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1. Introduction. A sequence {X„},» = 0, +1, ±2, ■ ■ ■ , of real or complex

numbers we shall say has uniform density 1 if there are constants L and 5 such

that |X„ — n\ ^L and |\„— Xm| 2ïô>0 for n^m. This is a more restrictive

notion than density, for, considering only those Xn for which w>0, it is clear

that a sequence of uniform density 1 has a density as defined by Pólya equal

to 1, but the converse is not true. Sequences of uniform density d are defined

in a later part of the present paper for any d>0. If /(z) is an entire function

of exponential type y, Q^y<w, that is,

uniformly in all directions as |z|—><», then/(z) is completely determined

by its values at any sequence of uniform density 1. Some properties of entire

functions of exponential type extend in a natural way from a sequence of

uniform density to all points of the real axis or of a strip parallel to the real

axis. For example, the authors have shown [6] that if an entire function of

exponential type y, 0^7<x, is uniformly bounded at a sequence of uniform

density 1, then it is uniformly bounded on the entire real axis. It also has a

bound in every strip parallel to the real axis. This result was applied to ques-

tions concerning the coefficients of power series.

In the present paper a further property of sequences of uniform density

is proved. It is shown that if /(z) is an entire function of exponential type

y, 0^7<x, belonging to Lí(— », <x>) on the real axis and ¡X„} is a sequence

of uniform density 1, then the ratio { ^n |/(X„)| 2}//-»|/(x)| 2¿xhas positive

upper and lower bounds independent of the function. An essentially equiva-

lent statement is that if g(¿)G¿2(—7, 7) where 0<7<7r, and {X„} is a se-

quence of uniform density 1, then there are positive constants A and B

independent of the function g(t) such that

-I g(t)e*»'dt

(1) A ¿-■ è B.

r \g(t)\2dt
J -y
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There are other sequences for which this inequality is true; we shall say

that a sequence of functions {exp (i\„t)} is a frame over the interval ( — 7, 7)

if there are positive constants A and B such that (1) is true for all g(t)

G¿2(—7, 7). If 7=tt and X„ = w, then -4=5 = 1 is Parseval's relation. The

proof that a constant B exists is quite direct, the proof of the existence of A in

case {X„} is a sequence of uniform density 1 and 0 < 7 < it is one of the central

results of the present paper.

It was shown by Paley and Wiener [9], who initiated much of the work

in nonharmonic Fourier series, that if X„ is real and |X„ — n\ <ir~2, in which

case the condition |X„— Xm| _5>0 for n^m is^utomatically satisfied, then

{exp (iXnx)\ is closed over (—x, it). Boas [l] pointed out that their results

imply that (1) is true in this case with 7=7r. Duffin and Eachus [5] showed

that this inequality is true in the case 7 =7r if X„ are real or complex numbers

satisfying |X„ — n\ iS0.22 • • • . In the present paper it is shown that (1) is

true in the case7=7r if {X„} is a sequence such that ] Re (X„) — n\ ^0.22 • • •

and the imaginary part of X„ is uniformly bounded. Boas [3] has considered

problems analogous to some of these for Lp spaces.

If relation (1) is true, then the sequence of functions {exp (i\J)} is

clearly complete over (—7, 7); that is, if g(/)£Z<2(—7, 7), then the set of

relations

f   g(l)e*»'dt = 0
J --,

imply that g{t) vanishes almost everywhere in (—7, 7). A proof of complete-

ness in a more general case than any mentioned above was given by Levinson

[8]. Levinson's result, without stating the most general form, shows that if

the points lie in a strip parallel to the real axis and if | Re (X„) — n\ ^a< 1/4,

then the set of functions {exp (ikj)} are complete in {—if, ir). On the other

hand, completeness is a less strong conclusion than the frame condition. We

shall show, for example, that if {X„} is a sequence of uniform density 1, then

the sequence of functions {exp (îX„/)} for which «>0 form a complete set

in any interval (—7, 7) where 0<7<tt, but they do not constitute a frame

in any such interval.

Relation (1) gives the set of functions {exp (i\nt)} properties quite similar

to an orthonormal set such as {exp (int)} in Hubert space. However, the

situation is more complicated because the set {exp (iXj)} is highly over-

complete on an interval of length less than 2ir. Most of the previous study of

nonharmonic Fourier series has been for the exactly complete case; that is,

the case in which the sequence of functions is complete but becomes incom-

plete by the omission of any one of them. It has therefore seemed worth-

while to give in detail some of the elementary relationships between moment

sequences, expansion coefficients, etc. It is shown that these relations are
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consequences of well known properties of positive definite transformations

in Hubert space.

These considerations give information only about mean convergence of

the series. However, combining properties of mean convergence with prop-

erties of the Dirichlet kernel gives conditions for pointwise convergence. It

results that nonharmonic Fourier series have to a large extent the same

convergence and summability properties as ordinary Fourier series.

2. Fourier frames. We begin the proofs by making the following more

precise definitions.

Definition. A sequence {X„} of real or complex numbers has uniform

density d, d>0, if there are constants L and 5 such that

(2)
n

x-"7 ^ L, n = 0, ±1, ±2,

(3) | X„ - \m | ^ S > 0, n ^ m.

Definition. A set of functions {exp (í'X„¿) } is a frame over an interval

(— 7i 7) if there exist positive constants A and B which depend exclusively

on 7 and the set of functions {exp (iknt)\ such that

1      i ri

,1T     „       |  J-y

(4) A ^-:-g B

I
1

1

g(t) \>dt

for every function g(/)£Z<2(— 7, 7).

In the case of a frame, we shall suppose in part 2, except where the con-

trary is stated, that the index n runs through all positive and negative

integers and zero; however, we do not suppose that the X„ are distinct. The

following theorem is to be proved.

Theorem I. If {X„| is a sequence of uniform density d, then the set of func-

tions {exp (i\nt)} is a frame over the interval (—7, 7) where 0 <y <ird.

The following equivalent theorem is also to be proved.

Theorem I'. Let \ X„} be a sequence of uniform density d and let 0 <y <ird.

Iff(z) is an entire function of exponential type y such that /(x)£Z,2(— », 00),

then

E|/(Xn)|2

(5) A ^ —^-^ B.

f(x) \2dxl
Here A and B are positive constants which depend exclusively on y and {X;[j
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It will be shown that either of these theorems implies the other, and that

any set of positive constants A and B which suffices in (4) or (5) also suffices

in the other inequality. It will be clear from the sequel that the constant B

exists under conditions much milder than are necessary to infer the existence

of A. The proof of these theorems depends on several lemmas. The following

lemma is a now classical result of Paley and Wiener [9].

Lemma I. If /(z) is an entire function of exponential type y and if f(x)

£L2(— °°, <*>), then there is a function g(í)G¿2(—7, 7) such that

(6) m-^fjtà-*
It is clear in this lemma that g(t) is the Fourier transform of f(x), that is,

the Fourier transform of f(x) vanishes almost everywhere outside (—7, 7),

and so Plancherel's theorem states that

(7) r \f{x)\Hx=  f' \g{t)\Ht

From these relations it follows that if f(z) is an entire function of exponential

type 7 such that /(#)£Z*(— cc, °°), then

(8) i/(*+*yi*(—) «7,"{T"i/(*)h**} •

Differentiating (6) k times we also have

1       /•?

(2tt)1'2J_/

so, by Plancherel's theorem,

r \f^(x)\*dx = r 1 g(t)\wkdt

^72kfy\g(t)\2dt.

Thus,

(9) f    \f^(x)\2dx ^ 72* f    |/(x)N*

for every entire function /(z) of exponential type 7.

From Lemma I it clearly follows that Theorem I and Theorem I' are

equivalent. More generally, a set of functions {exp (i\nt)} is a frame over

(— 7i 7) if and only if there exist positive constants A and B such that
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El/(x„)|2

(10) A ^ —^- g B

f{x) \2dx
£

for   every   entire   function  /(z)   of   exponential   type   y   satisfying f(x)

GL2(- », °°).
Results similar to Lemma II were obtained by Plancherel and Pólya [10]

and by Boas [2] under different conditions.

Lemma II. Let {exp (iX„/)} be a frame over the interval (—7, 7). // M is

any constant and {/*„} is a sequence satisfying \ßn— X„| ¿M, then there is a

number C=C(M, 7,  {Xn}) such that

El/GO I2
—-<c
Z|/(Xn)|2     -

n

for every entire function /(z) of exponential type 7.

Proof. It is clearly sufficient to prove this lemma under the additional

hypothesis that /(x)£Z2( — «>, °°). Let {exp(îXm/)} be a frame over (—7, 7)

such that inequality (10) is satisfied, and, if M is a given positive number, let

{p„} be a sequence such that |X„ — pn\ ^M. It is to be shown that if /(z) is

an entire function of exponential type 7 belonging to L2( — œ, 00 ) on the

real axis and p is a given positive number, then

(ii) El/GO -/(Xn)|2^rEI/(xn)|2
n n

where

(12) T = — (e^iS - lX^V - 1).
A

If/(z) satisfies these conditions, then Taylor's theorem shows that

/GO - /(x„) = E ^~ G*. - xo*.

Multiplying and dividing the last series term wise by pk, we have from

Cauchy's inequality

I /GO - /(x.) I2 ̂ j E -^^} { E —}.

The second sum on the right side of this inequality is exp (M2p2) — 1. The

function f(k)(z) is an entire function of exponential type 7, and, according to
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inequality (9), it belongs to class L2(— », oo) on the real axis. Then the

function /c4)(z) satisfies inequality (10), so

Z I /<fc)(Xn) \2 ̂  B \     | /<*>(*) \*dx ̂  By2" I     | f{x) \2dx.
n " —oo J —oo

Since the function/(z) also satisfies (10), it is clear that the last expression

is equal to or less than \By2k/A\ Z|/(X«)|2> and inequality (11) follows.

Then Minkowski's inequality shows that

( £ I /go 1*)"" s ( EI /(*») l2)1/2+ (rE I /(xj l2)1'",

so the lemma follows with C=(l + ri/2)2.

Lemma II shows that the constant B of Theorems I, I' exists. For in the

case d = 1 it is well known that the sequence of functions eint is a frame

over ( — 7, 7) where 0<7^ir. Since |X„ —«| ^L, the existence of B follows

from Lemma II. The case d¿¿l may be reduced to the case d= 1 by a change

of variables.

The following result shows that the set of points {X„} such that

{exp (iXj)} is a frame over a fixed interval is in a sense an open set.

Lemma III. Let {exp (i\nt)} be a frame over ( — 7, 7). There is a 5i>0

such that {exp (inJ)} is a frame over the same interval whenever |ju„ — X»| =5i.

Proof. Let/(z) be an entire function of exponential type 7 such that/(x)

£I<2(— 00, 00), and let {exp (t\„t)} be a frame over ( — 7, 7). Then/(z)

satisfies inequality (11) where \p„— X„| =Af, and T is defined by (12) with

p and M any positive numbers. From (11) and Minkowski's inequality we see

that
(Vl/J / \l/2 / \l/2

Z|/0\n)|2J        ̂ ZI/GOl2]       +(^£|/(Xn)|2j       .

Now let di = M=l/p and choose p so large that Z'<l/4. Then inequalities

(10) and (13) show that

A

4
f"f/(*){y*á Zl/wl2.

«j —00 «

Lemma II completes the proof.

The above method is similar to that used by Duffin and Eachus [5] to

show that {exp (ip„t)} is a frame over { — w, it) if \ßn — n\ = Af<(log 2)/ir.

To obtain this result let X„=m, 7=7t, p — (y/M)112. Then since in this case

B=A, we see from (12) that r=(e^-l)2, so T<i if M<(log 2)/tt. From

(10) and (13) it is seen that {exp (ip„t)} is a frame over (—ir, «■) if |/x„ — n\

= M<(log 2)/7T. Theorem II will serve to strengthen this result by showing
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that {exp (ipj)} is a frame over (— ir, w) if there are constants ß and M

such that \l(pn)\ uß, | Re (ju„)-»| ^Af<(log 2)/tt.

The proof of the existence of the positive constant A in Theorem I de-

pends on several lemmas. The following result has previously been proved

by the authors [6].

Lemma IV. If f(z) is an entire function of exponential type y and {X„|

is a sequence of uniform density d, d>y/ir, then

| f(x 4- iy) | g JfíTl.l sup | /(X„) |

where the constant M is independent of f(z).

The following lemma is closely related to results of Bourgin [4] and

Ibragimov [7]; however, these authors were not concerned with sequences of

uniform density. It is stated in a more general form than needed because of

its intrinsic interest.

Lemma V. Let A2 be the closed subspace of L2(--ir, ir) generated by the set

of functions 1, eiB, e2ie, • • • . If f(z) is an entire function of exponential type

y such that /<n)(0)^0, w = 0, 1, 2, ■ • • , and the sequence {X„} has uniform

density d, d>y/ir, then the set of functions f(\neie), n = 0, ±1, +2, • • • , is

complete in Az.

Proof. Let

(14) F(z) = f*f(ze<°)g*(6)dd

where g(0)CzA2, that is,
N

g(6)  = l.i.m.   Ec^"*

with ¿j| c,\2 < =o . Here and elsewhere the * represents the complex conjugate.

Since /(z) is an entire function of exponential type y, it is clear that F{z) is

also. Under the hypothesis

^(x„) = f f{\ne»)g*(e)de = o, n = 0, ±1, ±2,

it is to be shown that g(d) =0 almost everywhere. Since FÇKn) =0, Lemma IV

shows that F(z) vanishes identically. Then differentiating (14) we have

= /'/
FC*)(0) =   I    fci(0)eikeg*(e)dd

for ¿ = 0, 1, 2, ■ • • . Since /W(0)^0, the lemma follows.

Lemma VI. Given R satisfying 0<R<w, let p{z) be regular in the circle
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\z\ =i? and let {X„} be a sequence of uniform density 1. For each positive

number h there is an integer N and a finite set of numbers a_.y, ö-at+i, • • • ,

ao, • • • i fljv such that

N oo

(15) p{z) - Z <ineiX»*= Z bkzk
-If ¡fc=0

and

h
(16) |»*|S-rri \an\^N.

R"

Moreover, given h, R, p(z), L, 5, the same N suffices for all sequences satisfying

(17) | X. - » J á L,        | X„ - Xm | è 5 > 0   for   n ^ m.

Proof, the function/(z) =eiÄS satisfies the conditions of Lemma V with

7 = i?<ir, so the set of functions {exp (tX„ Reie)} is complete in ^42- It is well

known that closure and completeness are equivalent in A2 so there is a finite

set of numbers a_M, a-M+u • • • , aM such that if

M

r{Reie) = p(Reie) - Z «»e*"**"

then

(18) kDHÉ^n s7'
The Taylor's series of r(z) about the origin

M oo

t(z) = ¿(z) - Z a«eiXnZ = Z ¿*2*
-Af t=0

converges in |z| <R. Then making use of Cauchy's integral representation

of bk we have from (18) and Schwarz's inequality

i   i    [ i   r fa
¿irl J i|,|_B Z*+1

A

2i2*

Let fln = 0 for | ra| > M. Then choosing a sufficiently large integer N, the first

part of the lemma follows.

The proof of the second part of the lemma is by contradiction. Let

h, R, p(z), L, 5 be fixed and suppose there is no N which suffices for all

sequences {X„} satisfying (17). Then there are sequences {X^1'}, {Xá2)}, • • • ,

{X?}s • • • such that the least integer N-N(J) for which (15) and (16) are

true for some a%\ if1 satisfies
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N(j) > j.

From relation (17) it is clear that there is a subset of the sequences {X^},

which by a renumbering we suppose is the entire set, which converges to a

limit sequence {X^0)},

limXi" = \l0), n = 0 ± 1, + 2, • • •.

The sequence {X®} satisfies (17) and so has uniform density 1. Then, by

what has been shown, there is an N0 and a set of numbers 0$' such that

1 1       /• » I N0 „ 2      >i   1/2 L

Í- f   \p(Re«) - g «T exp «fc« */)   »\      á I'

| aT | £ IT«,        « = 0, ±1, ±2, • • • , ± iV„.

The finite sum

S      (0)
E «n   exp (¿X„ jRei9)
-JV0

is a continuous function of the 2-/V0 + l variables X„, so for sufficiently large j

Í 1   r *I JV° »   2   1 1/2
^— j       ¿>(i?eifl) - E «n ' exp ffX;    i?e' )   M      g A.
(.2ir J _T | _at0 j

This gives a contradiction since N = N0 suffices in (15) and (16) for all large j.

Proof of Theorem I. It has been shown that the constant B of inequality

(4) exists. To show the existence of the positive constant A, it is sufficient

to consider the case d=i, 0<7<ir. Given the sequence {X„} of uniform

density 1, let

(19) XT - Xn+„ - w.

Then for each positive and negative integer v the sequence {Xi"*} is of uni-

form density 1 with the same bounds L, ô as the given sequence,

| X„   — »I S ¿i        I X»   — Xm | ^ 8 > 0 for n 9e m.

In Lemma VI define p(z), R, h by

1 1
p(z) - 1,        Ä = — (7 + r),        * - —■ (Ä - y).

2 ZK

Then the lemma asserts that for suitable a%\ b%\ N we have

N oo

(20) 1 —   E  fl»'  exp (i\* x) =  E 6* *
n=-AT 4=0
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where

(21) ft*  ]á — > a«      = #!

and the same constant N suffices for j» = 0,  +1,  +2, • • • . If we define

00

(22) ^,(x) = e¡>* - eivxY,bVx ,
4=0

it follows from (19) and (20) that

(23) \l/„(x) =   Z   an   exp (i\n+,x).
n—N

Writing

00

(24) r»(aO ««"»Zft» *,,

we have

ftf» = e'"* - f(l,)(x).

It is to be shown that Çw(x) has in some sense a small average value, and

it will follow that i}/,tx) has some average behavior similar to eivx. In the re-

mainder of the proof of Theorem I we shall use the notation

(*>g)=—- I    <t>(x)g(x)dx,        \\g\\ =  <—- Í     |g(x)|2d*>
¿X      J-y \¿1T J-y !

1/2

Given a function g(^)G-i-2(—7, 7), define g(x)=0 in the part of (— ir, ir)

that lies outside (—7, 7). Then Parseval's relation takes the form

yi2 = zi(^.g)i2-
—00

Since R>y, inequality (21) shows that the series (24) converges uniformly in

— 7^x^7; hence after multiplying (24) by g(x) and integrating termwise we

obtain

(f   1 g) - JL ** (<   1 * gi-

lí this series is multiplied and divided termwise by (Ry)kl2, then Cauchy's

inequality and (21) show that

I (fw, g) |2 ̂  Ä2{ z(~Y)- ZI («^ **«) |»*-v-».
{ i-^o \-K / )   fc=o
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Then making use of Parseval's relation, we have

E I (fw, g) I2 ̂  -^- E E I («•". xkg) VR-ky~k
»=-» R  —   7  *=0   »=-oo

AIR     "    ||x*g||2

22 - 7 *=o    Ä*Y*

In the last series the integration defining ||x*g|| need only be carried over

(— 7. 7)i so ||**4?|| =7*||g||- Thus, recalling the definition of A, we have

(25) E l(r('\*)MyiV4.
»"=—00

Since ein=\pr{x)+^y>(x), we have {ehx, g)=(\¡/„ g) + (f("\ g), and then

Minkowski's inequality shows that

/    °° \l/2        /    00 \l/2 /    00 \l/2

(^El(^,g)|2j  ^EI(^«)|2J  + (EI (f('\g)\2)  ■

The left side of this inequality is equal to ||g|| by Parseval's theorem, and the

second of the two terms on the right we have shown in (25) is dominated by

lkll/2. Thus

(26) ¿|(^l)My|V4.
—00

Now substituting in (23), we have

N

GrV. g) =   E   añ («     * , g),
n=-iV

so Cauchy's inequality and the estimate of a»  given in (21) shows that

I «-„ g) |2 á (2¿V + 1)JV2 £   I (*ix"+"*. g) |2.
n=-Af

If the last inequality is summed on v from — °° to °°, then in the double sum-

mation the sum n-\-v runs through each integer precisely 2N-\-\ times.

Thus

00 00

(27) ¿2 I (*.. g) I 2 ̂  (2/V + l)2tf2 E   I (*iXt*> g) I2-
—00 k=—ao

If we combine (26) and (27, Theorem I follows; and with ¿ = 1 we have

^4 =l/{4A/2(2Ar+l)2}. The magnitude of N is not determined by the previous

argument so this is not an estimate of A.

As previously remarked, Theorem I is equivalent to Theorem I'. How-
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ever, the conditions of Theorem I' are unnecessarily restrictive because it is

not necessary to suppose that f(x)Ç.L2(— oo,  so). If {X„}, 7, d satisfy the

conditions of Theorem I', then every entire function/(z) of exponential type

7 satisfies inequality (5). If either of f2«,\f(x)\ 2dx, Z|/(^»)|2 is finite, then

the other is also and (5) holds. For if /"«, \f(x) \ 2dx < <x>, then inequality (5)

follows  from Theorem   I',  so suppose  that   Z|/(^*)| 2< °°-  Then /(z) is

bounded at the points z=X„, so Lemma IV shows that /(z) is bounded on

the entire real axis. The function

sin ez
Ft(z) = /(z)-

ez

where 0<e<(7rd — 7)/2 is an entire function of exponential type (7rd+7)/2

and F((ï)GL2(-«i1 ce). By Theorem I' it follows that there are positive

constants AA=A((y+ird)/2), BA = B((y+ird)/2) such that

At¿ £ I "■(>■>!■ <«

/_: F,(x) \2dx

Letting € approach zero, the constants 4A, BA may be supposed fixed since

Ft{z) remains of type (7rd-f-7)/2. It then follows that the limit /(z) of F,(z)

also satisfies this inequality. Thus f(x)QL2(— °o, °o), so Theorem I' shows

that/(z) satisfies inequality (5).

This remark leads to a strengthening of Theorem I. Without attempting a

complete analogy to the stronger form of Theorem I', let {X„}, 7 satisfy the

conditions of Theorem I with d = i. Thus 0<7<ir and {X„} has uniform

density 1. Let G(t) be a function of bounded variation over (—7, 7). If

1   °° i ry
— Z II    e^'dGit)
2ir _oo I J _y

< »,

then   G(t)   is   essentially   the   indefinite   integral   of   a   function   of  class

Li{— °°, °°), and

A <,

1      °°    I    /*T

¿1C    -X\J -y

>dG(t)

£

á B.

\G'{t)\2dt
-1

This follows from Lemma I and the stronger form of Theorem I' since

m - Ti^/./"*«
is an entire function of exponential type 7.
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Not every frame over an interval (—7, 7) can be strengthened in the

same manner to Stieltjes integrals. This is shown by the example in which

7=7T, X„ = w, and G(t)=Q for —7r</<7r, G(—ir)=l, G(7r) = l. For in this

case, although [eini] is a frame over ( —ir, it), we see that G{t) is not ab-

solutely continuous but

I eintdG{t) = 0, n = 0, ±1, ±2,

Let {X„} be a sequence of uniform density 1, and let 0<7<ir. Over the

interval ( — 7, 7), the set of functions {exp (i\Ht)}, n = 0, ±1, +2, • • • ,

is a frame, and is therefore complete. The subset of functions {exp (i\nt)}

for which ra>0 is complete over (—7, 7) according to a result of Levinson

[8, p. 3], but it is nota frame over this interval. For letg(i) =eialwhere a>0.

Then

1       Cy / 2 \1/2 sin y(a + z)
(28) /(,).__!    e«"e»<dt = (-) \

(27r)1/2J_T \t/ a + z

Now fly\g(.t)\ 2dt is a positive constant independent of a, but

00 2    °°

EI/(x»)|2 = -E
n=l T   n=l

sin y(a + X„)

a + X„

2 " 1
^ — e^L E

a + X„|2

and this approaches zero as a—>• <». Thus there is no positive constant A such

that (4) is satisfied.

We shall say that a set of functions {exp (i\J)} is an exact frame over

an interval / if it is a frame over / but fails to be a frame over / by the

removal of any function of the set. This use of exact is analogous to that of

Paley and Wiener in the case of exactly complete sets. If {exp (*X„/)} is a

frame over I but is not an exact frame over i", then we say it is an over-

complete frame over I.

If {X„} is a set of uniform density 1 and 0<7<ir, then, according to

Theorem I, the set of functions {exp (tKj)} is a frame over ( — 7, 7). This

set of functions is an overcomplete frame over ( — 7, 7), indeed if any finite

number of the functions are deleted the remaining functions are a frame over

(~ 7i 7)- This follows from the fact that if a finite number of the Xn are de-

leted, the remaining X„ may be reindexed so as to satisfy inequalities (2),

(3) with the bound L replaced by a larger number.

Lemma VII. If {exp (i\nt)} is a frame over (—7, 7) but fails to be a frame

over this interval by the removal of some function of the set, then it fails to be a

frame over (—7, 7) by the removal of any function of the set.

Proof. Suppose that there are positive constants A, B such that for all

g(t) G¿2(-7,7),
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f^li"¿IT     n    \ J —

e*«lg{t)dt

A ^-—--- ^ B

*/-T
g{t)\2dt

but that if X„, is omitted there are no such A, B. The failure must be in A

rather than B. Then there is a sequence of functions gt(t), fe = l, 2, 3, • • -,

whose Fourier transforms we write /i(z),

(29) tyy.^j^y,

which are normalized by the relation

r ¡/*(*) \*dx = r \g,:(t)\2dt = i
J — 00 ■»  —t

and such that

Z|/*(X»)|2  =  A ZlA(Xn)|2^Y"

Clearly/*(Xn) tends to zero as &—>«> for each n^m, but |/*(Xm)| has a lower

bound equal to or greater than ^41/2>0 as k—♦<*. Now /¿(z) is an entire

function of exponential type y, and, according to (8), it satisfies

| /*(* + if) I = (tA)1'2 i#, ¿ = 1, 2, 3, • ■ • .

The sequence of entire functions being uniformly dominated, there is a sub-

sequence which converges to a limit/(z), and uniformly in every bounded

domain. Thus /(z) is an entire function of exponential type y and

/tY/2 r°\
[/(*+ *j)| ^ Í — )    e71"1, I     |/(*)N* ^ 1.

Now/(X„)=0 for n^tn, and/(Xm) ;¿0, in particular, /(z) does not vanish

identically. Therefore, if j is any integer and

z — Xm
F(z) = --f(z),

z — \j

then F(z) is a not identically vanishing entire function of exponential type

y. It is readily shown that F(x) £Z,2( — °°, °°) and F(\n)—0 for w^j. Ac-

cording to Lemma I there is a function G(t)^L2(—y, 7) such that
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G(t) is not equivalent to zero in (—7, 7), but

1

so the lemma follows.

1     c
-       G(t)e**'dt = 0, »#*,

Theorem II. Let \„=an+ißn where an and ßn are real and \ßn\ ^ß for

some constant ß. If the set of functions {exp (iaj)} is a frame over an interval

(—7, 7), then {exp (i\„t)} is a frame over the same interval.

Proof. Let /(z) be an entire function of exponential type 7 such that f(x)

£Z,2(— », «s). According to Hadamard's factorization theorem it may be

written in the form

(30) zoo = zv^fn 1 - — \zh>
r_l \ Zy /

where Zi, z2, z3, • • • are the zeros of/(z) other than at the origin. Now/(z)

satisfies inequality (8), so Carleman's formula [ll] written for the upper

half-plane and for the lower half-plane in turn shows that E lm (I/O >s

an absolutely convergent series. If

I/«»  =   py +   tqy

where p, and qv are real, Hadamard's formula may be written in the form

(31) /(z) = zke<-c+id)*+b IJ( 1 - — \"''
,=1 \        z, /

where c and d are real,

c = Re (a),        d = Im (a) + J2 <?»•

This product converges uniformly in every bounded domain since (30) does

and ^_q, is an absolutely convergent series.

We are going to define a sequence {X^1'} and an entire function/i(z) of

exponential type 7 belonging to Z,2(— », ») on the real axis such that

(32) Xl1} = an + ißn\ I ß? I g 0/2,

and

El/iO^f El/(xn)f
(33) —-g êi ■

/00 y» 00

I hi*) \*dx I
-00 •' -00

f{x) \2dx
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There are two cases to consider, ¿ = 0 and d<0. Suppose first that ¿^0. Now

form from the given function /(z) another entire function whose zeros are

obtained by reflecting in the real axis those zeros of /(z) that lie in the lower

half-plane. Let

if    Im (zy) = 0,

if   Im (zy) < 0

and define

(34) /A(z) = zke^+u)z+i tá'rih
Then /A(z) is an entire function of exponential type satisfying

(35) |/A(*)| = |/(*)|.

To show this we note that the zeros of /(z) that lie in the lower half-plane

may be reflected in the real axis one at a time. Thus, if m is any positive

integer, the function

fm(z) = 8»<<*h.o»« n(i - 4V'z n (i -—)ep'*
y=l \ Zy / y=m+l \ Zy /

has the same modulus on the real axis as/(x), and it is an entire function of

exponential type y since the ratio/„(z)//(z) tends to 1 as z tends to infinity

in any direction. Thus, /„(z) is dominated by the right side of (8) for

»i = l, 2, 3, • ■ -, and hence its limit/A(z) is dominated by the right side of

(8). The product (34) defining /A(z) converges uniformly in every bounded

domain. If we compare (31) and (34), it is clear that

\f*(x+iy)\ú\f(x+iy)\, yfcO.

Since ¿ = 0, we see also that

| fA(x +iy)\^\ f(x - iy)\, y^ 0.

Now define a new sequence {Xa} by reflecting in the real axis those points

of {X„} that lie in the lower half-plane. Let

if   Im (X„) = 0,

Im (X„) < 0.

Then, according to the inequalities stated in the preceding paragraph,

a  '    (\n   if

"- " k if

|/V)| ^|/(x„)|.
The points X„ were assumed to lie in a strip of width 2/3 which is sym-

metric about the real axis. The points X£ lie in a strip of width ß which lies



1952] A CLASS OF NONHARMONIC FOURIER SERIES 357

in the upper half-plane. We now translate the points X£ to obtain a new

sequence which lies in a strip of width ß symmetric about the real axis. Let

xT = K- iß/2,       Ms) = /(a + iß/2).

Then the points XÍ,1' lie in the strip \y\ Sß/2 and

\fiQ?)\ -I/96I á|/(X„)|.
Also, according to Lemma I, there is a function gA(t)^L2(~7, 7) such that

1       Pf
/¿(a) =- I    g*(t)ei¡"dt

{2vyi2J-y

and, by (35),

f"|/(*)|v*= f"|/A(*)N*= fT|«w*-

Thus, writing gi(/) = ga(t)e~ß'12, we see that

1       /•'
/i(i) =-— I    gx{t)eiztdt.
J (2ry'2J-y

Hence

r 1 /»(*) i»«** = f 1 gà(<) i*«-**a< è #-*» r 1 /(*) i2á*.
J —00 »^ —7 */  — OS

The sequence X^1' and the function /i(z) thus defined satisfy (32) and (33)-

If d<0, we reflect in the real axis the zeros of/(z) and the points that lie

in the upper half-plane. Then after a translation we obtain a sequence

{X^1'} and an entire function/i(z) satisfying (32) and (33).

The above process may be iterated. If /(z) is an entire function of ex-

ponential type 7 which belongs to Z*( — °°, °° ) on the real axis, then for

k = i, 2, 3, ■ ■ • there is a sequence {X*} and an entire function fk(z) of

exponential type 7 which belongs to L%(— »,  ») on the real axis such that

(36) Xi"' = an + ßlk\ \ß(nk)\£ß/2k,

and

zi/*(xr)i2       zi/(xn)i2
(37) —- = e2^ —^~

f°\fk(x)\2dx f    \f{x)\2dx
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The constant exp i2ßy) is here written in place of exp (7/3+7/3/2+ • • •

+7/3/2*-*).
Suppose now that {exp (j'a.f)} is a frame over ( — 7, 7). According to

Lemma III there is a Si>0 such that the set of functions {exp iifij)} is a

frame whenever |jun — a„\ =Si. Let k be so large that /3/2*<ôi. Then

{exp (tX*'/)} is a frame over ( — 7, 7), and the left side of (37) therefore has

a positive lower bound A'. Thus

E|/(Xn)|2

A'e-2ßy  =  _JL-

/.:
700 N*

Since |Xn — a»I =/3, Lemma II asserts that the right side of (37) has a finite

upper bound. It follows that the set of functions {exp (iXn<)} is a frame over

(-7. 7.)-
3. Abstract frames. For two vectors u and v of Hubert space, let (w, v)

= (», u)* be the complex scalar product which defines the norm \\u\\ — (w, u)1'2.

We define a frame to be an infinite sequence of nonzero vectors <f>x, <£2, $3, • • •

such that for an arbitrary vector »,

(38) ¿MM El (».*.)M ̂ IHK
n

Here A and B are positive constants called bounds of the frame. The numbers

a„ = (», 0„), » = 1, 2, • • • , are called the moment sequence of the vector »

relative to the frame. Since a frame is clearly a complete set, the finite linear

combinations of the <f>„ are everywhere dense. For the space -L2(0, 1) the scalar

product is defined as (w, ») =/¡¡uix)v*(x)dx.

If {$„} is a frame and {c„¡ is a sequence of numbers such that  Elc»l2

< 00, then Ecn0n converges and

(39)

For if

Z^ Cn4>n
1

á£E

Vic   =   E C»<^n. k   =   1' "0  =   0,
n=l

then for k^j we have from Schwarz' inequality and the frame condition,

h

»* »ill2 =    E   C„(0„, Vk — Vj)
n=)+l

^{E   IcA^iBWv.-v^
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Hence
k

||»* - »/II* á B Z   I ¿„I2,

and (39) follows.

This shows that a linear transformation 5 is defined by the relation

OO

(40) Sv = Z (». *")**•
n=l

The transformation 5 is self-adjoint, and, if we make use of (38), it follows

that

(41) A\\v\\2 ¿ (Sv,v) ^ B\\v\\2.

This states that 5 is positive definite with positive upper and lower bounds.

Hence the inverse 5_1 exists as a self-adjoint transformation, and

(42) -B-1IM|2 = (S~lv, v) è A-^vW2.

Lemma VIII. Let {<j>H} be a frame and let v be an arbitrary vector. Then there

exists a moment sequence {ßn} such that

00

(43) « = Z ft.*»
i

and

00

(44) #~lIMIa = ZI ft I2 = ̂ -1MI2-
i

U {bn\  is any other sequence such that v= Z" bn<j>„, then {b„}  is not the

moment sequence of any vector, and

(45) ZIM2=   Z|ft»|2 +  Z I 6«-ft |2.
ill

Proof. The first part of the lemma follows from the preceding discussion

when we write v = Su, ßn = (u, *„). To prove (45) there is no loss of generality

in supposing Zl^»|2<°°- Then 0=v — v=^l(bn — ßn)<f>„, so, with v=Su,

ßn = (u, <f>n), we have 0= Z(^» — ft»)ft» and (45) follows. The uniqueness of

the transformation 5_1 shows that {b„} is not a moment sequence.

Now define a new sequence {$,} by 0„ = 5_1#n. Then {<#,} is a frame

with the positive bounds A-1, B~l. For if v is any vector and u = S~lv, then

Z I (». *«) I2 = Z I (Su, <¡>'n) I2 =  Z I («, *-) I2 = (Su, u) = (S-\ v)
n n n

so the result follows from (42). If v is any vector, then it may be expanded by
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conjugate frames in the form

(46) v = Z (». *»)*» =   Z (*. *»)*»•
n n

The following result also gives a method of finding the expansion coefficients

ßn by a rapidly converging process of successive approximations.

Theorem III. Let {<£„} be a frame,andlet ç> = 2/ (A-\-B). If v is an arbitrary

vector, define

J)fl)   =    ï-  p   Z  (»I *»)*»,

Let*

„<*+!)  = „<*)  - p Z (»(*\ *«)*», * ÊÎ 1.

„(*> . (1) (2) <*-l> .

ft      = P(» + V       + V       +•••+» , *»),

M

,<*>   ,»* = Z ft *»•
n-1

Then

(47) ||. - »J g (j^)*IM|.

Proof. The transformation T = I—pS satisfies

I (Tv, v) I g ö||^||2,
5 + ^

Since T is self-adjoint, ||Tv\\ úd\\v\\. Thus ||flu)|| a0|H|, and in general,

||j;<«||ât9*||ï;||. Adding the relations *<*+»-i><*>- -pSo<*> for k = 0, 1, • • • ,

w —1, we see that v<-m)—v= —vm. Thus ||i>„ —1/|| =||ü(m)|| = 0m||i>||.

A frame which fails to be a frame on the removal of any one of its vectors

is termed an exact frame. It is not difficult to show by an example that the

abstract analogue of Lemma VII is false.

Lemma IX. The removal of a vector from a frame leaves either a frame or an

incomplete set.

Proof. Suppose that <f>m is removed from the frame {<p„}. As a special case

of (43) we may write

(48) *, = Z ft»*»

where (t>'m = S~l(¡>m and ßn = (</>4> *»)•

liftai, then
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4* =   (1  - ßm^^ßn*»

where  E' indicates the omission of the wth term. Thus if » is an arbitrary

vector, then

I (», *.) |» ¡if í - ßm |-2{ E' I ft. IM {E' I (*-, 0 IM
so

EI (v, *„)|2 ̂ {i +11 - ft»h2E'lft. IME'l iv,<t>n)|2.
It follows that the subset of {<£„} with n^m is a frame, for in place of (38)

wehave^'||»||2^ E'l (*». 0»)| 2á-B|M|2 where

" i + |i-/3m|-2E'lft.|2

Now suppose that in (48) we have /3m=l. We show in this case that

{<i>n}, n^m, is incomplete. Since/3m = l, we obtain

0 = E'AA.

and this may be written

0  =   E ßntn

where ß'n = ßn if n^m, Ä, = 0. But 0= E0</>n so relation (45) with 6n = 0

shows that

2EI¿l|2 = o.

Thus /3„ = 0 for n^m. Now ßn = i<j>'m, <f>„) where 4>¡n = S~1<j>m, and the vector

</>4 is therefore orthogonal to all vectors of the set \<t>n\, n^m. Thus

(49) i<t>'m, 4>n) = 8mn.

Lemma X. If {<j>n\ is an exact frame, then {<£„ ) and {</>¿}, where <f>¡, — 5_1<^„,

are biorthogonal. Any sequence of numbers {c„} such that El c»l 2< °° î5 ^e

moment sequence of some vector with respect to {<¡>n}, and

(so) ¿EkMIIE^nll ;g3Ekl2.
Proof. If {</>„} is an exact frame, then (49) is true for all m as well as

for all » so {</>„} and {<j>'„} are biorthogonal. Given the sequence {c„}, accord-

ing to (39) the vector », » = E^^«- has finite norm. Then

C„  =   (», <t>'n)   =   (w, 4>n)

where u = S~1v, so {cn} is the moment sequence of the vector u. Then (50)

follows from (44).

Paley and Wiener have also given á Hubert space development of their

theory. It is of interest to show the precise relationship with the present
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theory. Their theory concerns an infinite sequence of vectors fi,f2, ■ ■ ■ which

is close to a complete orthonormal sequence fa, fa, ■ • ■ . By "close" is meant

that for any sequence of complex numbers {c„},

(5i) ||Zc„(/»-*»)ll2 = e2ZU»l2

where 9, O<0<1, is a constant independent of {c„\. An arbitrary vector v

may be represented as v= Zc»^n and it may be shown that (51) implies

that the sequence {/„} satisfies the frame condition (38). This was first

pointed out by Boas [l]. Applying the triangle inequality to (51) gives

(52)       (i -0)2Zkl2 = ||Z¿„/»||2á (i + 0)2Zkl2.

Hence {/„} fails to be complete on the removal of any one of the/„. Thus

{/„} is an exact frame.

Conversely suppose that {<p„} is an exact frame. Let/„ = 2(.B1/2-f-.<41/2)~1<pn

where A and B are the upper and lower bounds of the sequence {<£„}. Then

(50) may be expressed in the form (52) with e=(B1i2-A1'2)/(B1i2+A1'2). It

was shown by Duffin and Eachus [5] that relation (52) for a complete set

{/„} implies the existence of a complete orthonormal set [fat} satisfying (51).

Thus the theory of Paley and Wiener and the theory of exact frames are equivalent.

The following theorem gives a new example of an exact frame. The proof

is omitted. Let {X„| be a sequence of uniform density d such that for some posi-

tive constant r, {X„} and {X„+r} are the same set of points. Then the set of

functions {exp (i\nt)} is an exact frame over ( — trd, wd).

4. Pointwise convergence. Let {X„} be a sequence of uniform density

1 and suppose that g(x)Ç.L2( — ir, ir). Then Theorem I and Lemma VIII

together imply that corresponding to each positive constant y, 0<y<ir,

there exist expansion coefficients cn such that Zlc»l 2< °° and

If

g(x) = l.i.m. Z cHe°"x, - 7 á it á 7.
JV-»w     -If

We shall show that indeed the limit in the mean Z-jv c» exP (*Xn#) exists

over the larger interval ( — tt, tt), defining a function g(x) in the latter interval.

It is also to be shown that the nonharmonic Fourier series actually converges

to g(x) at a given point of ( — ir, ir) if and only if the ordinary Fourier series of

g(x) converges to g(x) at this point. A similar statement could be made for

summability. Among all sequences {c„} corresponding to the same g(x) in

(—7, 7) there exists a unique sequence which minimizes Zl c»l 2> according

to Lemma VIII. Whether or not {c„} is this minimizing sequence does not

effect the convergence of the nonharmonic Fourier series.

Paley and Wiener have also obtained convergence properties for their

class of nonharmonic Fourier series. Theorem IV is a generalization of their

result and has a sharper conclusion. The proof is along different lines than
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that of these authors. The convergence theory of Paley and Wiener has been

generalized along different lines by Levinson  [Sj.

In order to investigate the convergence of the nonharmonic Fourier series,

we write
00   i*(X„ - «)***

pi\nz  —   ginx.gi(\n—n)x  —   g niE
k\

and we recall that since {X„} is a sequence of uniform density 1, |X„ — n\ is

bounded. Thus, in the notation of Theorem IV below,

¡V N

gNix)   =   E CneX"x   =    E Cntnix)
—Ñ -N

are the partial sums of the nonharmonic Fourier series of gix).

Theorem IV. Let \bk} be a sequence of positive constants such that ^¿° b^k

< =c , and write

00

(53) tn(x) = ?•»£*,»**
*=o

where \ b„k\ Se*, n =0, +1, +2, • • ■ . If {cn\ is any set of complex numbers

such that 231 Cn |2 < °°, then

N

(54) grf(x) =   E c„f„(x)
n=-N

converges in mean to a function gix) of class L2(— ir, ir). If {an} are the Fourier

coefficients of gix) over (—ir, ir), then

N

(55) <f>NÍx) = (ir2 - x2) X) (c*tn(x) - aneinx)
-N

converges uniformly to zero for — ir^x^w.

Proof. We have

N oo

gNix) =   E   C»fn(¡0  =  E^*(*)*''
n=-JV *=0

where

N

(56) ypffk(x) =   E  cnbnkeinx.
n—N

Then
s

||^Art(*)||J =   E   \ cnb„k\   ûcbk
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where c2= E-» I c"l2- It is clear that

(57)

exists and that

Then

^kix) = l.i.m. ipNkix)

fr*(*)|| á ch,       ypkix) ~ E cnbnkeinx.

E *¥*(*)    ̂  E ||*Y*00|| á E *****
t=íi /;=/* /i=M

so it follows that Eo *V*(*0 converges in mean to some function of class

Lii — ir, ir). We define this function as g(x) and show that g(x) has the prop-

erties given in the statement of the theorem. Thus

gix) = l.i.m. E *¥*(*)•
»->«   t=o

Then

||«(«) - g*ix)\\ ^ E IkGM«) - <M*»II
k~0

è E **||***(*) - **(*)||  á   ¿ r*cft*.

But H^ivifc(x) —^(x)||—>0 as iV—>oo for each fixed A so it follows that

gix) = l.i.m. gjr(*).
jit-mo

To investigate the question of convergence we write

sin (N + 1/2) m
DN{u) =-i-—L-

sin (m/2)

for the Dirichlet kernel. Now (56), (57) show that

00

M*) = E **(**(*). JM* - 0).

Now define /^(x) by the relation

00

M«) = GjW- Ar(* - 0) = E (*¥*(<). ¿M* - 0).
t=0

Then/jv(x) is the A^h partial sum of the Fourier series of gix) over (— w, ir) so
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M«) = (t2 - x2)(gN(x) - fN(x))

= — Z f V2 - x2)(xk - t*)fa(t)DN(x - t)dt

= (t2 - =c2) Z (fa(t), (** - t*)DN(x - t)).
4=0

We now show that there is a constant A independent of k such that

(tt2- ^X**-/*)!

365

(59) ^Av\
sin ((» - 0/2)

By a change of variables, this is equivalent to the relation

(1 - x2)(x" - t")

sin (v(x - t)/2)
< Ai

X     =  TT,    It      =   TT.

* ¿ l, U = i.

Clearly it is sufficient to take x^O, in which case (x — t)/2 lies in the interval

( — 1/2, 1). But u(u — l)/sin iru is bounded when u lies in this interval, so it is

sufficient to show that

h =
(1 - x)(xk - th)

(x - t)(2 + t - x)

is   bounded   by   4   for    -lá/^l, 0gx = l.  If    -1^/^-1/2,   then   Ä
á4(l-x)/(2-H-x)=4.   If    -l/2<igl,   then   Ag2(l-x)(x*-/*)/(íc-í)
= 2(l-x)(xk-1+txk-2+ ■ ■ ■ +tk~1)^2.

From(59) we see that

I (fa-(t), (^ - x2)(xk - tk)DN(x -t))\è ¿t*||*.(0||

so

(60) Z I «-*('). (t2 - x2)(xk - tk)DN(x - t))\ = Ac Z *kbk.
k~M

Given e, é > 0, choose M so large that

Ac^£irkbk< —
k~M 3

It is clear that

M-l

(r2 - *2)Z (**W. (** - C)Dn(x - t))
*=o

tends to zero as x—>±ir, so there is a positive number ô = 5(e) such that this

sum is bounded by e/3 in the intervals ( — ir, —7T + S) and (tt — ô, tt). If x lies
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in the interval — ir + o ̂ x^ir — 8 and k=0, 1, 2, • • • , M—Í, then

xk — tk

Hkix, t) = —
sin ((* - 0/2)

is a continuous function of x and t, —ir^t^ir. Then

(**(/), (** - tk)DNix - t)) = — f   tkit)Hkix, t) sin [N + —)(*- t)dt,
2x J_T \ 2 /

and a simple extension of the Riemann-Lebesgue lemma shows that this

tends to zero uniformly in x, \x\ ^x — 5, as N tends toward infinity. Thus

choose N so large that

i*2 - x2) E (**(0, (** - ñDsix - i))
fr=0

for 1*1 <7T — 5. Then

<  —
3

I (pNix) I  < e, - i á ï á ir,

and the theorem follows.
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