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1. Introduction. The equations studied in this paper arise in the prob-

ability treatment of diffusion problems and were first introduced by

Kolmogoroff [l](2). Kolmogoroff showed that under certain conditions the

probability density of a system with 2n degrees of freedom satisfies a para-

bolic differential equation of Fokker-Planck type. The ordinary Fokker-

Planck equation in 2» dimensions is

" d2M »  /     du du\ du
(1.1) 2L aU '-h £;\%i-r- «<-■ ) + au-{-=0    (a¿,- = a,¿)

i,¡ dXidXj i   \    dyi dXi/ dt

ay, a,, a are functions of x, y, t. It is degenerate in the sense that the second

derivatives in y do not appear in the equation. The 2w-dimensional space is

the phase space of a system, where y is the position and x the velocity

vector. For a more recent discussion of stochastic processes giving rise to

equations of that type, see S. Chandrasekhar [2]. The more general equation

" d2u » /     du du\ du
(1.2) Z «,/-—-+ E(fc —+«•■ — ) +«« + 7-= °

M àÇidÇi i   \     drti of,- / or

can be reduced to (1.1) by the substitution x* = £>&(£, r\, t)  provided

dbi       dbi       dbi

d£k       drjk        ÓV

exist for all i and k and the transformation

(1.3) xk = bk{%, v, t),       yk = Vk,       t = t

represents a continuous one-to-one mapping of the £, r¡, r-plane on the x, y, t-

plane. Here the relation between the position 77 and the velocity £ is given by

r}i = bi.

The construction of a solution of (1.1) depends on the determination of

the fundamental solution. It is the purpose of this paper to obtain the funda-

mental solution of (1.1) for any given open region R of phase space under
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certain conditions on the coefficients; these conditions will be given in §3.

(The region R is not necessarily bounded, it may cover the whole phase-

space.) Our development follows closely the methods of Feller [3] and Dressel

[4; 5], going in some essentials back to Gevrey [6; 7].

Notations. Throughout the text the following notations are used: When

there is no misunderstanding multiple integrals will be indicated by a single

integral sign. We shall write dx and dy for dxi ■ ■ ■ dxn and dyi ■ • • dyn re-

spectively. Integration with respect to / will always be indicated separately.

The notation x will be used for Xi • • • x„ and similarily y, ¿j, 77, ¡x, v represent

points in «-space. All summations, unless otherwise indicated, extend from

1 to n.

2. Definition of the fundamental solution and the problem of uniqueness.

Let (1,1) be defined over some open region R in phase-space (x, y) and for

toikt'èti, with uniformly bounded and continuous coefficients an, ait a. Let

dan/dxi be uniformly bounded and continuous. We define the fundamental

solution m of (1.1) by the following three properties:

(I) For ¿o = ¿ <r^ixand each pair of points (x, y) and (£, 77) in R, u(x, y, t;

£, r¡, t) is a regular solution of (1.1), that is, it possesses, as a function of

(x, y, t), the continuous derivatives occurring in equation (1.1).

(II) For x=%, y = r¡, t = r the function u(x, y, t; £, 77, t) possesses a singu-

larity such that for every subregion D of R and every continuous bounded

function f(x, y)

/("/(£> v) if (£. v) is interior to D,
u(x, y, t; £, 77, r)f(x, y)dxdy =   < ., ,„    v .

d \0 if (?, 77) is exterior to D.

(III) For fixed ij, 77, r, / with to^Kr^h the functions u(x, y, t; £, 77, r)

and Xíu(x, y, I; £, 77, t) are absolutely integrable over R and du/dxi are

bounded.

The equation

_   d2ai{U __, (daiu du \ du
(2.2)       Z*(W) = £ —L-- £( +*, —) + aM =0

i,j   dx¡dXj i   \ dXi dyi/ dr

defines the adjoint to (1.1). In §3 we shall give sufficient conditions on the

coefficients of (1.1) to ensure the existence of a fundamental solution. These

conditions will automatically entail the existence of a fundamental solution of

(2.2).
We shall now give a uniqueness theorem for the fundamental solution,

provided R is the entire phase space

(2.3) S i i = 1, 2, • • • ,«.
\—   »   <   Xi   <   +   CO,

0 < y i < + ™,

Theorem 1. Under the assumption of existence of a fundamental solution of
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(2.2), u{x, y, t; £, r¡, t), as defined by conditions I—»III with R = S, satisfies

equation (2.2) in the variables £, r¡, and r and as a consequence is uniquely de-

termined.

Proof. The proof is omitted because it follows the same lines as for the

ordinary parabolic equation (cf. Dressel  [5]).

Corollary.

(2.4) I  u{x, y, t; f, tj, r)u{p, v,\;x, y, t)dxdy = m(ju, v, X; £, -q, t).
J s

3. The fundamental solution of equation (1.1). We determine the funda-

mental solution as the solution of an integral equation. We assume that

in R and for to^t^ti the coefficients of (1.1) satisfy the following conditions:

(a) The functions daa/dt, d2aij/dxkdxe, daf/dxk, ait a, daa/dyk satisfy a

local Lipschitz condition of order 7, 0<y, and are uniformly bounded.

(b) The characteristic roots of the symmetric matrix ||a¿jj| are positive and

uniformly bounded both above and away from zero.

Let Aik denote the cofactor of aik divided by the determinant A. Because

of condition (b), A is bounded above and below and so are the characteristic

roots of 11-4«¿||• Then as an immediate consequence of (b) we have:

Lemma 1. There exist positive constants di and d2 such that for all Ui and

all {x, y, t) in R

(3.1) dtJ2 Ui S J2 UikUiUk ^¿¡^ Ui,
i i, h i

(3.2) ¿i^«¡ á J2,AikUiiik g di J2 ui-
i i,k i

di is the greatest lower bound of the characteristic roots of both ||a¿*|| and ||^4¡*||

and di the least upper bound.

In the case of equation (1.2) additional assumptions are to be made on

derivatives of the 6,-'s up to the third order and a¡¡ is to be replaced by

1 ^       fdbe   dbk       dbe   dbk~\

2 k,e    '   LdXi   dXj      dXj   dXiJ

We now proceed to prove the following theorem.

Theorem 2. Under assumptions (a) and (b) there exists a fundamental solu-

tion of (1.1). In case R is the entire phase space this fundamental solution is

unique and satisfies equation (2.2).

We need some preliminary results:

The equation
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d2u du      du
(3.4) L(u)= +x      + o

dxl dy      dl

has the fundamental solution

tt - x)2
F(x, y, t; {, r?, r) = S^l-^ir - t)~2 exp

[■ 4(t - t)
(3.5) ,

U - y - 2-1(7- - O« + *)}n

(r - O3 J

given by Kolmogoroff [l], which satisfies all the conditions in §2. We use this

function in the construction of the first approximation of the fundamental

solution of (1.1).

Let

D    , ,    , v (€« -  *<)(** -   *•)
Rik(x, y, t; £, 77, t) = -—-

4(t — /)

{t?,- - yi - 2~1(t - <)(& + Xj) } {r,k - yt - 2~1(t - <)(*,, + tt) }
I-   "

(r - ft«

We choose as first approximation for our fundamental solution

uo(x, y, t; f, 77, t)

- [<K£, *, OhKr - O"2" exp |- X *M*. y> <)*<*(*, y, t; t, v, t)1 .

<£(x, y, /) is defined by

fax, y, t) =   lim    I   (X - t)-2"

•exp    - X) ^**(*. y, l)Rik(x, y, t; ft, v, X)   d¡xdv.

(3.8)

Ç is a small square centered in the point x. By a simple change of variable this

limit can be shown to exist. By Lemma 1 and assumption (a) it follows that

<f> is a continuous function bounded away from zero and differentiable with

respect to all its variables.

In the following we shall determine a function/(/i, v, X; £, 77, t) such that

the fundamental solution of (1.1) can be written as

u(x, y, t; f, 77, r) = u0(x, y, t; & 77, t)

(3.9)
/d\  I   iio(x, y, I; u, v, X)/(/i, v, X; %, 77, r)dpdv.

t J R
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For this purpose we need a set of three formulas collected in the following

lemma.

Lemma 2. Let f{¡x, v, X) satisfy a Lipschitz condition of order y, 0 <y, for

any point {p, v) in R and t^\<r. For any e>0 let f{p, v, X) be bounded over

any set for X^r — e, and absolutely integrable over Rfor ¿gX^r.

Let

(3.10) U{x, y, I) =   I    dX J f{p, v, \)vo{x, y, t; p, v, \)dpdv
J t J R

with to^Kr^ti and v0{x, y, t; p, v, X) =u0{x, y, t; p, v, \)4>{p, v, X). Then we

have

dU
— = - f{x, y, t)<j>{x, y, t)
dt

(3.11) +  f   d\ f [f((t, v, X) - f(x, y,t)]~ dpdv
J t J r dt

/[•    dvod\ I    -dpdv,
.<+      Jr    dt

(3.12)

—- =        d\\   [f{p,v,\) -f{x,y,t)]-~
dyk      Jt        Jr dyk

dvo
+ f(x< y> Í)  |       ¿X |    -dpdv,

dyk
c, y, t)  j      dX I

—— =       d\     [f{p, v, X) - f{x, y,i)]-—
«idxk       Jt        Jr dXiCdXidxk       Jt        Jr dXidxi-

(3.13)
/(•      dhod\ I    -— dpdv.

.« +          «'S    dXidXle

Each of the last integrals means lime^0 /«+,.

Equation (3.11) is an extension of Theorem 1 of Dressel [4] and (3.13) of

Theorem 2. Our fundamental solution differs from his by the normalization

factor and the second exponential term.

Proof of (3.11). Let Q be a 2w-dimensional square of side length 2r\ and

R — Q the remainder of the region considered. We write for At >0

l   rt+Al     r CT       C    A'v°
-I        ¿XI   fvodpdv +1      d\ I   /-dpdv = 7i + It-

AtJt Jr J t+At     Jr      At

AtU 1   r'+A1

At ./ t+At

To shorten the formulas we omit the variables on which depend U,f, Vo; they

are to be found explicitly in (3.10). A( means an increment where t alone is
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varied.

The part of 7i for which the space integral extends over R — Q tends to zero

with At. The remaining integral, with the space integration over Q, tends to

—f(x, y, t)<j>(x, y, t), because of the definition of <¡> and the continuity of/ in

the point (x, y, t). Ii can be split up into three parts, the first an integration

over R — Q and from t + At tor — e, the second integrated over Rand fromr-e

to t, and the third over Q and from t-\-At to r — e, where r — t>t-\-At and

e>0. In the first two integrals we can pass to the limit At—»0 under the

integral sign. For the third integral we get

J =   f       d\ f [/Ox, v, X) - /(*, y,t)]-^~ dydv
J t+At J Q At

/""<        r    AtVod\ I    ■-dydv = Ji + Ji.
I+AI          J Q      At

The Lipschitz condition on / ensures the existence and convergence to zero

with € of

d\       [f(n, v, X) - /(*, y, I)} —- dydv,
t J Q Ot

which implies that one can pass to the limit under the integral sign in J%.

We now show that limA^o Ji exists. Consider

/■ í+Aí+í ç,
d\

Í+Aí J (t

i+Aí+í A¡Vo
-dpdv.

í+A< ¿ q     At

In the integral obtained by subtracting J8 from J2 one can pass to the limit

under the integral sign. In J3 we change X into X+A.Í in v0(x, y, t-\-At; ¡jl, v, X)

and obtain

SKI Ai \   (X- O"2"

r -i /» i+Ai+f

exp    — X Aik(x, y, t + At)Rik(x, y, t; ¡i, v, X)   dydv +   J Sh/At
L i,k J J t+At

exP    - X Aik(x, y, I + At)Rik    — exp    — X Aik(x, y, t)Rik

/' L i,k J L i,k J
cq (x - ty»

Í+A1+«

dydv

- f d\/M f (X - 0~2" exp I- X ^.t(*. y, t + At)Rik] dydv\

Passing to the limit Ai tending to zero, we get
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BAa
d\ 1   - X) ——RihVodpdv

t Jq        i,k      dt

— Kx< y< 0   I   v«{x, y, t; p, v, t + e)dpdv.
J Q

The passage to the limit e-^0 completes the proof of (3.11) for A¿>0. For

AKOwe write

= d\/At I fv0{x, y, t + At; p, v, \)dpdv —   J    d\ I   / ■—— dpdv
J t+At J R J t J R At

AtU

At

and follow a proof completely analogous to the preceding one.

Proof of (3.12). Let e>0 and t+e<T-e. We form the ratio AyU/Ayk

and split the integration from í tor into three parts, from r-e tor, t-\-e to

r —€, and t to ¿+e, thus obtaining three integrals of which the first two are

regular. In these the limit can be taken under the integral sign. The third

can be transformed into

d\      [f{p, v, X) - f{x, y, I) ] -ÎÎ- dpdv + fix, y,t) d\ \    —— dpdv.
t Jr Ayk Jt Jr   Ayk

Because of the Lipschitz condition on/(x, y, t), the passage to the limit can

be effected under the first integral. Its contribution tends to zero with e.

Introducing in the second the new variable vk = vk— Ayk and calling R the

transformed region, we obtain

i+e

d\
t

dpdv.

fix, y, t) I

exp    - X) Aie{x, yk + Ayk, t)Rie   - exp    - X) Aie{x, y, t)Ri,e

/——-—-—- c
r                                          Ayk{\ - 02n

We let Ayk—>0 and obtain

d\ I   — X —- RieVodpdv.
t Jr      i,e   dyk

Now we let e—>0 and, combining the results of this paragraph, we obtain

(3.12).
Proof of (3.13). It is easy to see that d U/dxk can be obtained by a dif-

ferentiation under the integral sign. It is sufficient therefore to examine the

derivative with respect to xm of

d\ I f{p, v, \)Re{x, y, t; p, v, \)v0{x, y, t; p, v, \)dpdv,
t J Q
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where we let

dAik(x, y, t)
Rc = — 2-, -Rik(x, y, t; y, v, X)

i,k dxe

EP"      yt — Xi Vi — yi — 2~1(yi + Xi)(\ — t)~\
Aie I 2 3 1 .

L     4(X-0 (\-t)2 J

We increase xm by Ax and keep all the other variables fixed; then we have

AXTAXT        1    [•'+'       c r
-= - I        d\ I fRe(xm + Ax, y, t; y, v, X) [v0(xm + Ax, y, t; y, v, X)
Ax        Ax J t J Q

— Vo]dydv H-I ¿X  I f[Re(xm + Ax, y, t; y, v, \)vo
Ax   Jt Jq

— Re(x, y, t; y, v, \)v0(x, y, t; y, v, \)]dydv,

where Vo denotes the function obtained from Vo(x, y, t; y, v, X) by replacing the

xm occurring in Aik(x, y, t) by xm and the xm elsewhere by xm+Ax. To the

first integral apply the mean value theorem and pass to the limit under the

integral sign. It is easy to see that this integral tends to zero with e. In the

other integral write for f(y, v, X) the sum \f(y, v, \)—f(x, y, t)]-\-f(x, y, t)

and in this way obtain two integrals. Because of the Lipschitz condition on/,

we can pass to the limit under the first integral. This integral then tends to

zero with e. In the second integral 72 we introduce the variables ym=ym— Ax,

vm=vm — 2Çk — t)Ax. Writing Q' for those integration limits in the integral

which remain unchanged, we obtain.

/Í+Í

d\

/* {     /• Xm+ff—Ax     /» J/m+T?— 2Ax(X— t) /* xm+r¡     *m Vm-\-Q\

\     \\ I -I \ReVodydv
J Q'      \J xm-y-Ax   •/ ym-i)~2Ax(\-t) J xm-r,   J ym-y /

d\ l     \  \
t J Q>     \J xin~ij-Ax   L •/ ym-v-2Ax(.\-t)       J ym+i¡-2Ax(K~t)J

+   I I -   I \VReVodydv.
"  Vm—V    <- "   xm-ri-Ax J  xm+1t-AxAl

If Ax is small enough, that is, satisfying Ax<min[w/2, 77/4(X —1)\, the

integrand is continuous and we can pass to the limit Ax—>0 which gives us

rt+t      r rdRe     dR.-\
lim  Ii = f(x, y, t)  I        ^ I-1-Vodydv.

Ai^o J t J Q L dvm        dym J
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This gives the essential points in the proof of (3.13).

Lemma 3. The function U defined by (3.10) satisfies the equation

(3.14)     L{U) = - fix, y, t)<b{x, y, l) +  [   d\ f f{p, v, \)L{v0)dpdv,
J l J R

where L is the operator defined in (1.1)

Proof. L{v0) can be written

d2Aik ^ dAik    dA( ^        /     ^      d2Aik                 --,  dAik    dA„
(X - t)2"L{vo) =  < !>,* Í - £ -ff» +   Z -■   -a*mR

\   itk \ e,m    OXeöXm e,m,r,8 OXe        OX?n

— X —- ae ) + a>  exp    — X AikRik
e       dXe I ) L i,k J

It L2(x - ty>2

(3.15)
vi- y i - 2-\pi + *,-)(X - t)l

(x - tyi*- J
r    _ dAim dArk „ "I)

• 2 ¿ ff«-4   ¿_,    aen-AimRrk + 2-,aeAie   >
L_     e,m OXe T,k,e,m OXe « _J/

• exp     - J2 AikRik    ■

The terms of higher order, that is, those containing (X — t)~2n~1 and

(X — /)-(2n+s/s)j disappear because of the choice of uo. This enables us to

operate under the integral sign and derive (3.14) by Lemma 2.

We are now ready to construct f{p, v, X; £, rj, r) of formula (3.9) as the

solution of the integral equation

fix, y,t;t, n, t)

(3.16) /"■      r
= L{uo) +   I     d\  I  L[«o(x, y, /; ¿u. v. X) ]/(/«, v, X; £, r;, r)dpdv.

J t J R

In successive approximations we write:

fo{x, y, t;£, -n, t) = L{u0),

fm{x, y, t; £, v, t)  =   I     d\ J  Z,[w0(a, y, t; £, v, r)]fm-i{p, v, X; |, 17, r)¿ju¿j»
J t J R

{m ̂  1),

and put
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CO

(3-17) /(*, y, I; £, 77, t) = ]£/*(*, V> U £> V, r).
/i-0

We prove first uniform and absolute convergence of the series in (3.17).

Let

rl , t        ,      [Ui-Xi)2 [„,- - y i - 2-Kfc + Xi)(r -t)]n
Gi(x, y, t; f, 77, r) =    —-— + 3-—-    .

L 4(r - t) (t - ty J

By (3a), Lemma 1, and (3.15) there are constants d and M such that

I/o I á Jf(r - 0-*-«» exp [- J'EG^, y, <; fc r,, t)]

at fixed ¿, 77, and ¿<r. In order to compute bounds on the terms/*, we need

an estimate on the integral

1 =   f   d\ Í (X - Z)"2"-1'2^ - X)-2»-1'2
J t J R

•exp   < - d2 J2 [Gi(x, y, I; y, v, X) + Gi(y, v,\;£, 77, t)]> dydv.

We change dyi=Mi, <¿j,j = N¿, and in the same way Xi, y¡, §¿, 77* into d~1Xi,

d~1Yi, d^1üi, ¿_1Hí. The integral becomes

I = d-2" f   (X - Z)"1/2(r - X)"1'^ f (X - 0"*"(t - X)-2"

• exp  i- Yl [Gi(X, Y, t; M, N, X) + Gi(M, N, X;H, H, r)]\dMdN.

I is less than or equal to the integral obtained by replacing R by the whole

phase-space S. We also know that the function defined in (3.5) satisfies the

corollary of Theorem 1. Now the integral over 5 is nothing but a product of

integrals as in (2.4) and therefore we get

I ^ (31'2á)-2"(27r)2»   f    (X - ¿)-1/2(t- - X)-!/2(r - t)~2n

exp [- SGi(IJ,i;S,H,r)lâ,

I ^ (á31'2)-2"(27r)2"7r(r - ¿)~2" exp    - d2Y,Gi(x, y, t; £, 77, t)    .

ore

h j á 7r(á31'2)-2»(27r)2»M2(r - t)-2» exp j - d2J^Gi(x, y, t; f, 77, r)J .

Therefore
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Estimates on the remaining terms of the series are obtained by induction.

We get

exp   — </2XG.

(3.18) \fk\   ^7rC*-l>/2(¿31/2)-2n¿(2T)2»*M*+l(T_¿)l/2(*-l)-2»_-!-

T{k/2 + 1/2)

and therefore

(3.19) (/I á const (t - ¿)-<2»+i/2> exp|- ¿2XG<1-

For t^T — e the series (3.17) is uniformly and absolutely convergent. There-

fore (3.17) defines a continuous function for t^r—e and by (3.19) this func-

tion is absolutely integrable over R for t<r. We still have to prove that the

function / satisfies a Lipschitz condition of order y, 0<7. Because of (3a)

and (3.15), L{uo) satisfies a Lipschitz condition. It is therefore sufficient to

prove that

f*{x, y,t)=\     â      L[uo{x, y, t; p, v, \)]f{p, v, X; (-, r¡, r)dpdv
J l J R

satisfies a Lipschitz condition.

We keep xk, ky¿i, fixed and write for x¡^ <xf\ both in R,

f*{Xi   , y, t) — f*{x\  , y, t) =   I    d\ J  AL{u0)fdpdv,
J t J R

where we introduce the notation

AL{uo) = L[uo{xí   , y, I; p, v, X)] — L[u0{xi   , y, t; p, v, X)].

Outside the region E

(1) (2)
Xi       ^  p   ^   Xi     ,

E. t ^\ ^ t + a {a > 0, t + a < t),

y-b^vg,y+b {b > 0),

. ** — b £ Mi á ** + ¿ (* ^ t),

L{uo) satisfies a Lipschitz condition and/(¿u, v, X; £, 17, r) is absolutely inte-

grable. Therefore it is sufficient to show that

/1 t+a /»

¿X I   I AZ(mo) I dpdv
t Je

satisfies a Lipschitz condition, N is the bound on f{p, v,\; f, rj, t) in i?.
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According to (3.15)

| AL(uo) | Ú const. (X - ¿)-2n-1/2{exp | - é*^Gk(x^\ y, t; y, v, X)

— exp    — d2Y¿Gk(xi   , y, t; y,v,\)]\.

We split E into two parts according to

Xi    ^ M = (xí    + Xi   )/2, (xí    + Xi   )/2 ^ y ^ Xi   .

We divide the integral inside by (y — x\l))1' and (xf)—p)y, 0<7<1, re-

spectively and multiply outside both integrals by | x[l) — xf ] 7. We obtain

bounded integrals and have

/' <+°        C (i)
Sk I fAL(uo)dydv   ;£ const, j *<    —

m   i
Xi    P.

For y[l) — yf the proof is analogous.

For / </(1) <Z(2) <t let us consider

u(x, y, tw) - u(x, y, tm) =   |       dX  f fL[u0(x, y, tw; y, v, \)]dydv
J (<» J R

f<2> J R

We write

\      d\ f fL [uo(x, y, Z<2> ; y, v, X) ]dydv.
J 1(2) J R

u(x, y, /(1)) - u(x, y, f«) =   \       d\  \ fL[u0(x, y, t^;y, v, \)]dydv
J ¡(i) Jr

+   i       ¿X I fL\uo(x, y, tm; y, v, \)]dydv
J |0> J R

+  f     d\ f f{L[uo(x, y, t^;y, v, X)]
J m J R

- L[uo(x, y, tm;y, v, \)]}dyv

where m = minimum of (3£(2)— ¿(u)/2 and r.

The last integral satisfies a Lipschitz condition, because L(uo) does and/

is absolutely integrable.

The first two integrals are bounded and give

j u(x, y, f<») - u(x, y, /<«> | ^ const. | tm - /(1) |l/2.

We have therefore proved that/satisfies a Lipschitz condition.
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We now write (3.9) and prove that u thereby defined satisfies properties

I—111 of §2 and this will complete the proof of Theorem 2.

(I) The result of the last paragraph, formula (3.9), and Lemma 3 enable

us to write

L{u) = L{uo) - f{x, y, t; £, 77, t) +   I    d\ I  L{u0)f{p, v,\;%, rj, r)dpdv,
J t J R

which gives, by (3.16), L{u) =0. We notice that for /í£t — e, m0 and its deriva-

tives are continuous. So is du/dxk, which can be verified by direct differentia-

tion under the integral sign. We need to show only that d2u/dxkdxr and

du/dyr are continuous. This will entail by (1.1) continuity of du/dt. It is

sufficient to examine for continuity formulas (3.12) and (3.13). We can write

(3.12)

dU rT~e       r     dvo . .
- = lim ¿X j      -[f{p, v, X) - f{x, y, t)]dpdv
dyk        «-»0 J t+t Jr    dyk

+ lim f{x, y, ¡) ¿XI    -dpdv.
«->o J t+t J r dyk

This limit is uniform in {x, y, t) for t^r — e. Let (x, y, t) tend to {X, Y, T),

{X, Y) in R and T^t. We can interchange the limits e—>0 and lim (x, y, t)

= {X, Y, T) and this latter can be taken under the integral sign. This proves

continuity of dU/dyk. The proof is the same for d2U/dxidxk. Therefore prop-

erty I is satisfied by u.

(II) We have by (3.9) and (3.19)

U —  Mo ^ const, [¿.»i»]-1  f   (X - /)-2"(t - X)-2»-1'2^

•   I exp     — d2J^Gi{x, y, t; p, v, X) - á2XG«(/". v, X; £, -n, r)    dpdv;

we get

const. _ 1
(3.20)    I m - «o I á-2-!(r - tY'2 exp    - d2Y,Gi{x, y, t; {, r,, r)

<í>min L t J

Therefore for any continuous and bounded function/(x, y) we have

(3.21)

lim    I u{x, y, t; {, n, r)f{x, y)dxdy
*-*r-    Jt)

=   lim    I  uo{x, y,t;$, y, r)f{x, y)dxdy
i-»T-      J D
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where D is finite or infinite. The properties of wo immediately yield II.

(Ill) According to (3.19) we see that u(x, y, t; £, 77, r) and

xtu(x, y, t;%, 77, t) are absolutely integrable. Differentiation of (3.9) shows

that du/dxk are bounded. Hence the results of §2 apply to our fundamental

solution.

To illustrate the use of the fundamental solution we consider an initial-

value problem. If R is the whole of phase space, the following simple problem

can be solved: given a continuous bounded function \p(x, y) there is for i>0

a unique solution of equation (2.2) satisfying

lim u(x, y, t) = fax, y),
I->0

provided that both u and du/dxk are bounded and we have

*(É, vMt, V, t; x, y, t)d%dn.
-00

(3.22) is easily obtained by use of Green's formula. Uniqueness is conse-

quence of the fact that for 1^ = 0, u = 0. It is obvious that the restrictions on

u and du/dxk can be relaxed, because of the fact that u(x, y, t\ £, 77, r) de-

creases exponentially as well as du/dxk for large values of the coordinates.
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