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1. Introduction. In the first part(J) of this paper we associated every

quasigroup ® with the transformation group ®r generated by the right

and left multiplications of ®. We defined isotopy and showed that every

quasigroup is isotopic to a loop, that is, a quasigroup ® with identity ele-

ment e. We also defined the concept of normal divisor for all loops and showed

that every normal divisor § of © is equal to eT where T is a normal divisor

of @T.

The main purpose of this second part of our paper is that of presenting a

proof, using the results above, of the Schreier refinement theorem and the

consequent Jordan-Holder theorem for arbitrary loops. We obtain also a num-

ber of special results, among them a construction (2) of all loops ® with a given

normal divisor § and a given quotient loop ®/§. We use this in the construc-

tion of all loops of order six with a subloop, necessarily a normal divisor, of

order three. We classify these loops into nonisotopic classes and show also that

all quasigroups of order five are isotopic to one of two nonisotopic loops.

2. Normal divisors of subloops. The right multiplications Rh of the ele-

ments A of a subset § of a loop ® generate a group ¡Qp, the left multiplica-

tions Lh a group §x, and all Rh and 7» a group §r. These groups are all sub-

groups of the transformation group ®T.

We let § be a subset of a subloop 31 of @. Then §PCñp, §\C&\. Hence

^o» §x. Í>t are all subgroups of 2IT. The cosets

a!gp (a in 21)

are all subsets of 21. We define

to be the set of all transformations 5 of 2IT such that aS is in o§„ for every

a of 21. Then (aS)T=a(ST) = (aS) U=a VU for Fand U in $„, V U is in $„,

a(ST) is in a§p. If aST~1 = b then aS = bT = bU=aV, b=aVU~1 is in a§„. It
follows that $a is a subgroup of 2lr(*).

A subloop § of ® is a normal divisor of ® if the cosets x^„ form à loop

Presented to the Society, November 27, 1943; received by the editors October 11, 1943.

0) Quasigroups. I, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 507-519.
(*) In a recent letter R. H. Brück indicated that he had obtained the same construction

several months before I did. He did not, however, formulate the notion of associated extension

sets which we give here. In view of the fact that Bruck's construction has not yet been published,

that I obtained the results independently, and that I apply them in the study of loops of order

six I felt it desirable to retain the construction in the present paper.

(') In Quasigroups. I, we stated and proved this result only in the case S = ®.
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®/£ and the mapping x^>xQp is a homomorphism of ® on ®/^). Then we

have shown(4) that § is a normal divisor of ® if and only if §@ is a normal

divisor of ®T. The proof of this result may be carried through without a word

of change to yield

Lemma 1. Let 81 fre a subloop of ®. A subset 1q of SI is a normal divisor of

21 if and only if ¡Q = eT where T is a normal divisor of 2IT- Then §si *5 a normal

divisor of 3lT and x!q% =x§ for every x of 81.

Our definition of normal divisor is sometimes inconvenient to apply and

may be sharpened to yield

Lemma 2. A subloop & of a loop & is a normal divisor of ® if and only if

(1) ix®iy&) C (xy)Ç>,       x$C(x$)k,       (xy)Ç> C x(y&

for all x, y of © and h of !q. Then

(2) (*©)(y$) = (*y)$ = (xh)(y& = (x&(yh),

or all x, y of & and h of §.

For (x!q)&(Zx¡q and so x(ST) is in x& for all right multiplications 5 and £

of elements of §. If z is in x!q and S = Rh we have z in (x!q)S, zS~l is in x!q.

The right multiplications of the elements of § and their inverses generate the

group £>p and so xÍQpCZxÍQ, x^>p=x^. Also (xy)&Qx(y&)C.(x$Ql)(y$i>)(Z(xy)§

so that ix§)iy§)=x(y§) = ixy)§. If (x£)(y§) = (*§)(w§) then (xy)&

= (a:w)§, nu is in (*y)§ =x(y§), xw=x(yh), w=yh, w& = (yh)¡Q=y(hlc>)

= y§. Thus £> satisfies our definition of a normal divisor.

Conversely let § be a normal divisor of ® so that xig=xT where T is a

normal divisor of ®r containing $„. Then (xh)(y¡£>)(Z(xÍQ)(yÍQ) = (xy)lç>. But

(**)(?$) = yr£IÄ = (yL,0r = [(xh)y]T = (x£Ä£,)r = (xRy)UT = (xy)T.
= (xy)$ where Rf1RhRy=U in T. Similarly (*§) (yh) = xri?^ = xR^r

= [xiyh)]TiyRkL,)T = (xy) UT = (xy)T = (*y)$.
It should be noted that (1) and x%> = Qx are formal consequences of (2)

since ® has an identity element e. We now use Lemma 2 to prove

Lemma 3. Let fQ = eT be a subloop of a subloop % of & and T be a subloop

of ®T such that

RXTRX   = LXTLX   = r

for every x of 81. Then !q is a normal divisor of 81.

For x!Q=x(eT) =eTLx = eLxT =xT for every x of 21. If 5 and £ are in T

then (xS)(yT)=xSRyT=xRyTU=[x(yT)]U=[(yT)Lz\U=(yLx)(VU) where

Fand U are in T. Then (xr)(yr)C(xy)r. Also (xT)h=xTRh = xRhT =xhT

(*) Quasigroups. I, Theorem 3.
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= [x(«5)]r=[«(5L,)]r = («Z,)DT=*r since U is in T, UT = T. Finally

x(yT) =yTLx=yLxT = (xy)T and we have (1).

Note that we are not assuming that T is a subgroup of 2L nor even that V

contains §p. The hypotheses of this lemma are satisfied if ¡Q is a normal di-

visor of ® and we have, as a consequence,

Lemma 4. If § is a normal divisor of & it is a normal divisor of every sub-

loop 21 of ® which contains it.

The result also follows directly from Lemma 2.

3. Intersections. The intersection of any two subsets 93 and <S of a loop ®

is the set

SD = 93ne

of all elements of © which are in both 93 and (&. It is a trivial task to verify

that if 93 and S are subloops of ® then 2) is a subloop of 93, of E, of ®.

Define A„ =93pnSp, Ax =93xn<Sx, AT =33rr\<ST. Then we have

Lemma 5. Let 93 and S be subloops of ® and £)=93n(S. Then 2)PCAP,

£>xCAx, 2)rCAr, !D = eAp = cAx=eAT.

For <2 is in 3) if and only if R¿ is in 93p and in Ep, 2?d is in Ap. Hence 2)PCAP,

¿£>P = $)CeAp. But eApC93, eAPC£ so that eApC3), cAp=®. The remaining

properties are proved similarly.

If § and JÎ are normal divisors of © then x!q =x!q&, x$ =x$@ for every

x of ®. The intersection A of §© and $@ is a normal divisor of ®T and thus

eA is a normal divisor of ®. But eAC§, eAC® so that «AC® where 2) = §f\$.

Let AT = §,nÄr. Then eADcAr = 3) by Lemma 5 and we have proved the

standard

Theorem 1. The intersection of two normal divisors of a loop & is a normal

divisor of ®.

If 21 is a subloop of ® and § is a normal divisor of ® the intersection A of

2Ir and §® is a normal divisor of 2lT. By Lemma 1 the loop eA is a normal di-

visor of 21. As in the proof of Lemma 5 we have (§f^2l)=«A. We form the

cosets o§ for a in 21 and see that if o and 6 are in 21 and ab=c then

(o§)(6§) =c§. If a and c are in 21 we determine 6 in 21 such that ab = c and

see that (o§)(x§)=6§ has the solution x = c. Similarly if ya = b then

(y$)(a$) =*§• But then

(3) 2 = 2l§

is a subloop of ®, § is a normal divisor of ?. If o§=6§ then b=ad where d

is in §, d is in 21, d is in $) = §D2l. Thus o§ = 6§ if and only if o£) = 6®. The

mapping aS&—*a'£) is thus one-to-one and clearly defines an isomorphism of

2if>/§ and 21/2). Every x$£ = §x, £ = §21, and we have
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Theorem 2. Let 21 be a subloop of ®, § be a normal divisor of ®. Then the

intersection 3) of § and 21 is a normal divisor of 21, 8 = 2I§ = §21 ¿s a subloop

of ® swcfe /ÄO/

(4) 8/$ & a/©.

If 3) is the identity group, o$ = &§ if and only if a = b. Since two cosets

are equal if and only if they have an element in common we have the

Corollary. Let the intersection of a subloop 21 and a normal divisor § of ®

be the identity loop. Then either of the equations

ah = bk,     ha = kb (a, b in 21; h, k in §)

is true if and only if a = b, h = k.

4. Unions. The union of two subsets 93 and E of a loop ® is the intersec-

tion of all subloops of ® which contain both 93 and S. Since ® is such a sub-

loop the union of 93 and S is a subloop of ®. It contains 93 and S and so con-

tains 93S. It follows trivially that we have

Lemma 6. Let 93 and S be subloops of @. Then their union is 93S */ and only

if 93S is a subloop of ®.

If § and Ä are normal divisors of ® the union T of §© and $@ is a normal

divisor of ®T, er is a normal divisor of ®. Then eT contains £> and $ and so

contains their union. But r=§@ít@, eT =e&®®& = &®& = &®, 2=£>®=eT.

We have proved

Theorem 3. The union of two normal divisors ¡Q and Ä of ® is the normal

divisor ¡qM of ®.

A subloop ^ of ® is a maximal normal divisor of ® if and only if ©/§ is

simple. Indeed, as for groups, we may apply Lemma 2 to see that every nor-

mal divisor 21 of © such that 2ID§ arises from a normal divisor 2l0 of ©/§

such that 2Io = 2l/§. If § and $ are normal divisors of © which are distinct

and maximal their union ? = §Ä contains £> properly and, by Theorem 3,

2 = ®. We apply Theorem 2 to see that S/.ip=£/3) so that Ä/35 is simple,

3) is a maximal normal divisor of ©. Thus we have

Theorem 4. Let § and $ be distinct maximal normal divisors of a loop ©

and 3) be their intersection. Then 3) is a maximal normal divisor of § and of £

such that

(5) @/S S* $/3>,       ©/* S £/£>.

5. The Jordan-Holder theorem. The result of Theorem 4 is sufficient to

carry through the proof of the Jordan-Holder theorem for finite loops exactly

as in the classical case of groups. The proof of the result for infinite loops by
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the Schreier refinement theorem requires a more delicate analysis. We first

prove

Lemma 7. Let § be a normal divisor of ®, (So be a normal divisor of a subloop

ß of ®. Then S0§ is a normal divisor of E§.

For, by Theorem 2 and Lemma 6, S§ is the union of (S and § and is a

subloop of ®, 6o§ is a subloop of 6§. If c is in S and A is in § then cA(fë0§)

= (cSo)€>=c(6o§) by the use of Lemma 2. If also C\ is in E and Ai is in

£ we have [(<*)(6o$)][(ci*i)(<So$)] = [(<«„)$] [(c,e0)$] = [(c60)(ci60)]©

= [(cei)Co]$ = («*)(&,$), [(cA)(e,A,)](Œo©) = [(cei)Ä']Go$ = [(<*i)«o]$

= («i)(6o$) as desired. Also (cA) [(ciAi) (<£„§)] = (cA) [ei(Œ0$)] = (cA) [(ciCo)©]

= [c(cißo)]§= [(cci)®o]§ = (cci)(ßo§) and we have the third relation of (1).

Finally [(cA)(6„$)](coAi) = [(cSo)]£(c0Ai) = [(c©0)c0]§ = (cGo)$ = (cA)S0§.

This proves our lemma.

If (So is a normal divisor of a subloop (S of ® then E0 = er where T is a

normal divisor of £,. Let 93 be a subloop of ® and A=93T^r. TheneACe93r=93,

«AOSo, cAC(93Pi6o). But ADA, and, by Lemma 5, eA = (93n(S0). The loop
9306 consists of elements o with Ra and La in 93,P\6T and, by the associative

case of the lemma below, A is a normal divisor of $ß,r\(üT. By Lemma 3 we have

Lemma 8. Let 93 and (S be subloops of ® and (£0 be a normal divisor of (5.

Then 93P\(So is a normal divisor o/93f\£.

Our result now follows as in the associative case from

Theorem 5. Let 93 and £ be subloops of ®, 93o be a normal divisor o/93, So be

a normal divisor of 6. 7Aew

(6) (93 n 6)93o/(93n So)(So^(gn93)6o/(6H93o)6o.

For, by Lemma 8, 93r^(So is a normal divisor of 2l=937^(S and, by

Lemma 7, § = (93rMS0)93o is a normal divisor of the subloop S = 2Í930 of 93.

But 2iê=[(23^S)93o][f93n(5o)93o] = [(93ne)(93nSo)]93o by (1), 21§ = 2i930
since 2l(93nSo) = 21. Hence 8 = 2l§. We apply Theorem 2 to obtain 8/§Së21/£)
where £) is the intersection of 2Í and £>. If d is in (93P\Eo)(930nS) then d is in

21 and in §, d is in 33. Conversely if d = dob0 where d0 is in 93AEo and 60 is

in 93o then d is in 93HS if and only if 60 is in 93P\6, 60 is in 930nS. But then
D = (930nSo)(930ne). By symmetry

(6 n ©)Co/(c n «o)(So ̂sn 93/(e n 930)(So n 93).

However (en93o)(eo^93) = (93ne„)(930rM5) and our theorem is proved.

This result implies the usual refinement theory(6) implying that the com-

position loops ®<_i/®< in any two composition series ®oD®0®0 ■ • • D®r

= [7] of ® = ®o may be ordered so that corresponding members are isomor-

(6) Cf. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig, 1937.
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phic. It would be interesting to determine the validity of the conjecture that

a loop © has a composition series if and only if ©T has a composition series.

We leave this as an open question.

As in the theory of groups with operators we define an operator S of a loop

© to be a homomorphism of © on a subloop ©5 of ®. If 90? is any set of opera-

tors on ® we call ® an SJî-loop and define Sift-allowable subloop and normal

SJi-divisor in the usual fashion. The refinement theory for STJÎ-loops then fol-

lows almost exactly as for groups and we do not feel that it would have been

worth while to encumber our proofs with the additional necessary details.

6. Loop extensions. Let § be a loop with identity element e and A be a

loop with identity element 7. We propose to construct a class of loops to one

of which every loop ® with § as a normal divisor, and ©/£> isomorphic to A,

is isomorphic.

We begin with a one-to-one mapping

5 —» js (S in A)

of A on a set of elements js such that

ji = e.

Define ji h = h for every h of § and js ■ e =js for every S of A. Adjoin as further

elements the formal products js ■ h for every h^e of § and 5^7 of A. Assume

also that jsh=jrk if and only if S—T and h=k. The set ® of all formal

products jsh now contains § as well as the elements js-

Let 4 be a set of functions

4s,r(h, k)

on §§ to § such that 4 contains a uniquely defined function 4s.r for every

pair S, T of elements of A. We define ÍQs,t to be the algebraic system consist-

ing of the elements of § and the operation 4s,t, and assume that every §s,r

is a quasigroup. Moreover we assume that every §s,ris a loop with identity

element e and that e is a left identity of every ¡Qi,t- Finally let £>r,/ = §, that

is, 4r,i(h, k)=hk.
Define multiplication in ® by

(7) (js-h)(jT-k) = jsT4s,r(h, k).

We shall call ® the crossed extension of ® by A relative to the extension set 4<

and write
© = ($, A, 4).

By (7) we have hk = (ji-h)iji-k) =ji4i.i(h, k) and the products in © of the

elements of § coincide with their products in §. Thus if ® is a loop the loop §

is a subloop of ®. We note that e=ji-e, e(jrk) =Ji-4i.TJe, k) =jik since e is a

left identity of §/,r- Similarly (js-h)e=js-4s.i(h, e) =js-h and e is the iden-
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tity element of ©. Observe also that jsh = (js-e)(jih) =jr4s.i(e, h) =jsh and

our formal products jsh are the actual products jsh in ®. Thus ® has been

decomposed into the mutually exclusive sets js&- We shall prove

Theorem 6. Every crossed extension ® = (§, A, 4) is a loop with ¡Q as a

normal divisor and ©/■£> isomorphic to A. Conversely every loop @ containing a

normal divisor § is a crossed extension of § by A = ©/§.

The unverified conditions that ® be a loop are that the equations

ax = b,       ya = b

shall have unique solutions x and y in ® for every a and b in ®. Put a =jsh,

b=juw, x=jrk and use (7) to see that ax = b if and only if ST= U, 4s,r(h, k)

= w. Since A is a loop there is a unique .solution T of ST= U. Each !ç>s,t is

a quasigroup and there is a unique solution k of 4s,r(h, k) =w. Similarly we

write y=JRV and have RS= U for R uniquely determined in A, w=4r,s(v, h)

has a unique solution v in ¡Qr,s- This proves that ® is a loop with § as a sub-

loop.

Equation (7) also implies that the correspondence jsh—>S is preserved un-

der multiplication. It then is a homomorphism of ® and A in which *—>7 if

and only if x is in §. It follows that § is a normal divisor of ® and that ©/§

is isomorphic to A.

Assume next that a loop § is a normal divisor of a loop ® and take

A = ®/§. We define ji = e. Every coset S = x¡£> of A contains elements not in

any coset T¿¿S and the selection of an arbitrary element x=js in each 5^§

implies that 5= js&- Then ST = (Js&)(Jt&) = (jsjr)&, (jsh)(jTk) =jsrw where

w=4s,r(h, k) is a uniquely determined element of .¡p. Thus SQs.t is a multi-

plicative system. Now (jsh)e=js4s,i(h, e)=jsh so that 4s,i(h, e)=h. Simi-

larly e(jTk)=jTk and 4i,r(e, k)=k. Also jsh = (js¿)(jih)=js4s,i(e, h) and

h=4s,i(e, h). We have proved that e is the identity element of every ¡Qs.i

and is a left identity of every ¡Qi,t- Clearly §/,/ = §. If S, T, h, w are given

every solution k of 4s,r(h, k)=w determines a unique solution x=jrk of

(jsh)x =jsrw and conversely. But © is a loop and our former equation must

have a unique solution. Similarly the existence of a unique solution h of

4s,r(h, k)=w follows from the existence of a unique solution of y (jrk) =jsrw.

Thus each ¡Qs.t is a quasigroup, © = (£>, A, 4) f°r </> the set of all our 4s,t-

It is important for us to observe that the quasigroups §s,r are entirely

independent. This property is not a property of group extensions.

Illustrations of crossed extensions are easily obtained by selecting each of

the quasigroups §s,r to be an isotope of £>. Then

4s.r(h, k) = [(hAs,T)(kBStT)]Cs.T

where the permutations As.t, Bs.t, Cs.t are arbitrary except that As.i, Bs,i,
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Cs.t must be restricted so that e is the identity element of §s,r, and Ar,r,

Br.T, Ci,t must be restricted so that e is a left identity of §/,r.

7. Associated extension sets. The element js in the coset S=js& was

taken to be any element of this coset except that jr=c. If we replacées by

y s = jacs,        yr = ji,

we have S = ys§ and

(8) ® = ($, A, <b) = ($, A, *)

for an extension set ip to be determined. We shall call <p and yp associated^)

extension sets and see that the equality (8) holds if and only if <p and \p are

associated.

The element Cs in § determines a left multiplication h—><ps,i(cs, h) in ¡Qs.i

which we shall designate by Ls. Then

ysh = (jscs)(jih) = js(hLs).

It follows that (ysA)(yrA) = \js(hLs)]¡JT(kLT)] =jsr<p(hLs, kLT) =ysr^s.r(A, k)

—js.rtys.T^h, k)Lsr]. Hence \p is associated with <p if and only if

(9) Mr(h, k) = [<bs.T(hLs, kLT)]L~l.

Note that Li is the identity transformation.

We observe that the quasigroups Sq$t defined by the functions yps.T are

isotopes of the corresponding Qs.t- In particular each

Mr(h, k) = hLsRÏS)L~X = hQÍS)

where R[S) is the right multiplication defined for k in §s,r, QükS> is the right

multiplication defined for k in §$/,

t?A      = LsKk   Ls   ■

Then §^} has right multiplications conjugate to those of $s,i in the total

transformation group. The loop &$} is isomorphic to §s,r if §s,/ is a group.

The fact that e is an identity of every ¡Qs1¡ and a left identity of

every l&fjp follows from Theorem 1. To verify these results directly from

(7) we note that CÍS>=¿sPf)7sl is the identity transformation on §. Also

ipi.Ae, k)=y>i,T(e, kLT)]Lf1 = kLTLf-1 = k, is.i(e, k)=[<ps.t(eLs, A)]Zs-1

= [<ps.i(cs, k)]Ls~1=zkLsLs~1 = k as desired.

8. Direct products. If the quasigroups §s,r in Theorem 7 are all equal

(•) This type of study has its inspiration in the theory of crossed extensions defining simple

algebras as in my Non-associative algebras. II. New simple algebras, Ann. of Math. vol. 43 (1942)

pp. 708-723. It originates, of course, in the theory of crossed products. Note that Bruck's con-

struction of crossed extensions actually arose from an attempt to construct more general simple

algebras and will be presented by him in this connection.



1944] QUASIGROUPS. II 409

to § the crossed extension (§, A, <f>) satisfies the usual definition(7) of the

direct product § XA. It is a loop containing § as a subloop. Its elements js

form a loop isomorphic to A and it is customary to assume that every js = S

and that A is also a subloop of § XA. We may now prove

Theorem 7. Let & and 21 be normal divisors of a loop ® such that the inter-

section of § and 21 is the identity element of ®. Then §2l = §X2l.

For, by Theorem 7, §21/§=2i and §21 is the crossed extension 8 = (£>, 21, <p).

Then 2 = § X 21 if and only if (oA) (bk) = (06) (hk) for every a and 6 of 21, A and k
of §. But (ah)(bk) = (06) A0 where h0 is in the normal divisor § of ®. Since 21

is also a normal divisor of ® and (2ÍA)(2l¿) = 2IAA we have (ah)(bk)=a0(hk)

for Oo in 21. By the corollary to Theorem 2 we have (o6)A0 = Oo(AA) only if

Oo = o6, (ah)(bk) = (ah)(hk) as desired(8).

9. Automorphisms. An automorphism 5 of any multiplicative system ®

is a nonsingular transformation S on ® such that (xS)(yS) = (xy)S. Then

xSRz = xRvS where z = yS and

(10) RvS = S-'RyS

for every y in ®. Thus the set ®r of all right multiplications of ® has the

property that S~1TS is in ®r for every 7 of ®,.

The transformation group ®p generated by the right multiplications of ®

is now carried into itself by the inner automorphisms

T-^S-'TS

of the group of all nonsingular transformations on ®. Thus every automor-

phism 5 of © determines a unique automorphism

Sp: 7->75p = 5-'75

of ©p. If Sp= U„ then S~lRxS= U~lRxU for every x and RxS = Rxu- In the

case where © is either a quasigroup or a ring without absolute right divisors

of zero this implies that xS = xU. Then S=U and the correspondence S—+Sp

is one-to-one. It is evidently preserved under multiplication. We have a simi-

lar result for left multiplications and see also that each 5 determines an auto-

morphism S, of ®T. Thus we have proved

Theorem 8. The group of all automorphisms of a quasigroup ® is isomor-

phic to a subgroup of the automorphism groups of each of its transformation

groups ®p, ©x, ®r.

We shall not state the analogous results for algebras and for rings without

(r) Cf. R. H. Brück, Some results in the theory of quasigroups, Trans. Amer. Math. Soc.

vol. 55 (1944) pp. 19-52.
(8) This proof seems more direct and an improvement over the one usually given in the

associative case.
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absolute divisors of zero.

We may also prove

Theorem 9. Let © be a loop with identity element e and S be a nonsingular

transformation on © such that T—>S~1TS is an automorphism ST of ©r. Then S

is an automorphism of © if and only if eS = e, ®rST = ®r.

For if &rST = ®r then RXST = S-1RXS = RZ, yz=yS~1RxS=(yS-1)xS. Put

y = e and use eS = e, e = eS~1 to obtain z = xS, (yS)z= (yS)(xS) = (yS)S~1RxS

= (yx)S. Thus 5 is an automorphism of ®. The converse follows from (10)

and the fact that an automorphism S of ® necessarily leaves its identity ele-

ment unaltered.

We note that an antiautomorphism of a system ® is a nonsingular trans-

formation J on ® such that (xJ)(yJ) = (yx)J, JRt = LvJ,

(11) Ryj^J-^LJ,       Lxj = J-lRJ.

Then the automorphism Jr of ®r defined by T—*J~1TJ carries ®r into ©j,

®¡ into ®r. Conversely if eJ = e and £~1®r7 = ®i we have J~1RxJ = Lt,

zy = yJ~1RzJ, eJ~l = e, ze = z = xJ, (xJ)(yJ) = (yx)J. We have proved

Theorem 10. Let & be a loop with identity element e and J be a nonsingular

transformation on ® such that T—>J~lTJ is an automorphism JT of ®T. Then J

is an antiautomorphism of ® if and only if eJ = e, ®rJT = ®¡.

10. Isotopes with a prescribed identity element. Multiplication in a loop

© with identity element e is defined by

(12) x-eS = xS

for every right multiplication 5 of @r. Let £ and Q be any permutations of ©

and define

(13) 93? = P®rQ,

so that the elements of 9ft are the permutations PSQ. Suppose also that / is

any fixed element of ©. We write.

(14) (x,fT) = xT

for every T = PSQ and prove

Theorem 11. The system @(0) defined by (13), (14) is a quasigroup isotopic

to © such that ®<0) = 93?,

(15) R™ = T.

Then f is the identity element of ©(0) if and only if the identity permutation is

iniSl.

For y=}T=}PRaQ = {fPa)Q = aLQ, where £ is the left multiplication de-
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fined by the element fP of ®. Thus (14) is equivalent to

(16) (*, y) = (xPyQ-'L-^Q,

and defines an isotope of ®. Every y of ®(0) has the form y=/7 for 7 in 90?

and (14) defines Ry0) = T. Then ®<0) = Sfl. If the identity permutation 7 is in

39? the value 7 = 7 in (14) gives (x, f) =x and (J, y) = (/, fT) =fT = y implies
that/ is the identity element of ©(0). Conversely if/ is the identity element

of ©<0) we have R?> = 7 in SD? = ®<0) as desired.

Let us close this section with the introduction of two new fundamental

concepts. We recall that in classifying associative algebraic systems it is cus-

tomary to place two systems in different classes if and only if they are neither

isomorphic nor anti-isomorphic. In studying nonassociative systems we re-

place isomorphism by isotopism and so should introduce the following con-

cepts. Let © and ©' be algebraic-systems. Then we shall say that © and ©'

are anti-isotopic if there exist one-to-one mappings S, T, U on © to ©' such

that xSyT— (yx)U for every x and y of ®. Clearly © and ©' are anti-

isotopic if and only if © is isotopic to a system which is anti-isomorphic to ©'.

In a similar fashion we say that © is antihomotopic to © if there exist

equivalent mappings S, 7, U on © to ®' = ®S=®7=@L7 such that xSyT

= (y-x) U. Then ® is antihomotopic to ©' if and only if © is homotopic to a sys-

tem anti-isomorphic to ©.

A program for the classification of loops may now be made as follows. We

first classify loops into classes such that no two loops in the same class are

isomorphic or anti-isomorphic. We then determine which classes are isotopic

and will know that two systems in different sets of isotopic classes will be

neither isotopic nor anti-isotopic.

11. Finite quasigroups. A finite quasigroup ® consists of a set of elements

«i. •!»••• i •» and a corresponding set ®r of permutations 2?i, 2?2, • ■ • , Rn

on © such that XiRj = XtRk for any i if and only if j = k. We define multiplica-

tion in © by e¡e, e¿2?, and ei is the identity element of © if and only if Ci2?¿ = «,-,

2?i is the identity permutation.

If £> is a subset of © and x is in © the set x& consists of all xh for A in §.

If xh = xk then h = k and the number of elements in x!ç> is the same as the num-

ber of elements in |>. If § is a subquasigroup of © and xh = k where A and k

are in § then x is in '§. But then xiç> and § have an element in common if

and only if xfQ = §.

Let m be the order of § and § be a proper subquasigroup of ®. By the

argument above 2m^n. It follows that the largest order of § is the greatest

integer in n/2. It is known(9) that there exist quasigroups of every order n

with a subquasigroup of this maximum order.

If each element of ® is in one and only one subset x§ and the mapping

(9) Cf. Brück, loe. cit.
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x—>x!q is a homomorphism, the subquasigroup § of © is called(10) a normal

divisor of ®. Using this definition we may prove(n)

Theorem 12. Let & be a subquasigroup 0} order m 0} a quasigroup © 0}

order 2m. Then !q is a normal divisor 0} ©.

For let 21 consist of all elements of ® not in §. If a is in 2Í the argument

above implies that a^C2l. But 21 and o2l each consist of m elements, a§ = 2l.

Similarly fç>a = 21. It follows that ® consists of the two distinct cosets § and 81.

Now §§ = £, 2l£Oa§ = 2I, every a§C2I, 2I£ = 2I. Similarly §81 = 81. If a(ah)
is not in § then a(ah) =aho for A0 in §, ah = ho whereas we are assuming that a

is in 31. Thus a8IC§, a8l consists of m elements, a8l = §, 8181 = §. Clearly

x—>xíq is a homomorphism of © on the cyclic group ©/§ of order two.

12. Solvable loops. A group of prime order has no nontrivial subgroups

and it is this property which is critical in the theory of solvable groups(12).

A loop of prime order may have proper subloops other than the identity loop

and so we shall make the

Definition. A loop ® is called solvable i} none 0} its composition loops

have nontrivial subloops.

We then have

Theorem 13. Every subloop ¡Q 0} a solvable loop © is solvable and the com-

position loops 0} £> are isomorphic to a subset 0} those 0} ©.

The result is obvious if § is a member of a composition series @<0®i

D • • • Z)®<De. Otherwise there is some ®,-_i such that ®,-_iD§, ®,- does

not contain $. By Theorem 2 the loop £ = §®¿ has the property

8/®,- s $/$,     3) = § n ©,-.

But §^3), 8/®i is a subloop of ®¿_i/®,-, 8/®< has order greater than one,

?/®¿ = ®.-i/®„ ? = ®<-i. Then 3) is a maximal normal divisor of § con-

tained in ©,-. After a finite number of such steps we obtain a composition

series $ = 3)<030 • • • D3).='[e] such that some 3),-= ©,-,■ or

3Vl/®i^®.7-,/@V-

In either case the result of our theorem follows.

If ^ is a normal divisor of a loop ® the homomorphism of ® to ®/§ im-

plies, exactly as for groups, that © is solvable if and only if both § and ©/§

are solvable.

(10) This includes our definition of normal divisor for loops.

(u) This theorem and its proof were suggested to me by Daniel Zelinsky, a graduate stu-

dent at the University of Chicago. See also G. N. Garrison, Quasigroups, Ann. of Math. vol. 41

(1940) pp. 474^487. The results of Garrison imply our theorem although it was not explicitly

stated. Note also that Garrison proved a case of our Theorem 4 as his Theorem 4.24.

(i2) we regard the associative case of Theorem 13 as the principal result of that theory.
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13. Right powers. If x is the only element of a quasigroup ® we define

the right power xk inductively by xk = xk~1x for every positive integer A.

If © is a loop with identity element e then the right order of X5¿e is the

least positive integer / such that x' = e. Now x = eS where S = Rx, x2 = xS

= eS2, • • • , xk~1 = eSk~1, xk = (eSk~1)x = eSk. Hence t is the least positive in-

teger such that the permutation Rx leaves e unaltered. The permutation Rx

is in the group ©p and hence S" = I where a is the order of @„. But the usual

proof implies that / divides a. Since e, eS, • ■ • , eS" cannot all be distinct the

right order of x is at most n and we have

Theorem 14. 7Ae right order of an element of a finite loop © of order n is

at most n and is a divisor of the order of ©p.

We may also prove

Theorem 15. Let S be a right multiplication of © and t be the number of

letters in a cycle of S. Then there exists a loop isotopic to ® and with an element

having right order t.

For if/ is any element appearing in a cycle of S the letters of this cycle are

f,fS, ■ ■ ■ ,fS'-\ It follows that fS'=f and that fSk9¿f for 0<A</. We use
Theorem 11 to define an isotope of ® with/as identity element and 9D? = ®r

such that (x,fT)=xT for every right multiplication 7 of ®. Then a=fS has

the property that its right power ak, in the isotope, is equal to (fS)k=fSk for

every A>0 and akj¿f if 0<A <t, a'=fS' =/.
The construction above may be modified and we may take 2)?=P_1®,P

in Theorem 11 where P is chosen so that/P = e. Then a = eP~1SP has right

order / in an isotope with e as identity element.

14. Quasigroups of order five. The first step in the study of finite(13) loops

© of order n is the observation(14) that all loops of order re ̂ 4 are groups.

Designate the elements of ® by ei, • • ■ , en and Rei by R, and assume hence-

forth that 2?i is the identity permutation. Then 2?2, • • • , Rn are permuta-

tions on re letters and 2?¡ = (1, i, ■ ■ • ). Conversely if (1, i, ■ • ■ ) is in ®r then

(1, », • • • )=2?,-. Moreover if 2?2, • • • , 2?„_i are given, the permutation Rn

is uniquely determined by the fact that c,2?n^e,Rj for j'=l, ■ • • , re —1.

We assume now that n = 5 and suppose first that ®r contains a cycle on

five letters. There is no loss of generality if we take this cycle to be (12345).

(13) Let ® be any finite loop and i?i, • • • , Rn be the corresponding right multiplications.

Regard the elements of ® as being a basis of a linear space of order n over some field, and de-

fine a linear transformation 5,- on this space as the correspondence in which each basal element e,-

is replaced by e,i?¡. Define SiSk = St where / is defined by e,J?i = ei. Then our set of linear trans-

formations forms a loop with respect to this operation, and we have the geometry of the in-

variants under this loop to study. It would be interesting to discover whether there are more

general transformation loops.

(") This result was mentioned in the paper of Brück referred to in footnote 7. It is easy

to prove and seems to be fairly well known.
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Assume also that £3 is a cycle. The possible values of £3 are then (13524),

(13542), (13254). The values (13524), (14253), (15432) occur in the case where
© is the group.

Assume that © is not a group and that £2= (12345), £3= (13524). If

e4£4 = e2 then e2R\¿¿e2, e3, ei so that e2£4 = Ci or c6- In the former case

£4=(142)(35) whereas e3R3 = e&. In the latter case £4= (14253) so that

£6 = (15432) contrary to our hypothesis that ® is not a group. Hence

e4£47"*e2, e4, e6, «i so that eiRi = e3. Now £4^(143)(25) since eiR3 = e2, and

£^(14325) since e6£-2 = ei. It follows that (12345), (13524) are right multi-

plications of the cyclic group only.

Consider next the case where £2= (12345), £3= (13542). Then we have a

loop with right multiplications

(17) (12345), (13542), (14)(253), (15243).

If Ríj¿ (14)(253) then c4£47^es, e2, e\, c4 so that e4£4 = £3. But et,R2 = ei and thus

Rm¿(14325). Hence £4=(143)(25) and we have the loop given by

(18) (12345), (13542), (143)(25), (15324).

Our final case with £2= (12345) and 2?2 a cycle is that given by

£3= (13254). The solution given by £4= (142)(35), £6= (15243) is isomorphic

to that given by (18) since we obtain this loop from (18) by replacing e3

by e2, eb by e3, e2 by e6 and thus (12345) by (15243), (13542) by (12345),

(15324) by (13254), (143)(25) by (142)(35). There is no value of e2£4 possible
except Ci if eiRi = e2 so that otherwise e4£4^c4, e2, e&, Ci, and £4= (14352),

£6= (153)(24). Replace e6 by e2, e2 by e4, et by e6 in (18) and so replace (12345)

by (14352), (13542) by (13254), (15324) by (12345) and (143)(25) by
(153)(24). We have shown that all loops which are not groups and which

have £2= (12345) and £3 a cycle are isomorphic to (17) and (18). The latter

two loops are neither isomorphic nor anti-isomorphic since the loop defined

by (17) contains an element of order two and that defined by (18) does not.

Let us suppose that £2= (12345) and that £3 is not a cycle. Then a solu-

tion is given by

(19) (12345), (13)(254), (14352), (15324).

With £2 and £3 as in (19) the hypothesis £4?¿(14352) implies that

R^(14325), eJU^e3, e4, e2, eb, e4£4 = ci. Then £4=(14)(235) or (14)(253).

Neither value is possible since e2R2 = e3, e2R3 = eb. Thus we must assume that

£3í¿(13)(254). But £3?i(13)(245). Hence e3R3j¿eu e3, c4. If e3R3 = e2 then

£-3^(132)(45), e3R3r¿ei, R3 is a cycle. The only possibility remaining is that

where e3R3 = eb and we see that e$R3?±ei since e6R2 = ei. Then e6£3 = e4 or e2 and

in either case £3 is a cycle, contrary to hypothesis.

The loop given by (19) is not isomorphic or anti-isomorphic to that given

by (18) since the former contains an element of order two and the latter does
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not. In (19) we have x2 = e3 for x = e2, et, eh, (x2)2 = ei. Hence no two of the loops

obtained thus far are either isomorphic or anti-isomorphic.

There remains only the case of loops ® such that ®r contains no cycle.

If e2R2 = ei we may assume that £2= (12)(345). A solution is then given by

(20) (12)(345), (13)(254), (14)(235), (15)(243)

which defines a loop containing four subgroups of order two and which is

neither isomorphic nor anti-isomorphic to any of the loops obtained above.

If £2 and £3 are as in (20) the assumption of a different £4 implies that

etRi^et, ei, e2, ei so that eiRt = e3, e3Ri9¿ei, £4 is a cycle; a contradiction.

Hence let R3-¿(13)(254). From our value of £2 we have £3^(13)(245) and

we also know that £3^(13245), (13254). But e^^ei, e4, e3. Hence e3£3 = c2

or e5 and R3^(132)(45), so that e3£3 = e6. We thus obtain £3= (135)(24). It

follows that etRi?¿ei, e¡,, e2 and that c4£4 = ei, e3. The values (14)(235) and

(14) (253) are impossible since e3R3 = eb, etR2 = e3. Hence e4£-4 = ß3 and we have

the loop defined by

(21) (12)(345), (135)(24), (143)(25), (154)(23).

This loop contains only one element of order two and no elements of right

order five and is not isomorphic to any of the loops obtained above. Its left

multiplications are readily computed and are (12)(345), (13524), (14325),

(15423). Interchange e2 and c4 and we obtain (17). Thus the loop defined by

(21) is anti-isomorphic to the loop defined by (17). We have proved

Theorem 16. Every loop 0} order five is either a group or is isomorphic to

one of the loops defined by the sets (17), (18), (19), (20), (21) of right multi-
plications. No two of the latter loops are isomorphic or anti-isomorphic except

that the loop defined by (21) is anti-isomorphic to that defined by (17).

If we replace each permutation 5 of (20) by P-*SP where £=(12)(345)

we replace (12)(345) by itself, (13)(254) by (135)(24), (14)(235) by (143)(25),
(15)(243) by (154)(23). By Theorem 11 the loops defined by (20) and (21)
are isotopic. Replace the permutations £1, £2, £3, £4, £5 of (20) by

i?j-i = (14)(253), £2£4-1 = (15243), £3£4-1 = (12345), £4£r1 = 7, £6£r1 = (13542).

By Theorem 11 the loop defined by (17) is isotopic to that defined by (20).

Replace each permutation 5 of (18) by P^SP where £=(13542). This re-

places (12345) by (15243), (13542) by itself, (143)(25) by (14)(253) and
(15324) by (12345). Hence (18) is isotopic to (17) and thus also to (20). We

finally replace the permutations £< of (19) by £i£3-1= (13)(245), £2£r1

= (142)(35), £3£3-1, RiRf1 = (154)(23), R^Rf^ (125)(34). Interchange e2 and

e3 and obtain (21). Thus (19) is isotopic to (21) and hence to (20). We have

proved that all quasigroups of order five are isotopic either to a group or to

the loop defined by (20). We state our result as the following
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Theorem 17. All quasigroups of order five not isotopic to the group are iso-

topic to each other.

15. Loops of order six. While a complete study of loops of order six would

probably yield some interesting and suggestive results we shall not carry it out

here but shall rather content ourselves with a list of some special types of

loops.

The first of our examples is that given by the right multiplications

(22) (123456), (135)(246), (143652), (153264), (163)(254).

This loop contains no subloops of order two since it contains no elements of

right order two. Its elements of right order three are e3 and et, and el = e3.

Thus a subloop of order three would contain e3 as well as e\ = ef,, e\, e3et = e2,

a contradiction. It follows that our loop has no nontrivial subloops and is

simple(16).

A simple loop containing elements of right order four is given by

(23) (123456), (1364)(25), (146532), (1543)(26), (1635)(24).

It clearly contains no nontrivial subloops. It is isotopic to the loop defined by

replacing each right multiplication S by P~lSP where P= (654321). This lat-

ter simple loop contains three subloops of order two and is given by

(24) (123456), (13)(2465), (14)(2536), (15)(2643), (163542).

Let us now consider loops ® of order six with a subloop !¡> of order three.

All groups of order six are of this kind. Then § is a normal divisor of ®, ®

is the crossed extension (§, A, <p). Also § is the cyclic group e = e\, f=e2,

P = e3 such that/3 = e, A is the group (I, S) of order two, &s.r = &- Then the

elements of ® are

e, f, P, g, gf, gp

such that (gfi)f' = g(fi+i) for every i,j = 0, 1, 2. It follows that the first three
right multiplications of all such loops are given by the identity,

(25) (123)(456), (132)(465).

Since §/,s has e as a left identity element we either have §j-,s = § and

(26) P(gP)=gfi+i (*,/« 0,1,2),

(u) In a letter to Brück I conjectured the theorem stating there exist simple loops of all

orders n except 4. Brück has proved this result and the proof will appear elsewhere. It was sug-

gested to me by the example of order six which I constructed as showing that the Sylow theory

does not hold for loops. Observe also that our two loops of order six are solvable. However

they are isotopic to loops which have proper subloops and which are therefore not solvable

(this observation is due to Brück).
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or the left multiplications in lç>i,s are the identity, 7/= (132), 7/2= (123) and

the resulting relations are

(27) P(gf') = gP»>- (i,j = 0,1, 2).

Thus these portions of the multiplication table of a loop ® of order six are

exactly the same as when © is a group.

The right multiplications of the quasigroup iQs.s are either the cycle (123)

and its powers or the permutations (12), (23), (31). There are six possible

arrangements of each set of three multiplications and hence twelve values of

<ps,s- The relations

(28) («/WO = /a+"i+Ti (**. j = 0, 1, 2)

for a = 0, 1, 2, for ß=l, 2, and for 7 = 1, 2 give twelve distinct values for

<ps,s and so all possible values. Write P = d and obtain/2i = di, (Pl)(gP')

= gfd+fi=di(gd>)=gdi+i in (26), (pi)(gp>)=gf«+2i=(di)(gdO=gd2i+i in
(27). However (gPi)(gPi) «/«+M<+*7/ = (gd')(gd>) = d2a+ßi+y>: It follows that

we may delete the value a = 2 in our classification of loops and so reduce the

number of cases of (20) to eight.

If ß = y the value a = 0 implies that g2 = e, (gf)2=Pß, (gP)2=ftß=fß so that
we may always choose an element g such that a = l. When (26) holds and

ß = y = 1 we have the cyclic group. When (26) holds and ß = y = 2 the resulting

loop is the only other commutative loop in our set. Its right multiplications

are given by (25) and

(29) (14)(2536), (1526)(34), (1635)(24).

These loops are evidently self-anti-isomorphic. When (27) holds and a = l

then ß = y = \ yields

(30) (1426)(35), (15)(2436), (1634)(25),

and /? = 7 = 2 yields

(31) (142635), (153624), (16)(25)(34).

Evidently no one of our four loops is isomorphic to any of the other three.

If (27) holds the mapping/-^/, g—>g, fg^>gf induces an anti-isomorphism

of © on a loop of the same elements such that all elements are invariant except

that ¿fand gP are interchanged. Then (J'g)(Jlg) = (gP')(gPi)~^(gfi)(gfi).But
(gP')(gP{) =/°+2^'+2Ti so that the result of replacing y by 2ß and ß by 2-y in

(28) is a loop anti-isomorphic to the original. Thus (30) and (31) are anti-

isomorphic.

When (26) holds the loops defined by (28) for ß = 1, 7 = 2 are anti-isomor-

phic to those defined for/3 = 2, 7 = 1. If y = 2/3 = 2 then a = 0 yields

(32) (14)(25)(36), (15)(26)(34), (16)(24)(35),
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while a = 1 yields

(33) (142536), (152634), (162435).

Their anti-isomorphs determined by 0 = 27 = 2 are given, respectively, by

(34) (14)(2536), (15)(2634), (16)(2435),

and

(35) (1425)(36), (1526)(34), (1624)(35).

When (27) holds and ß^y the loops defined are self-anti-isomorphic. The

value a = 0 defines the noncommutative group of order six if 0= 1 and 7 = 2,

and yields the loop defined by

(36) (14)(2635), (15)(2436), (16)(2534)

for 0 = 2, 7 = 1. The set of values a = 1,7 = 20 = 2 defines

(37) (1426)(35), (1524)(36), (1625)(34),

and a = l, 0 = 27 = 2 defines

(38) (142635), (152436), (162534).

Every loop ® of order six with a subloop § of order three has now been

shown to have a single subloop of that order. The property (26) states that

for such loops the centralizer of § is ®, and (27) states that for those loops

it is §. Hence no one of the loops defined by (29), (32), (33), (34), (35) is

isomorphic to any one of the loops defined by (30), (31), (36), (37), (38) or to

either of the two groups of order six. Clearly no one of our twelve loops is iso-

morphic to any one of the remaining eleven. The two groups and the loops

defined by (29), (36), (37), (38) are self-anti-isomorphic, and the loops de-

fined by (31), (34), (35) are the anti-isomorphs, respectively, of the loops

defined by (30), (32), (33).
The general theory implies that all isotopes of a loop with a normal di-

visor of order m contain a normal divisor of order m. Moreover we may obtain

isomorphs of all loops isotopic to a loop ® if we use as right multiplications

the products SRU SR2, ■ ■ • , SRn where £1, • • • , £„ are the right multiplica-

tions of @, 5_1 is any one of the £<.

By direct computation we see that if A =(123)(456) and £ = (14)(2536)

then ,4£ = (1526)(34), ^42£ = (1635)(24). It follows that the right multiplica-

tions of the loop defined by (29) are 7, A, A2, B, AB, A2B. Then A~l = A2,
5 = 7, A, A2 give isomorphic loops. If we take S = B~l = (14)(2635) we ob-

tain £-U = (1536)(24), £-^2=(1625)(34), B~1B = I, B~lAB = (456)(132),

£-1.42£ = (£-1.4£)2. Interchange e2 and e3 and obtain the original right multi-

plications. The value 5= (AB)-1 gives S, SA =B~lA~1A =£-\ SA2 = B~1A,
SB = B~1A2B, SAB = I, SA2B = B~1AB, and  the value S=(A2B)~l gives
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B~1A~2 = B-1A, B~lA2, B~\ B~lAB, B~1A2B, I. Hence all loops isotopic to

(29) are isomorphic to (29). Indeed we have proved that a loop is isotopic to

a commutative loop © of order six with a subloop of order three if and only

if it is isomorphic to ®.

Let C= (1426)(35) in (30) and A == (123)(456). Then CA = (15)(2436),
CA2= (1634)(25). Take S = A~1 — A2 and replace our right multiplications by

A2, 7, A, A~lC, A~*CA, A~1CA2. The loop so obtained and with right

multiplications Rx is isomorphic to a loop whose right multiplications

Rz0) = ARxAA~1 are ^42, I, A, CA, CA2, C and is thus isomorphic to the origi-

nal loop. Similarly if 5 = ^4_2 = ^4 then A, A2, I, AC, AC A, AC A2 may be re-
placed by A, A2, 7, A~l(AC)A = CA, A~1(ACA)A = CA2, A-l(ACA2)A = C.

The value S=C~1 yields C~\ C~XA, C~lA2, I, A, A2 where C~1 = (1624)(35),

C-14 = (1425)(36), C-l¿2= (1526)034). Hence the loop defined by (30) is
isotopic to that defined by (35). The value 5=(C4)-» = (15)(2634) yields
(C4-)-1i4 = (16)(243S), (CA~1)A2 = (14:)(2536), (CAYUCA, (CA)~l(CA2)=A,

(CA)~1C=A~l = A2. Hence the loop defined by (30) is isotopic to that

defined by (34). Finally S=(CA2)~l yields (CA2)~l = (1436)(25), (CA2)~lA
= (1534X26), (CA2)-1A2 = A~2C-1A2 = (3516)(24) = (1635)(24), (C42)->C

= A~2=A, (CA2)~1(CA)=A2,1. Interchange e2 with e3, e4 with e5 and replace

A by A2, A2 by A and our remaining right multiplications by those of (35).

Since (31) is anti-isomorphic to (30) and (32), (33) are anti-isomorphs of

(33), (34) we see that (31) is isotopic to (32) and (33). Hence (30), (33), (34)

are anti-isotopic, but not isotopic to (31), (32), (33).

We finally study (37) and see that if £ = (1426)(35) and A = (123)(456)
then AB = (1625)(34), ,42£ = (1524)(36). Thus the values S = A~1 and S=A~2
replace our set of right multiplications by itself. If S = B~1 then our multi-

plications are £-1 = (1624)(35), B^A = (A~1B)-1 = (A2B)-1 = (1425)(36),
B~lA2 = (AB)~1= (1526)(34), £-^£ = (465)(231), £-U2£ = (456)(213). In-

terchange eb and c6 to obtain (37). Next S = (AB)-1 = (1526)(34), (AB)~lA
= B-^AB-^A2 = B-tA, (AB)-1AB = 7, (AB~X)A2B = B^AB, (AB-^B

= B~1A2B. Finally S=(A2B)~1 = B~1A gives the right multiplications B^A,

B^A2, B-\ B^AB, B-XA2B, B~1AÀ2B = I. Interchange ex and e3, e6 and c6

in (37) to obtain (36). We have proved that every loop isotopic to (36) is iso-

morphic to (36) or (37). Since (38) has not appeared in our determination of

isotopes every loop isotopic to (38) is isomorphic to (38).

We have thus shown that there are six classes of loops of order six with a

subloop of order three such that every loop of this kind is isotopic or anti-

isotopic to a loop in one and only one class. The classes are: (1) the isomorphs

of the cyclic group; (2) the isomorphs of the noncommutative group; (3) the iso-

morphs of the commutative loop defined by (29) ; (4) the isomorphs of (36) ; (5) the

isomorphs of (37); (6) the isomorphs and anti-isomorphs of (30).
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