Here we remark that

on a general open manifold w can be defined only on a compact subset,

which for us is a neighborhood of an arbitrary point P; y is restricted to the

neighborhood 5 (see appendix) of P throughout.

The differentiability of a will follow from the relation

(2) a(y) = («[y, x], p[x]) - (A*co[y, x], a[x]);

our task is to obtain (2) without assuming that a is differentiable (cf. [l ]).

Following Kodaira [18, pp. 621-622] (see also Courant-Hilbert, vol. II,

p. 228) we modify w to w' (e>0) by replacing r2_n with F'(r), where

1    r
F'(r) = — [ne2 - (n - 2)r2] = A - Br2 for r^e,

2e»

F(r) = r2-1 for r ^ t.

[F'(r) is obtained by taking the tangent at r2 = e2 to r2_n, viewed as a function

of r2. ] w€(y, x) is Ck~2 [same as co(y, x) ] except when r = e, where it is C1.

Were it not for this behavior at r = e we would clearly have

(2') (Aco-, a) = («', 8),

and in fact (2') is true despite the behavior. This is verified by a patching

argument as follows:

Define the C°° functions

f(t) = 0   for   * ̂  - 1,       /(/) = 1    for   / = 0;

0 g f(t) ^1    for    - 1 g / ^ 0;

i?«.»(r) = A - Br2 + fl---W-" - (A - Br2)} (e > 5 > 0).

Use the latter in place of F'(r) to define w''s. Since F''s(r) is C°° in r we cer-

tainly have

(2") (Aco*-', a) = (««•', 8).

On the other hand, w*'s=w' except in the shell e — 5<r<e, so it will suffice to

show that as S approaches 0 the contribution of this shell to (2") approaches

0. On the right this is clear enough, but on the left the situation is compli-

cated by derivatives up to the second order. The key in treating these deriva-

tives is (cf. Friedrichs [10, p. 141 ]) that the various terms which arise, for

example
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I    t/r - e\  dr    dr r   I 1

T2      \    5    / ~dx~{ ~dxi Lr^2 ~       ~        J'

have bounds independent of 5. For since r2_n and A — Br2 agree at r = e

along with their first derivatives, r2~" — (A — Br2) is g C52 in the shell. If we

compute Aw''s and use this device and its obvious modifications we see that

the function being integrated on the shell is bounded. Since the volume of

the shell approaches 0, (2") yields (2') in the limit.

Let T=T(y, e) be the sphere of radius e about y. (2') can be rewritten

(Aco, a) - (Aco, a)T + (Aco«, a)T = (co, /3) - (co, f3)T + (co«, f3)T.

Take the limit as e goes to zero: (Aw, a)r, (co, /3)r, and (co*, /3)r, which are

all functions of y, converge to zero in the L2 norm on 5. It suffices to show

this for the individual components, which in all three cases are sums of terms

of the form

U(y) = f ViAy, x)iy(x)(g(x)yi2dx = J v(y, x)D(x)(g(x)y<2dx,

where V(y, x) is 0(rl~n) uniformly in y [see appendix; actually Aw is 0(r2~n) ],

vanishing when x is not near y, and 77>(x) is square integrable (properties

which are independent of the Riemann tensor). Let

U = | V |    and    E = \ Dg1'2 \,

and let C be a bound on fU(y, x)dx, independent of y.

| f.(y) | ^ f (U(y, x)y'2[(U(y, x)yi2E(x)]dx,

\f,(y)\2 g   f U(y, x)dx f U(y, x)E2(x)dx = C f U(y, x)E2(x)dx,

f I My) \*dy ̂ C f      f U(y, x)dy\ E2(x)dx g C2 f E2(x)dx.
J 8 J  x LV y J J T

Since 7?2(x) is integrable, frD2(x)dx goes to zero with e, taking with it

fs\fe(y)\ 2dy. Note that it has been established that V(y, x) is the kernel of

a bounded Hilbert space operator.

(A«<, a)T behaves differently and provides us with the "punch out"

term—i.e., approaches a(y). We prove this first with a replaced by a continu-

ous form *c(y) = Y'Ki^dy1- It is shown in the appendix that

n
A*co«(y, x) = n(n — 2)«-"ij -\-e2-"A7; + e-"0(r),

where rj = rn~2co. (The lead term is made plausible by the fact that in euclidean
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space Ar2= — 2n.) Working with the lead term, we have

n(n — 2)vn j   r?(y, x)*k(x)
J T

= £' [ f  Z Piy, x)Ar.j(y, x)KJ(x)(g(x)y'2dx~^ dy'.

An elementary calculation (using the basic properties of normal coordinates)

shows that Ai,j(y, y) =gij(y), so as e approaches zero p(y, x)Ar,j(y, x)KJ(x)

uniformly approaches Gu(y)KJ(y)=Ki(y). But JT(g(x))ll2dx=vn-{-0(e), so

n(n — 2)e~nfTv(y, x) * k(x) approaches «(y). The other terms in Aco* do not

contribute to the limit, and (Aoi', k)t converges uniformly to n(y).

The general case is now easy if we combine the special case just treated

with the fact that (by the same proof as above) Aw' is the kernel of a bounded

integral operator; let the bound be C. Given a positive 8 choose a continuous

k such that

Lt(a -k)< 8/2(C + I),

and then choose to so small that e<eo implies that the norm of

(Aco*, cl)t — a = (Au', a — k)t + [(Aco*, k)t — k] -\- k — a

is less than 5. (See Kodaira [18, p. 626]; also compare Friedrichs [10, pp. 527-

528].) Thus we see that (2') yields (2) as a limiting case almost everywhere

in S.

After a few preliminaries the differentiability of a is now obtained by dif-

ferentiating under the integral sign; see below.

Appendix. We shall follow the outline given by de Rham [7] to establish

the properties of the parametrix co(y, x), at the same time examining co*. We

then show that equation (2) of §3 implies the fundamental lemma.

Fix a coordinate system about an arbitrary point P, and select a positive

5 so small that in the sphere S* of radius 25 centered at P the normal co-

ordinate functions zi(y, x) (see below) exist and are of class Ck~x; and, in

addition, that if y is fixed in S* and z'(y, x) used as coordinates, then normal

coordinates v(z, z') exist and are Ck~2 in S*. Let 5 be the sphere of radius s;

S' the sphere of radius s/n.

Construct a C°° function p(t) whose extreme values are 0 and 1 and which

satisfies

p(t) = 1   when    t g s/4n;       p(t) = 0   when    / ^ s/2n.

Define

p(y, x) = p(r[y, x]).

The constant vn is the volume of the unit sphere in euclidean n-space.
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Define Aij(y, x) = —d2r2(y, x)/dyidx'. By the conventions for capital

indices, Y-Ai.jdy'dx* is then defined (it is equal to 22'p![Det.4(7, J)]dyIdxJ).

For y in 5 define

p(y, x)r2~n(y, x)
"(y, x) = Y -—-7-Ai,j(y, x)dyIdxJ.

p\n(n — 2)vn

(We shall omit the minor changes necessary when ra = 2.) co(y, x) is invariant.

The distance r(y, x) is given (when small) by the formula

r2(y, x) = Y gu(y)^j = Y gijWz'a'.

Here z'(y, x) are the normal coordinates of x issuing from y, and the bar on

gij indicates that the components are given with respect to the z coordinate

system. For a concise summary of normal coordinates as well as an exposi-

tion of material used below see Bochner [2].

We wish to establish the "parametrix property": Axco(y, x) is 0(r2~n).

The first step is to compute A(r2_n) (see Feller [8, p. 639]); concurrently we

compute Ar2. For functions, A is the Laplace-Beltrami operator which is

given coordinate-wise by

A = — Y-   e1'2?*'-
^ |i/2   a2<|_S    £     dz>]

dr2/dz' = 2 Y iim(x)zm = (property of normal coords.) 2 Y Sim(z)zm, and there-

fore

Yi (z) —: = 2 Y 8mz   =2z .
dz>

Consequently

A(r2~n) = A(r2)«-""2 = £ (m - 2) —- - [f1/2»-V],
gl/2    Qzt

^ 2 d     .
Ar2 = Y-\gl'V].

^ |l/2    dzi

But

Y - [(^-'V] = 0,
dzx

while

£ — (««) = n,
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SO

/» - 2\    1 „       dg(z)
A(r2-») = (•-)-r-»£ «'——,

\    2    J g(z) *"        dz'

2    --,       dg(z)
Ar2 + 2n=-— £ «' -^ ■

g(z) dz'

Because dg(z)/dzi is zero at 3 = 0, the right-hand side of the last equation and

the factor of r~n above it are both 0(r2), uniformly in y near P.

This result can be used in the study of Aco in view of the following product

formula established by de Rham ([7, p. 53]; cf. Kodaira [18, p. 612]), an

invariant formula resulting from his explicit evaluation of A:

A(fv) = /(Ai,) - 2v + (A/)„,

where v = ]T)'NxdxK is defined by

Nk= T.f'—.Ei.i-
i.i        dX'

The covariant derivatives of the components of n are given by

OX' „=1     o

Take/ to be r2_n and n to be rn~2w. We have just seen that A/ is 0(r2~n), as

of course is/ itself. Therefore the terms fAr) and (Af)n are both 0(r2~n). We

have left to show that v is 0(r2~"), or equivalently that 77/,; is 0(r).

Select normal coordinates issuing from a point Q and let v and u be two

points with coordinates given in this system. We need the fact (true in any

coordinate system) that

dr2(v, u)
——— = - 2g{m(v)zm(v, tt)

dv'

(see de Rham [7, p. 59]). (Note the implication that r2 is Ck. Set v=0 (i.e.

v is the origin Q) and differentiate with respect to u>. Since zm(0, u) =um we

obtain

32r2(0, u)
——— = " 2g,-,-(0),    or   A{j(0, u) = gii(0).

du'dv'

Therefore dHi/du' = 0. On the other hand, Y%.(u) vanishes at w = 0 (origin

of normal coordinates) and so is 0(r). Therefore Aw is 0(r2~"). (Since at v = 0

gij(v) is gn(y) and dyi = dv' we have shown that ^lAi,J(y,x)dyIdxJ

= ^lGiij(y)dy'duJ with components independent of u.)

We also need—what is readily verified—that the first partial derivatives
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of the components of Aw are 0(r1~n).

Returning to the product formula for A and using the determination of

Ar2, we see that setting f = r2 and again 77 =r"_2w yields

M
Aco«(y, x) = n(n - 2)€-"jj -j-€2-"At; + f-nO(r);

we don't need the sharper 0(r2).

We now have the tools to derive the differentiability of a from the equa-

tion

(1) a(y) =   I  co(y, x)*y(x) + I   [Xu(y, x) - AIco(y, x)]*a(x),

where (in order to have room for iteration) we restrict y to the open sphere

S'. The first integral—as is seen below—gives a Cm+1 form in y; it is the

second which occupies our attention. We utilize the paper of Bochner [2,

Lemmas 1, 2, 4, and 5]. (The components on the right are integrals of the

type he considers.) Briefly, by iterating (1) until the kernel is in L2 it follows

that a(y) is bounded (i.e. each Ai or, equivalently, \a\ bounded). When a(x)

is known to be bounded, (1) yields the continuity of a(y); when a(x) is con-

tinuous, (1) implies that a(y) is C1, and the derivatives are obtained by dif-

ferentiation under the integral sign.

We now digress on an elementary fact. The normal coordinates z*(y, x)

satisfy gij(0) = ga(y); we need normal coordinates wl(y, x) such that the

corresponding tensor satisfies gij(0)=8{. Let G be the matrix of gij(y). The

positive definite quadratic form XGX' can be written as a sum of squares by a

linear transformation. Indeed, set

Tl  =  gll      [gllXl + gl2X2 +   •  •  •   + gmXn]

and proceed by induction. If Y=XM, then M~lG(M-1)' = I.

Take normal coordinates 2*(y, x) and then introduce the coordinates

wl(y, x) by w(y, x) =z(y, x)M(y).

We follow Kodaira in using the coordinates w{ as the independent vari-

ables in the integrands. We wish to show that a is CL (l^L^m) implies that

a is CL+1; we illustrate with the integral

r , e(g(w)y<2
■   wi-r^nHr,j(y, x)AJ(x)dw.

J dwx

Begin by taking dL/dyL (w fixed) underneath the integral sign, bearing in

mind that x = x(y, w). Since r2= Y (wi)2> r~" is unscathed, as is w\

d(g(w)y2

dwi
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requires special comment, since g is a function of y as well as w. But

dg(0) 6™
T7 = 0   so    ——-(Siw))1'2

aw' dyLdw'

has a zero at w = 0. In view of this, if we now switch the variable of integra-

tion back to x we can use the cited Lemma 2 to take one more derivative.

Applying the same method to the other terms, we obtain by induction the

fundamental lemma.

When k = 5 the parametrix u must be changed to the noninvariant co6

by using the original coordinate system in S and replacing Ai,j(y, x) by

Gi,j(y). This economizes on differentiability, and equation (1) is still valid.

But w6 is only 0(r1_n), the difficulty being that 77/,j is no longer 0(r).

By iterating equation (1) once the poles can be made 0(r2~n), but we must

also show that the first derivatives are 0(rl~n). This is done with the aid of

the function

VrKy, x)i

*b(yX]'
where the C°° function c£ is 1 for t^ 1/3 and 0 for /^2/3. From this one ob-

tains a(y) is Cl. With the aid of the coordinates w' and the continued use of

this iteration method a second derivative can be obtained.
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