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1. Introduction. In this paper we shall deal with the following general prob-

lem: Let/(a;1, x2, • • • , xr, 6l, • • • , 0*) be the joint probability density func-

tion of the variates (chance variables) xl, • • • , xr involving k unknown pa-

rameters 01, • • • , 6k. Any set of k values 01, • • • , 0* can be represented by a

point 0 in the ^-dimensional Cartesian space with the coordinates 01, • • • , 0*.

We shall denote the set of all possible parameter points by ß. The set ß is

called parameter space. The parameter space ß may be the whole £-dimen-

sional Cartesian space, or a subset of it. For any subset co of ß, we shall

denote by Ha the hypothesis that the parameter point lies in w. If w consists

of a single point, Hu is called a simple hypothesis, otherwise Hw is called a

composite hypothesis. In this paper we shall discuss the question of an ap-

propriate test of the hypothesis Hu based on a large number of independent

observations on x1, • • • , xr.

For simplicity we shall introduce the following notations: The letter 0 or 0<

for any subscript i will denote a point in the parameter space ß. The letter x

Some of the results contained in this paper were presented to the Society, February 22,
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will denote the random vector with the components xl, ■ ■ ■ , xr, and xa

will denote the random vector with the components *£,••••*£ where x«

(i = 1, 2, • • • , r) denotes the crth observation on x\ In general, the com-

ponents of a vector v in the s-dimensional space will be denoted by v1, • • • , V,

that is the components of a vector will always be indicated by superscripts.

Throughout this paper all vectors have their initial points at the origin.

We denote by En a sample point in the rw-dimensional sample space of n

independent observations on the random vector x. For any relation R we

denote by P(R \ 0) the probability that R holds under the assumption that 0

is the true parameter point. A region (subset) of the m-dimensional sample

space will always be denoted by a capital letter with the subscript n. For any

region Wn the symbol P(Wn\0) will denote the probability that E„ falls

within W„ under the assumption that 0 is the true parameter point. Through-

out this paper the word "region" will be used synonymously with "subset,"

since in the theory of testing statistical hypotheses it is customary to call the

subsets which are used as criterions of rejection, critical regions.

By maximum likelihood estimates 6„, • ■ ■ , 0* of 91, • • • , 0* we mean

values of 01, • • • , 0* for which ü"-i/(*L • • • , xra, 9l, ■ • • , 9k) becomes a

maximum. The subscript n in the symbol 6n will indicate that the maximum

likelihood estimate is based on n independent observations on x', • • • , xr.

A region Wn in the rw-dimensional sample space is called a critical region

for testing the hypothesis Hw if we decide to reject Hw when and only when

the observed sample point falls within Wn. For any 0 not in w the value of

P{ Wn I 0) is called the power of the critical region Wn with respect to the

alternative hypothesis 0. The least upper bound of P(W„|0) with respect

to 0, restricting 0 to co, will be called the size of the critical region W„. A criti-

cal region is considered the better, the smaller its size and the greater its

power.

In several previous publications(2) the author has considered the case of

a single unknown parameter 0 and the problem of testing a simple hypothesis

0 = 0O. It was shown, among other things, that under certain conditions the

critical region given by the inequality | «1/2(Ö„ —0O) | =.4„ has certain optimum

properties. Here the symbol An denotes some properly chosen constant. In

this paper the general case of several unknown parameters is treated and

simple as well as composite hypotheses are considered.

By an equality or inequality among vectors we shall mean that the equality

or inequality holds for all components. For example, if 6n denotes the vector

with the components 6n, • • • , 0*, where 8„ is the maximum likelihood esti-

mate of 0', and if A is a real number, then the inequality

w1'2(0n - 6) < A

(2) Asymptotically most powerful tests of statistical hypotheses, Ann. Math. Statist, vol. 12

(1941). Some examples of asymptotically most powerful tests, Ann. Math. Statist, ibid.
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denotes the set of inequalities

1/2, .it. , . ..
n {en-e)<A 0=1, •••,*).

Or, if / is a vector with the components fi, • • • , /*, then

«1/2(0n - 6)  < t

denotes the set of inequalities

1/2, ,i i. i "    ' ..
n   (fln - 0) < t (i = 1, ■ • • , k).

2. Assumptions on the density function/(x,ö). For any function \p(x) weshall

use the symbol ftZ${x)dx as an abbreviation for /t" • • ■ JtZ^ix) dx1 ■ ■ ■ dxr.

Denote by Ee^(x) the expected value of i]/(x) under the assumption that 0 is

the true parameter point, that is

E*Kx) = f  Kx)f{x, 0)dx.

For any x, any positive value 6, and any 0i denote by ^./x, 0], 5)

the greatest lower bound, and by <pij(x, 0i, S) the least upper bound of

d2 \ogf(x, d)/d6id6> with respect to 0 in the 0-interval |0-0i| g5.

Throughout this paper the following assumptions on f{x, 0) are made:

Assumption I. Denote by Dn the set of all sample points En for which the

maximum likelihood estimate 0n = (0i, • ■ ■ , 0») exists and the second order par-

tial derivatives d2f{xa, 6)/ddidd> (a = l, • • • ,n;i,j = l, ■ • • , k) are continuous

functions of 0. It is assumed that

lim P(Z)„ I 0) = 1 uniformly in 0.
n — oo

If for a sample point En there exist several maximum likelihood estimates,

we can select one of them by some given rule. Hence we shall consider 0„ as

a single-valued function of En defined for all points of Dn.

Assumption II. For any positive «

lim P[\ 0„ - 0| < «| 0] = 1
n= oo

uniformly in 0, where 0„ denotes the vector with the components Ö„, ■ ■ ■ , 0\

and 0„ is the maximum likelihood estimate of 0*.

Assumption II is somewhat more than consistency of the maximum likeli-

hood estimate 0„. In fact consistency means only that for any positive e

lim P[\0„ - e \ < «| 0] = 1,

without requiring that the convergence be uniform in 8, If 6n satisfies Assump-
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tion II we shall say that 6n is a uniformly consistent estimate of 6. A rigorous

proof of the consistency of 6„ (under certain restrictions onf(x, 0)) was given

by J. L. Doob(3). The uniform consistency of 6„ together with the uniform

consistency of the likelihood ratio test will be proved on the basis of some

weak assumptions on f(x, 0) in a forthcoming paper.

Assumption III. The following three conditions are fulfilled:

(a) For any sequences {0in}, {92n}, and {<5„} for which lim„_„ 0i„ = limB=M 02n

- 8 and lim 5„ = 0 we have
d2 log /(*, 8)

lim EttJfifix, 02n, 5n) = lim £*,„•></(*, 02n, <5„) = Et-—■-
n=» n=« d8ld0'

uniformly in 6.
(b) There exists a positive e such that the expectations Etityifoc, 82, 5)]2 and

F.Bi[<bn{x, 82, S)]2 are bounded functions of 6i, 92 and 5 in the domain D, defined

by the inequalities \ 0\ — 92 \ g e and \ 8 \ g e.

(c) The greatest lower bound with respect to 6 of the absolute value of the de-

terminant of the matrix \\ —E)(d2 \ogf(x, d^/dd^d'W is positive.

Assumption IV. ftZdf(x, 8)/ddi dx=JtZd2f(x, 6)/deid6i dx = 0.

Assumption IV simply means that we may differentiate with respect to d

under the integral sign. In fact

+ 00

f{x, 8)dx = 1

identically in 9. Hence

d r+°

30

r> +oo Q2        n +oo

- I   f{x, 8)dx = - I   f{x, 8)dx = 0.

Differentiating under the integral sign, we obtain the relations in Assump-

tion IV.

Assumption V. There exists a positive rj such that

d
, l0g/(*'Ö)

2+*

•••,*)

are bounded functions of 0.

3. The joint limit distribution of 0„. Denote w1/2(0^-0i) by 4(^0 and let

z„(0) be the vector with the components z\(dl), • • • , z*(0*). For any constant

vector t denote the probability P[z„(0) </| 0] by $n(t\d). We shall prove the

following proposition.

(3) J. L. Doob, Probability and statistics, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 759-

775.
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Proposition I. The distribution function Qn{t\ 0) converges with w—* <x>, uni-

formly in t and 8, towards the cumulative multivariate normal distribution with

zero means and covariance matrix

where

c,-,-(0) = - Eed2 log/O, 6)/d6id6'.

Proof. Because of Assumption IV, we have

d log f{x, 0)      r+" 0/0,0)r d log fix, 0)
(1; lie-;-= I

00' J_«
dx = 0.

001

From

02 log f(x, 0) 1     d2f{x,6)      1 f df 9f

00*00'      f(x, e)  dd'dd' f

we obtain because of Assumption IV

p \_ddi dd>]

ej^rn _ _  »UM _
[]_   00*       66'   A) 88*06*

From (2) it follows that the matrix ||ciy(0)|| is positive definite or semidefinite.

Because of condition (c) of Assumption III the matrix ||c,-j(0)|| must be posi-

tive definite. For any point En of the set Dn defined in Assumption I consider

the Taylor expansion

0 log fjxa, 0Q _       0 log f(xa, 8)

a 00* a 00S
(3)

+ Z(ei-ei)\T.d2l0Sf(Xa'F)l
j la 00*00' J

where 0 lies on the segment connecting the points 0 and 0i. Denote

«_1/2E°d logf(xa, 0)/ö0*byy^(0) and let y„(0) be the vector with the compo-

nents y„(8), ■ • • , yn{9). Substituting 0„ for 0i in (3), the left-hand side of

(3) becomes equal to zero and we obtain

-m-lx   — ]}-o(4)

or

i      _ 4    l r _ a2 log fixa, 0)1
(5) yn(8) + E *M -   E      ~r.       = 0.

j n  L    a 00*00' J
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Let v be an arbitrary positive number and let Qn(d) be the subset of Dn for

which the inequality

(6)
l     a* log/(*„,«)

— 2-, -;—:-r- c<,-(0)
«     a 00'00'

< V

holds. We will prove that

(7) lim P[Qn(6) I 0] = 1

uniformly in 0.

Let To be a positive number such that

(8)

02 log fix, 0)1 V
Ee<bij(x, 0, t0) - £e- < —>

Eetaix, 0, t0) — Et

00*00'

02 log/U 0)

00*00'
<

for all values of 0. Because of condition (a) of Assumption III, such a To cer-

tainly exists. Denote by Rn(6) the subset of Dn consisting of all points En for

which the inequality

(9) k - 0 kg T„

holds. Because of Assumption II

(10) lim P[RM I 0] = 1
71 - oo

uniformly in 0. Since 0 lies in the interval [0„, 0 ] we have for all points of i?„(0)

(11) TO

Hence at any point of i?„(0) the inequality

02 log /(*„, 0)      ^ ,
(12)       £       o, to) g E .— g E       9, to)

„ a 00*00' a

holds. Let the region 5„(0) be defined by the inequality

(13) E 4>ij(Xa, 0, T0) — E)4>ij(x, 0, t0)

and r„(0) be defined by the inequality

(14) - E ö. To) — Et&iji*, 0, t0)
W a

<

<

It follows from (b) of Assumption III and Tshebysheff's inequality that
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uniformly in 0. Denote by Z7„(0) the common part of the regions Rn(6), Sn(d)

and r„(0). In t7B(0) we have because of (8), (13) and (14)

(16)

— 0iAxoi "i Tv ~ -;—:—
\, n   a 00'00'

— 2-, wa(xa, 0, t0) — Ee-■—:-
n   « 00*00'

< v,

< V.

From this we obtain (6) because of (12). That is to say, the inequality (6)

is valid everywhere in <7„(0). Since lim„_M P[Un(6)\d] = 1 uniformly in 0 and

Un(fl) is a subset of £>„, our statement about Qn(ß) is proved.

Since the determinant |c<,-(0)| has a positive lower bound, we obtain

easily from (5) and (6)

(17) z>) = £ fM [<ru(fi) + vUin{En, 0, r) J,
i

where «,,•„(£„, 0, v) is a bounded function of En, 0, and v, provided that, for

each 0, E„ is restricted to points of Qn(d) and | v\ is less than a certain posi-

tive number v<>.

Let z„(0) be defined as follows: z„(0)=z„(0) at any point of <2„(0), and

i

at any point outside O;»(0). It follows from (7) that

(18) lim {P[zM < t\ 6] - P[z„(0) <t\d]} =0
n= «

uniformly in / and 0.

Denote 2^,jyi(0)<rij(d) by z»(^) an<l let 2»W be the vector with the com-

ponents z\(ß), • • • , z*(0). From (1), (2), Assumption V and the general

limit theorems it follows that P[yn(d) <t \ 0] converges with n—><x>, uniformly

in t and 0, towards the £-variate cumulative normal distribution with zero

means and covariance matrix ||c,j(0)||. From this we easily obtain that

P[z„(6) <t\ 0] converges with «—»<», uniformly in t and 0, towards the cumu-

lative joint normal distribution with zero means and covariance matrix

||<7iy(0)||. Since v can be chosen arbitrarily small, we obviously have because

of (17)

(19) lim {P[z„(0) < t\ 0] - P[z„(0) <t\e}) = 0
n— oo

uniformly in / and 0. Proposition I follows from (18) and (19).
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4. Reduction of the general problem to the case of a multivariate normal

distribution. In this section we shall prove two lemmas which will enable us

to reduce the general problem of large sample inference to the case where the

variates under consideration have a joint normal distribution.

Lemma 1. For each positive integer n there exists a set-function W*(Wn)

defined over all Borel measurable subsets Wn of the rn-dimensional sample space

such that the following two conditions are fulfilled:

(a) For each Wn, W*(Wn) is a Borel measurable subset of the rn-dimen-

sional sample space with the following property: For each point of W*{Wn) the

maximum likelihood estimate exists and if a sample point En lies in W*{Wn)

then also all those points £»' lie in Wf(Wn) for which 0„(£„') =Ö„(£„).

(b) Lim„_M {P[W*{Wn)\e]-P[Wn\e]} =0 uniformly in 6 and Wn.

Proof. Let X be a real variable which takes only non-negative values and

consider the region W„{8, X) defined as the common part of the region Wn

and the region |«1/2(0„-0)| gX. Similarly let Wn*(Wn, 0, X) be the intersec-

tion of Wn*(Wn) and the region |w1/2(0„-0)| gX.

For any function $(v) we will denote by g.l.b.„ $(») and l.u.b.. <&(v) the

greatest lower bound and the least upper bound of &(v) respectively.

Since, on account of Proposition I, for any sequence {X„} for which

lim„_M X„ = oo

lim {g.l.b. [P[\ «"2(0„ - 0)| g Xn| 0]]} = 1,
71— W ft

Lemma I is proved if we show that there exists a sequence {X„} not depending

on 0 and Wn such that limn=00 X„ = =° and

(20) lim {P[Wn(6, Xn) I 0] - P[W*n(Wn, 0, A„) | 0]} =0

uniformly in Wn and 0.

Let 5 be a real variable restricted to values greater than 1. For any set

of k integers (n, ■ ■ ■ , rk) and for any value q denote by IJji, ■ ■ ■ , rk, q)

the region defined by the inequalities:

■.        n - 1/2      j     fi + 1/2 rk - 1/2      j     rk + 1/2
(21) -< 0„ <-> • • • , -< en <-— ■

qn112 qn112 qn112 qn112

Furthermore denote by 0n(n, • • ■ , rk, q) the parameter point with the co-

ordinates ri/qn112, • ■ ■ , rk/qn112. We order the system of all sets of k in-

tegers (fi, • • • , rk) in a sequence and we shall denote by In.(q) the interval

In(ju ■ ■ • , rk, q) where (n, ■ • • , rk) is the sth element in the ordered se-

quence (j = 1, 2, • • • , ad inf.). Similarly 0„,(2) denotes the parameter point

0n(ri, • • • , rk, q) where (ri, • • • , f») is the 5th element in the ordered sequence.
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Let Jns(W„, q) be the common part of the three regions /«.(g), Wn and

Qn[0n<i(<z)] where for any 0, Qn(8) is defined by the inequalities

— Z <t>a(%«, 9, —\ + Cij{6)

n   a      \ w1"/

(22)

g •-1" v(n) + v{n).

The expression ^(n) is equal to l.u.b.o [Ee<j>ij(x, 8, 2/n113) — E^ijix, 0, 2/n1'3)]

and the expression v(n) is defined as follows: Denote by c,,(0, n) the least

upper bound of | Cij(8) — c,-/0) | with respect to 0 where 0 can take only values

in the interval [0 —l/w1/3, 0 + l/w1/3]. Then v(n) is defined as the least upper

bound of Cij(8, n) with respect to 0, * and j. Because of condition (a) of As-

sumption III, we obtain

(23) lim v{n) = lim v{n) = 0.

Let JZ(Wn, q) be a subset of I*s{q) such that the following two conditions

are fulfilled:

(24a) If En is an element of j£(Wn, q) then also all those points £„' for

which 0„(£„') =0n(£„) are elements of JZ(Wn, q), that is JZ(Wn, q) can be

represented as a subset of the space of the maximum likelihood estimates.

Furthermore JZ(W„, q) is an interval in this space.

(24b) Lim„=00{l.u.b...Tr„|P[/n.(Wr„, q) | 0n.(g) ][/*(W„, ff) | »„(«)] I }
= 0 where V„ | f?) denotes the probability of Vn calculated on the basis that

the joint distribution of w1/2(0„-01), • • • , w1/2(0*-0*) is normal with zero

means and covariance matrix ||o\j(0)|| = ||c;,-(0)||-1.

The existence of such a set JZ(Wn, q) can be proved as follows: Obvi-

ously there exists a subset J£(Wr, q) of In,(q) such that (24a) is fulfilled and

W*s(Wn, q) I eUq)] = min \P[Jns{Wn, q) |" *,.($)], WUq) | 0«(«)]}.

Since J„,(Wn, q) is a subset of In»(q) and since limn=00 {P[ln,(,q)\8n,(q)]

— Sß[/n,(g) |0»»(g) ]} =0 uniformly in s, the above defined subset J%,(Wn, q)

satisfies also the condition (24b). We define

00

(25) wt(Wn, q) = Z J*n>(Wn, q).

Furthermore we define the regions J„(Wn, 0, X, q) and J*(Wn, 8, X, q) as

follows:

(26) MW», 0, X, q) = £ g),

(27) /!(IFn, 0, X, g) = Z J*n.(Wn, q).
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where the summation is to be taken over all values of 5 for which | 0 —0„„(g) \

gX/w1'2^

Let J£(W„, q) be the intersection of JZ(Wn, q) and Q„[d„s(q)], and let

J*(Wn, 9, X, q) =2^sJm(W„, q) where the summation is to be taken over all

values of 5 for which \d—9ns(q) | gX/w1/2. Furthermore let W£{W„, 6, X, q) be

the intersection of W^(W„, q) with the region |w1/2(0„ — 0) | =X.

If for a value of s we have w1/2| 0 — 9na(q) | =X then for all points of Im(q)

we have nll2\9 — 6n\ =X + l/g. If there exists a point in I„a(q) for which

»1/2|0-0n| gX-l/g then «1/2| 0-0ns(g) | =X. Hence W*(Wn, 9, X-l/g, g) is

a subset of //(PF«, 0, X, g), and the latter is a subset of W,T{Wn, 9, X-fT/g, q).

Thus

I P[W*n(Wn, 0, X, q)\0]- P[J*n(Wn, 6, X, q)\d]\

(28) r£ P[I^*(IF„, 0, X + 1/g, g) | 0] - P[W*n(Wn, 0, X - l/q, q) \ 0]

= P[\ - l/q g «1/21 6n - 0 I g X + 1/fl I 0].

According to condition (b) of Assumption III Eg[<j>ij(x, 0, S)]2 and

Ee[i//ij(x, 9, 5)]2 are bounded functions of 0. Hence also Ee(pij(x, 9, 5) and

Ee\pij(x, 8, 5) are bounded functions of 0. Substituting 5 = 0 we find that csy(0)

is a bounded function of 0. From the boundedness of cij(0) and from the

fact that the determinant | ci3(0) | has a positive lower bound (condition (c)

of Assumption III) it follows because of Proposition I that

(29) lim {l.u.b. P[X - l/q = m1/2| 0n - 0 \ g X + 1/g | 0]} =0

uniformly in X. From (28) and (29) we obtain

(30) lim supfl.u.b. I P[W*n(Wn, 0, X, q)\o]- P[J*(Wn, 0, X, q) \ 0] \} = et(X, q)
n= «       e, wn

where lim9=0O ei(X, q) =0 uniformly in X.

Denote by Rn{9, X, q) the common part of the regions Qn[9ns(q)] formed

for all values s for which | 0 —0„„(g) | gX/w1/2. Then for almost all n the region

i?„(0, X, q) contains the region Tn{9) as a subset, where T„(9) is defined by the

inequalities

(31)

— X) ^ijxa, 0, —^ + C,,(0)
Ma \ M,/3/

W     a \ ft ' /

,1/3

<-h ?(«)•
,1/3

In fact, from (31) it follows that
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- — - "(«) g — £ 0,        g ciiW +      + "(»)'
„1/3 m     a \ tl ' / m1/3

(32) i

- — - K») = - £ *«(*«, 0, —) g      + — + K«).
n ' n   a      \ w1'3/ m1'3

Since

— £ *«{*«, 0, —J g — £ 0„8(g), — )
n   a      \       n't     n   a      \ n ' /

= — E
w   a       \ n't

— £ 0, —^ g — £ Mff). ~)
w   a        \          w1'3/       w   „        \ m1/3/

»   „      \ n't

for almost all n and for all j for which «1/2| 0 —0„,(g) | =X, we obtain from (32)

1 1    T-^ / 1   \ 1
di% -—- K») = — E <M *«.—  =       + — + *(»),

(33) ■ i 11

n ' n   a      \ nllst n1'1

for almost all n and for all s for which m1/2|0 — dn,(q) | = X. Since | Cij\dv,(q) ]

—Cijiß)I for almost all w and for all s for which w1/2|0— 0„.(g)| =X, we

obtain from (33)

c,-,-[0n.(?)]-— - v(n) - v{n) g — £ <t>ij(xa, en,(q), —^
m1'3 n  „      \ n'/

^«/Mj)] + —+ 'w + »w.
„1/3

(34) i i

e«[M?)] -— - "(«) - v(n) = — £      *a, 0B.(g), — ]
n1'6 n   a      \ nll6t

= c.-,-[M?)] +      + K») + *(«)

for almost all w and for all 5 for which «1/2| 0 — 0n,(g) | =X. The inequalities

(34) are equivalent to the inequalities (22) if in (22) 0„,(g) is substituted for 0.

Hence our statement about the region i?„(0, X, q) is proved.
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Consider the region Un(6) defined by the inequalities

(35)

Since

and

- £        e,      - ErtJx, 0,      I < -L
M     „ \ fir     J \ M1/3/ I M1/3

- E       o,     -        9,     I < -4i
Ma \ W1'3/ \ M1/3/ I M1'3

v(m) = j Afe/s, 0, —^ + dM I

v{n) = c-,(») + £^ «(*■ ev/3)l'

the validity of (35) implies the validity of (31). Hence £/„((?) is a subset of

Tn(0). From condition (b) of Assumption III and Tshebysheff's inequality it

follows that lim„_M P [Un{6) \ 0] = 1 uniformly in 6. Hence lim„=00 P [Tn(0) | d] = 1

uniformly in 0. Thus, as can easily be seen,

(36) Ifen P[RJP, X», ff) !«] - 1
n= «o

for any bounded sequence {X„} uniformly in 0 and g.

Let /M(W„, q) be the intersection of the regions Wn and /„<,(?)• Further-

more let /„(W„, 0, X, g) be equal to £,j„.-(Wn, g) where the summation is

to be taken over all values of 5 for which n1,2\ 6 — 0„,(g) | gX. Then the common

part of Es-1^(5) and Wn(6, X—1/g) is a subset of Jn(Wn, 9, X, g), and the

last is a subset of the common part of Es"« 1-^(2) and W„(6, X+l/g). Hence,

since P[Es"i^(e)|ö] = l, we have

I P[Wn(fi, X) I 0] - P[/„(W/„, 0, X, g) I 0] I

(37) = P[l^n(0, X + 1/g) I 0] - P[Wn(6, X - 1/g) | 6}

= P[\ - 1/g g M]'2| 0„ - 0| g X + 1/g I $].

From (37) and (29) it follows that for any sequence {g„} for which lim g„ = 00,

we have

(38) lim I P[Wn(d, X) I 0] - P[Jn(Wn, 0, X, g„) | 0] | = 0
n= 00

uniformly in 0, W„ and X.

Since the common part of the regions jn{W„, 0, X, g) and i?„(0, X, g) is

contained as a subset in Jn(Wn, 0, X, g) and since the last is a subset of

jn(Wn, 0, X, g), we obtain from (38) and (36) that for any bounded sequence
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{X„} and for any sequence {g„} for which lim„=00 g„ = oo we have

(39) lim {P[Wn{6, X„) I 6] - P[Jn(Wn, 0, X„, q»)\o]} = 0
n= «

uniformly in 0 and Wn.

Since the common part of the regions J*(Wn, 0, X, q) and i?„(0, X, q) is a

subset of J*(W„, 8, X, g) and the last is a subset of J*(Wn, 0, X, g) we obtain

from (36) that for any bounded sequence {X„} and for any sequence {g„}

for which lim„=0O g„ = °o, we have

(40) lim {P[J*n(Wn, 6, X», g„) | 0] - P[j!(IT., 6, X», g») | 0]} =0
rt= W

uniformly in 0 and W„.

Now we shall evaluate the limit values of P[jn(Wn, 8, X, q)\d] and

P\j*{Wn, 0, X, g)|#]. Denote by -4„(X, g) the domain in the space of the

variables 6, Wn, 0' and En defined as follows: 8 and W„ can take arbitrary

values, 0' is restricted to values for which 18' — 8\ gX/w1/2; and for any 8 and

Wn, En is restricted to points which lie in the sum of the sets Jn(Wn, 6, X, g)

and J*(W„, 8, X, g). Denote furthermore by pn{8', 8, 0„) the function

(41) P„(0', M.) = - 7 E £ «(0'* - <O(0" - flW*).

Consider the Taylor expansion

(42)

Ei°g/(*«e')
a

= Eiog/(x«,0„) + — EE(0 -0J(0 -0J— E-————
„ 2   j    ; n   a ddlda'

where 0 lies in the interval [0', 0n].

Since in the domain .4„(X, g) any point E„ lies in the sum of the sets

Jn(Wn, 0, X, q) and J*(Wn, 0, X, g), it follows from the definitions of these sets

that En lies in the set £s(?n[0n«(g)] where the summation is to be taken over

all values of 5 for which nl>2\0-0„,(g) | ^X (the set Qn(8) is defined in (22)).

Hence for any En in the domain .4„(X, g) we have

(43)

— E 4>ij(%«, 0»»(g), — ^ + Ci,[0„,(g)]
n  a      \ ir'v

— E ^a(xa, 0„.(g), — ^ + ci3[0na(g)]

+ v(«) + v(n),

1
^-h v(n) + i/(«)

for that value of 5 for which En lies in i"„»(g). In all that follows, with any
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(44)

point of the domain ^4„(X, q) we shall associate the integer s for which £„ lies

in Intiq). Since nll2\6 — 6n,{q) | gjX in the domain -4„(X, q), we have in the

domain -4„(X, q)

— Z hi\xa, Ms). —1 s — Z <Pa(xa, e, ——\
n  a      L «1/3J     m  a      \ 2m1'3/

^ — Z ^i)T*a, 0„«(?), —l,
n   a      L m1/ifJ

— Z 'r-.jT*«. Mg), —1 ö — Z <*><,•(*«■ ö, ——)
n   a      L w1/3J     »   a      \ 2m1'3/

^ — Z *«»T*«i Mf)i — -1
m     „ L »1/4J

for almost all values of w. From the definition of ?(«) and from the validity

of the inequality nll2\6 — 0««(<z)| =^X in .4„(X, g) we find that in the domain

^4n(X, q)

(45) I cu[en,{q)\ - aM \ =

for almost all values of n. From (43), (44) and (45) it follows that in the

domain .4„(X, q)

(46)

— Z <t>ij(xa, e,      + cu(e)
n   a      \ 2m1'3/

— (x*,e, ——\ + am
11    a \ 2m1'3/

1
=S-h »(«) + 2p(m),

^ — + Km) + 2?(m)
m '

for almost all values of n.

Since «1/2| 6 — 6„,{q) | =X in An(t\, q), we have

(47) m1'2 I 6 - 0n I ^ X + 1/q   in ^„(X, 2)

and therefore

(48) n1'*1 6' - dn \ = 2X + 1/q in ^n(X, q).

Since 0 lies in the interval [0', 0„], from (48) we obtain

(49) w1'21 S - 6» I £ 2X + l/q in ^n(X, 5).

From (47) and (49) it follows that in 4„(X, q)

d2 log /(*„, 6)
(50)

/ 1 \     ^ 32 log /(*«, 6)      ^     / 1 \
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for almost all n. Because of (23), (46) and (50) we obtain from (41) and (42)

(51)    lim jl.u.b.  £ log /(*„, 0') - £ log /(*«, 0„) - Pn(0', 9, 6n)\\ = 0,

and

(52)

lim jl.u.b. 11" £ log/(xa, 9) - £ log/(*a, 0')]
n=oo   (,4„(X,«) I L    a a J

- [Pn(e,ejn) - p,(fl',e,0]|| = o.

Denote P[jn,{Wn, q)\en,(q)] by Pn.{Wn, q) and P[l*{Wn, q)\dn,(q)] by

P%s(W„, q). Substituting 0„„(g) for 6' we easily obtain from (52)

(53)

lim -U.u.b.
n=~  ( 6,Wn

p[Jn(wn, e, x, q) I e]

- £ P„(W», q) exP (P„[0, 0, 0*(g)] - P»[0».(g), t», 0* (g)]) || = o

where the summation with respect to 5 is to be taken over all values for which

«1/2| 6 — 0n«(g) I =X and 9%siq) is a parameter point for which

(54) n^\6nl(q) -*».(?) | = 1/?.

Since Ci3(0) is a uniformly continuous and bounded function of 9, it follows

from (41) and (54) that

piß, 9, 0*(g)) - p[9, 6, 0„s(g)] | = aV,[», 0*(g), 0»s(g)]/g,

(55)
I pK.(g), 0, 0n«(g)] - p[0n,(g), 0, M?)] | = *,['. «..(?). »«(?)]/?,

where <pi[0, 8Z,{q), 9„,{q)] and <£2[0, 0£,(g), 0ns(g)] are bounded functions of

0, 0*(g) and 0ns(g) in the domain «1/2| 0-0„,(g) | =X. From (53) and (55) it fol-

lows that

lim sup < l.u.b. P[J»iWn, 8, X, g) I 0]

(56)

where

(57)

£ P».(W», g) exp (p„[0, 0, 0n,(g)] - p„[0n.(g), 0, 0„.(g)]) || = e(X, g)

lim e(X, g) = 0
q— oo
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uniformly in X over any finite positive interval. Similarly we obtain

lim sup < l.u.b.
-«    v e,Wn

(58)

P[j*(Wn, 0, \,q)\e]

- S Pt{wn, q) exp (Pn[ö, 0, u?)] - p»[»..(?). 9. Mg) ]) |} = «r(X. ?)

where

(59) lim i|(X, g) - 0
q= oo

uniformly in X over any finite positive interval. In the formulas (56) and (58)

the summation with respect to 5 is to be taken for all values for which

\0 — dns(q) \ ^X/»1/2. The expression p„[0„t(g), 0, 6ns(q)] is obviously equal to

zero, hence (56) and (58) can be simplified by substituting zero for this ex-

pression. Denote P[j*(W„, q) \ 0„,(g) ] by Pl\(Wn, q). Because of Proposition I

we have

lim {%[J*UW„, q) I M?)3 - PUWn, ?)} = 0
n= «o

uniformly in s and W„. Hence we obtain from condition (b) of (24)

(60) lim {P„(Wn, q) ~ pUwh, q)} = 0
n — *

uniformly in 5 and W„. Since 7Z(Wn, q) is the intersection of Qn[6n,(q)] with

Jiu(Wn, q) and since

lim P[Qn[6nt(q)]\0n.(q)} = 1
n= oo

uniformly in s, we have

(61) lim {K(Wn, q) - P*ns(Wn, q)} = 0
n= oo

uniformly in s and Wn. Since for any given X and^g the number of different

values of s satisfying the inequality rc1/2| 6 — 6n,(q) \ =X is a bounded function

of 0, from (56), (58), (60) and (61) we obtain

lim sup {l.u.b. I P[Jn(Wn, 0, X, g) I 0] - P[7*{Wn, 0, X, g) | t?]|}
n=.oo $,wn

(62)
= f(X, g) = t(X, q) +r,(\ q).

Hence

(63) Iimf(X, g) = 0
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uniformly in X over any finite positive interval.

For any positive X' the sets Jn(Wn, 0, X+X', q)—Jn(Wn, 0, X, q),

Jn*(Wn, 6, X+X', q)-J*(Wn, d, X, q), J*(Wn, 6, X+X', q)-J*(Wn, 6, X, q),
W*(Wn, 6, X+X', q)-W*(Wn, 0, X, q) and Wn(0,\+\')-Wn{0, X) are sub-

sets of the set defined by the inequality

x - i/o g w1'2\e -dn \ = x + x' + i/o.

Since for any sequence {X„| for which lim„_M X„= w we have

lim P[X„ - I/o g n1'21 0 - Ö„ I = X„ + X' + I/o I e] = 0
n= «

uniformly in 0, q and X', (39) and (40) hold for any arbitrary sequence11 {X„}

and (63) holds uniformly in X where X can take any positive value. Thus

from (30), (39), (40), (62) and (63) we obtain

(64) lim sup {l.u.b. I P[Wn(0, X) I 0] - P[W*n(Wn, 0, X, q) \ 6] \ } = e,(X, o),
b=» e,wn

where

(65) lim «3(X, q) = 0
q= oo

uniformly in X. Let {qi} (i = 1, 2, • • • , ad inf.) be a sequence of positive

integers such that lim,-_M qi = + <». Furthermore let {rji} be a sequence of

positive numbers such that lim<=00 t;, = 0. We define Wn*(Wn) as follows:

(66) W*(Wn) = W*n{Wn, qi+1)   for   m < n =        (i = 0, 1, • • • , ad inf.).

The sequence {»,■} (* = 0, 1, 2, • • • , ad inf.) of integers is chosen as follows:

Denote by ^„(X, q) the expression

Lu.b. I P[Wn(0, X) I 0] - P[W*(Wn, 0, \,q)\0]\.

The integer n0 is put equal to 0 and w; is chosen such that

tli > «,_!,

(67)
Fn(\i, g,+i) < «3(Xi, qi+i) + ?;<

for all «>«,-, and where {X,} denotes a sequence of numbers such that

lim,=IO Xi = + oo.

LetX„'=X<, 77„'=?;,•, and g„'=2i+i for Wi <w =w,+i (i = 0, 1, 2, • • • ,ad inf.).

Then from (64), (65) and (67) we obtain

(68)    lim {l.u.b. I P[Wn(0, Xn') | 0] - P[W*n{Wn, 0, Xn', o„') | 0] |} = 0.
n-eo 0,Wn
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Denote by W^(Wn, 9, X) the intersection of Wf{Wn) and the set defined by

the inequality n1/2\d — 9n\ i£X. Since Wn*(Wn, 9, X, q) is the intersection of

Wn*(W„, q) and the region nll2\d — 6„\ =X, it follows from (66) that

(69) W*n(Wn, 6, X,', <?„') = wtiWn, e, X„').

Equation (20) follows from (68) and (69). Hence Lemma 1 is proved.

We shall say that a region V* lies in the space of the maximum likelihood

estimates if it has the following property: If En is an element of V* then

also all those points El for which 6n(El) = 8n(En) are elements of V*. In

all the following considerations the symbol * as a superscript in the notation

of a region will indicate that the region lies in the space of the maximum

likelihood estimates, except if a statement to the contrary is explicitly made.

For any region V* we shall denote by ty(V*\9) the probability that the

sample point will fall in V* calculated under the assumption that

nll2{6ln — Ö1)- ' " " > n1,2(8% — 0*) have a joint normal distribution with zero

means and covariance matrix ||cr,-j(0)|| = -l.

Lemma 2. There exists a function W*(R*) defined over all Bor el measur-

able subsets R* such that

lim {P[R*n\d] - y[wt(R*n) I 6]} = 0
«=»

uniformly in 6 and R*.

Proof. Since we assumed that the set J£(Wn, q) defined in (24) is an in-

terval in the space of the maximum likelihood estimates, it follows from

Proposition I that

(70) lim {P[jUWn, q)\e]- <T3[/* (Wn, q)\o]} =0

uniformly in 6, Wn, and 5. Let W*(Wn, q) be the set defined in (25) and let

WfiWn, 9, X, q) be the intersection of Wn*(Wn, q) and the region «1/2| 0 — 0„|

^X. For given values of X and q the number of different values of s, for which

J*(Wn, q) has at least a point common with the region w1/2|ö — 0„| ^X, is

a bounded function of 9. Hence it follows from (70) that

(71) lim {p[w*n(wn, e, x, q)\e]- y[wt(Wn, 8, X, q) I e}\ = 0
n= oo

uniformly in 9 and Wn- From (64), (65) and (71) we obtain

(72) lim sup {l.u.b. I P[Wn(8, X) | 8} - %[W*(Wm, 8, X, q) | 8] \} = e(X, q)
n= =o $,wn

where
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(73) lim e(X, q) = 0
Q — oo

uniformly in X. The set Wn(d, X) denotes the intersection of Wn and the re-

gion nii2\e-en\ gx.
Let \qi} (« = 1, 2, • • ■ , ad inf.) be a sequence of positive integers such

that limi.oo g<= =o. Furthermore let {77»} be a sequence of positive numbers

such that limi.«, ■ni = Q. We define W*{Wn) as follows

(74) Wt(Wn) = W*(Wn, qi+i)  for tu < n = »<+, (f = 0, 1, 2, • • • , ad inf.).

The sequence {«,■} (i = 0, 1, 2, • • • , ad inf.) of integers is chosen as follows:

Denote by Fn{\, q) the expression

i.u.b. I p[wn(e, x) I e] - y[Wn(w„ 0, x, ?) 10] |.

The integer no is put equal to zero and n, is chosen so that

Mi >

(75)
■Pn(Xi, ?i+l) < «(X<, g,+ i) + T/t-

for all w>Wj, and {X<} denotes a sequence of numbers such that lim X, = oo.

Let X„' = X„ =n)i and gn' = <Zi+i for »i <« ^ni+i (i = 0, 1, ■ • • , ad inf.). From

(72), (73) and (75) we obtain

(76) lim {l.u.b. I P[Wn(6, X„') I 6} - f [W*n{Wn, 0, X»', ?„') | 0] |} =0.

Denote by JF„*(W„, 0, X) the intersection of W*(Wn) and the region

nll2\d — 6„\ gX. Because of (74) we obviously have

W*n(Wn, 0, X„') = W*n(Wn, 0, X„', ?„').

Hence from (76) we obtain

(77) lim {l.u.b. I P[Wn(S, X„') I 0] - %[W*(W„, 0, X„') \$]\) =0.

Since lim,,.» X„' = oo, it follows from (77) that

(78) lim {l.u.b. \p[wn\e\-y>[wt{Wn)\e}\) =0.

The region Wn may be any Borel measurable subset of the rw-dimensional

sample space. In particular, Wn may be any Borel measurable subset R* in

the space of the maximum likelihood estimates. Hence Lemma 2 follows from

(78).
On the basis of Lemmas 1 and 2 we can restrict ourselves in case of large
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samples to subsets of the space of the maximum likelihood estimates and we

can substitute $[l/„*|0] for P[F„*|0]. Hence, if the sample is sufficiently

large, the problem of statistical inference concerning the unknown parameter

0 can be reduced to the case where the variates involved have a joint normal

distribution.

5. Tests of simple hypotheses which have uniformly best average power

over a family of surfaces. For any value c let Kc denote a surface in the

parameter space. For instance Kc may be defined by the equation 0(0) =c

where <p{6) denotes some analytic function of 0. Consider furthermore a non-

negative function w(6) of 0, called a weight function. For any function 1^(0)

of 0 the symbol fn${B)dA will denote the surface integral of the function

\p(6) over the surface Kc.

Definition I. A critical region Wn is said to have uniformly best aver-

age power with respect to the surfaces Kc and the weight function w(6) if

for any region Z„ of size equal to that of W„ we have fKcP(.Wn\d)w(6)dA

^/KeP(^n\0)w(8)dA for all values c for which Kc is defined.

Let y1, ■ ■ ■ , yk be k variates which have a joint normal distribution. The

mean values 01, • • • , 0* of the variates yl, ■ ■ ■ , yk are unknown, but the

covariance matrix ||ory[| (*, j = l, • • • , k) is known and is nonsingular. Sup-

pose that we wish to test the simple hypothesis that 0 = 0O. Consider the

family of ellipsoids given by

(79) ZZx,J[0<-0o][0I'-0o] = C,
i »

where ||X;,|| = For any c denote by Sc the ellipsoid given by (79). Con-

sider a nonsingular linear transformation of the parameter space

(80) 0'' - 0o = ßniß1 -el) + ■ ■ ■ + ßik(e" - el)

such that the family of ellipsoids Se is transformed into a family of concentric

spheres with the center at 0o. Denote by 5/ the image of Sc. For any point 0

and for any positive p consider the set w(0, p) consisting of all points 0i which

lie on the same Sc as 0 and for which | 9i— d\ ^p. Let

a W{e, o)]
(si) m - Mm / ; p>!,

p=o a [co(0, p) J

where w'(0, p) is the image of w(0, p) and for any set w, ^4(w) denotes the

area of w.

Proposition II. // the variates y1, • ■ ■ , yk have a joint normal distribu-

tion with unknown mean values 01, • • • , 0* and a known covariance matrix

\\<rij\\, then for testing the hypothesis 9 = do on the basis of a single observation

on each of the variates y1, • ■ ■ , yk, the critical region given by the inequality
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(82) e e w - ^)(y - 0o) ̂ i   (iix4,-ii = u^-ir1)

has uniformly best average power with respect to the surfaces Sc defined in (79)

and the weight function given in (81).

Proof. Consider the linear transformation

(83) y" - dl = ßn(y - e\) + ■ ■ ■ + ßik{y - 0o),

where the matrix \\ßa\\ is the same as in (80). The variates y'{ = • • • , k)

are normally and independently distributed with mean values 0j, • • ■ , 6%

(under the hypothesis 0 = 0o) and have a common variance a2. We will as-

sume o2 — \, since this can always be achieved by multiplying the matrix

||/3i,j| by a proportionality factor. The critical region W given in (82) will be

transformed into the region W given by

(84) (/ - el)2 + ■■■+ (y'k - el)2 > d.

Because of (81) we obviously have

(85) f p(z\e)t(e)dA = f p(z'\e')dA,
Jse Js'c

where Z denotes an arbitrary region in the space of yl, ■ ■ ■ , yk and Z' is

the image of Z in the space of yn, ■ • • , y'k. Hence in order to prove Proposi-

tion II we have merely to show that

(86) f P(W' I 6')dA ̂ f P(Z' I e')dA
Js'c Js'

for any region Z' in the space of y'1, ■ ■ ■ , y'k which has a size equal to that

of W.
By a lemma of Neyman and Pearson(4) we see easily that (86) is proved,

if we can show that there exists a function d{c) of c such that

(87) I   piy11 e')dA/p(y' \ 0O) ̂ d{c) within W

and

(88) f p(y' I 6')dA/p(y' | 0O) = d(c) outside W

for all positive values of c, where p(y' \ 6') denotes the joint density function

of yn, • ■ ■ , y'k under the assumption that the true means are 0'1, • • • , 6'k.

(*) J. Neyman and E. S. Pearson, Contributions to the theory of testing statistical hypotlieses,

Statistical Research Memoirs vol. 1 (1936).
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If we denote yn— 8\ by v* and BH — 6l0 by 6*\ we have

M I 0,) = 7T^ exP (~ 2-1£ C»* - ö*02)

and

ieo) - 7^4^ exp(-2-1 s(?i)2)-
(2ttJ *'*

Hence

f £(/ I 6')dA = (—\ 1  f exp (- 2-'£ (s'-e**)*)^
J s'c \2t/    J s'c

/ 1 V/2

• f exp (X) i^*' - 2"1E (0*02)^

=       I ff.) exp (- 2-1£ (0*O2) f exp (£

since £(Ö*')2 is constant on the surface S'. Hence (87) and (88) can be writ-

ten

(89) I(v\ ■ ■ • , vk) = f exp£ vW'dA ^ d*(c) within W,
J s'c

(90) J(jr*, • • • , vk) g <f*(c) outside 17'.

Denote | (£>«')2)1/21 by r, and | (Z(ö*02)1/2| by r*. On the surface SI we

have r* = c. Denote by a(6*) the angle (O^a^ir) between the vector u and

the vector 6*. Then we have

I(vl, ■••,»*)=[   exp (crv cos [«(0*)])dL4.
•fa?

Because of the symmetry of the sphere, the value of this integral will not be

changed if we substitute ß(6*) for a(9*) where ß(d*) denotes the angle

(0^/3(0*) ^7r) between the vector 6* and an arbitrarily chosen fixed vector u.

Hence I(vx, • • • , vk) depends only on rv, that is /(s1, • ■ • , vk) = /(/„). The

inequalities (89) and (90) are obviously proved if we can show that I(rv)

is a monotonically increasing function of rv. We have

dl(rv)      C r
(91) -=1   c cos [ß{6*) \ exp {crv cos [ß(d*)])dA.

drv      J s'c

Denote by wi the subset of Sc in which 0^/3(0*) ^7r/2, and by co2 the subset

in which 7r/2 ^ß(d*) =tt. Because of the symmetry of the sphere we obvi-
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ously have

f c cos \fl(ff*)] exp (er» cos [ß(6*)])dA

(92) =|   c cos [x - 0(9*) ] exp (cr„ cos [t — /3(0*)])<L4

= - I   c cos [/3(0*)] exp (- er» cos [,S(0*)])<L4.

Hence

dl{r ) |»
(93) -= c I   cos [(3(0*) ]{ exp (er» cos [(8(0*)])— exp ( — er» cos [ß(0*)]) }dA.

drv        J ui

The right-hand side of (93) is positive. Hence Proposition II is proved.

Now let us turn back to the general problem of r variates x1, • ■ ■ , xT

whose joint probability density function f(xl, ■ ■ ■ , xr, d1, ■ • • , 9k) =f(x, 9)

involves k unknown parameters, as considered in the previous sections.

Definition II. A sequence {Wn} (» = 1, • ■ • , ad inf.) of critical regions

of size a for testing the simple hypothesis 9 = 9a is said to have asymptotically

best average power with respect to the family of surfaces Kc and the weight func-

tion w(9) if for any sequence {Zn} for which P(Zn \ 0O) =a we have

lim sup jl.u.b. [~ f  P(2„ I 0) dA - f P(Wn I 0) -^L ^11 < 0
I  .    Ukc        1    A{KC) Jkc 1    A(KC)     A) ~

where

A(KC) = f w(6)dA.

We shall prove the following theorem.

Theorem I. Let W* be a critical region for testing 0 = 0O defined by the in-

equality

»EZ(^- e'o)(9'n - el)*j(i») = in,
t i

where the real number dn is chosen so that P(W*\ 9B) =a. Denote by Sc the sur-

face in the parameter space defined by the equation

£       0o)(0' - 0o)c-,(0o) = c.

Furthermore let £(0) be the weight function as defined in (81) where ||c,-,(0o)|| is

substituted for ||X<.-||. Then the test { W*\ has asymptotically best average power

with respect to the family of surfaces Sc and the weight function £(0).
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Proof. Because of Lemma 1 we can restrict ourselves to subsets of the

space of the maximum likelihood estimates. Let us assume that Theorem I

is not true. Then it follows from Lemma 2 that a sequence of values {cn}

and a sequence of regions [Z*\ exist such that P(Z*\ 60) =a and

(94) lim sup ( f $(Z*| e)U&)dA - f Sß{wt\ e)Uff)dA\ = 8 > 0,

where

M9) = w) / fs mdA.

From (94) it follows that there exists a subsequence {«'} of the sequence \n}

such that

(95) lim { f   °3(Z* I 0)U(ß)dA - f   <$(wl | H)f..(«)<wl = 5 > 0.
n=»   \JSCn, J SCn, )

It is easy to verify that

lim y(wt 10n.) = 1

if 0„' is a point of 5C„- and if lim,,.«, n'cn> = -f- co. Under the latter condition

also

lim f   y(wl I d)U-{6)dA = 1.
n=oo J SCn,

Thus (95) can hold only if the sequence {«'£„'} is bounded. If {ra'c„<} is

bounded, we obviously have for any sequence of regions { V*}

lim i f <ß(7*. I e){n-(e)dA - f T(vt\e)^(e)dA\ = o,
n=» \JsCn, J sCn, )

where P(Vf\d) denotes the probability of Vn* calculated under the assump-

tion that nll2{$l — 01), • • ■ ,«1/a(0J —0*) have a joint normal distribution with

zero means and covariance matrix equal to ||c<,-(0o)||-1. Hence from (95) we

obtain

(96) lim \ f   P(ZI I 0)Jv(0)<M - f   P(wt | 0)iV(0)<M > = 5 > 0.
n==o   \JsCn, J Sen, )

Denote by W* the region defined by the inequality

»ES G*t - 0o)(0B - el)cn{e0) ̂  dn,

where dn is chosen so that P(W*\d0) =a. Furthermore denote by Zn* the

sum of Z* and the region w1/2|0o — 6„\ =X„, where X„ is chosen so that
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P(Z*\do) =a. Since, as can easily be seen,

lim { f    P(Wt I 6)U(e)dA - f    P(wt I 6)U'{e)dA\ = 0
«=« wsc„, JsCn, )

and

lim { f   P(Zn. I 9)tn,(6)dA - f   P(Zn, I 0)tn.(0)dA\ = 0,
«=« wsc„, Jsc„, j

we obtain from (96) a contradiction to Proposition II. Hence Theorem I is

proved.

6. Tests of simple hypotheses which have best constant power on a family

of surfaces.

Definition III. A critical region Wnfor testing 0 = 0O is said to have uni-

formly best constant power on the family of surfaces {R~c} if the following two

conditions are fulfilled:

(a) P(147„| 0i) =P(Wn\ 62) for any pair of points 0%, 62 which lie on the same

surface Kc.

(b) P( Wn I 6) = P(Z„/6) for any Zn which satisfies condition (a) and for

which P(Zn|0o)=P(Wr„|0o).

From Proposition II we obtain the following:

Proposition III. Let yl, ■ ■ ■ , yl be k variates which have a joint normal

distribution with unknown mean values d1, ■ ■ ■ , dk and a known covariance

matrix | J y | [ =||Xi,||_1. Then for testing 6 = 9t>, the region defined in (82) has uni-

formly best constant power on the surfaces Sc defined by the equation

(97) Z £ (0* - eixo* - 0o)Xi/ = c

Since the critical region denned in (82) satisfies condition (a) of Defini-

tion III, Proposition III is an immediate consequence of Proposition II.

Definition IV. A sequence of critical regions {W„} for testing d = 80 is

said to be of size a and to have asymptotically best constant power on the surfaces

Kc if the following three conditions are fulfilled:

(a) P(Wn\d0)=^a (w = l, 2, • • • , ad inf.).

^ (b) limn=M {l.u.b.c [l.u.b.eeKcP(Wn\d)-S.\.b.eeKs P(Wn\8) ]} =0, where

the symbol l.u.b.9gxc means that the least upper bound is to be taken with respect

to 8 restricting 8 to points of Kc.

(c) For any sequence {Z„} which satisfies (a) and (b) we have

lim {l.u.b. [P(Zn| 6) - P{Wn\ 6)]\ = 0.
n=« e

It is easy to verify that the sequence {W*} defined in Theorem I satis-
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fies the conditions (a) and (b) for KC = SC, where Sc denotes the surface de-

fined in Theorem I. Thus from Theorem I we obtain the following theorem.

Theorem II. Let {PF„*} and Sc be defined as in Theorem I. For testing

8 = 8o, the sequence {W*} has asymptotically best constant power on the sur-

faces Sc.

7. Most stringent tests of simple hypotheses. Let 6 and 0O be two parame-

ter points and let a denote a positive number less than 1. We denote by

Pn(0, 0o, ol) the least upper bound of P(W„| 9) with respect to Wn, where Wn

is restricted to regions for which P(Wn\do) =a. It is clear that if Wn is a

critical region of size a for testing 8 = 8o, its power function can nowhere ex-

ceed the value of Pn(0, 60, a), that is P(Wn\d) gPn(0, 6B, a) for all values of 8.

Definition V. A critical region Wn is said to be a most stringent test of the

hypothesis 8 = 90on the level of significance a if P( Wn \ do) = a and if

Lu.b. [Pn(8, 6o, a) - P(Wn \6)]£ l.u.b. [Pn(0, 60, a) - P(Zn | 0)]
e e

for all regions Zn for which P(Zn | 0O) = a.

We shall prove the following proposition.

Proposition IV. Let y1, • • • , yk be k variates which have a joint normal

distribution with unknown mean values 8l, ■ • ■ , 8k and a known covariance

matrix ||<rt-,j| =||Xtjj|_1- Then for testing 8 = 8a the region W defined in (82) is a

most stringent test.

Proof. We shall assume that Proposition IV does not hold and we shall

arrive at a contradiction. If Proposition IV is not true, then there exists a

region Z in the space of y1, • • ■ , yh such that P{Z \ do) = a and

(98)     l.u.b. [P(0, d0, a) - P(W\0)] > l.u.b. [P(0, 0o, «) - P(z\e)].

Let Sc be the surface defined by the equation

IZt»'- 9o)(/ - 0o)Xu = c
3 >

The functions Pi(0, 0o, a) and P(W\8) are constant on the surface Sc. Hence,

on account of (98), there exists a value Co such that

P(Z I 0) > P(W I 0)

for all points 0 on SCo. But this is a contradiction to Proposition II. Hence

Proposition IV is proved.

Definition VI. A sequence of critical regions { Wn} is said to be an asymp-

totically most stringent test of the hypothesis d = d0 on the level of significance a
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if P(Wn\ Oo) =oc and if for any {Z„} for which P(Z„\ 0O) = a we have

lim sup {Lu.b. [i>„(0, 0O, a) - P{Wn \ 0) ] - Lu.b. [Pn(d, 0O, a) - P{Zn \ 0)}} g 0.
n=» » 8

We shall prove the following theorem.

Theorem III. Let W* be the region defined in Theorem I. Then the sequence

{W*} is an asymptotically most stringent test of the hypothesis 9 = do-

Proof. Denote by $n(0, 0o, a) the least upper bound of $(Z„*| 9) with re-

spect to Z*, where Z* is restricted to regions in the space of the maximum

likelihood estimates for which $(Z„*|0o)=a- Because of Lemma 1 we have

(99) lim [Pn(9, 6o, a) - $„(0, 0o, a)] = 0
n= oo

uniformly in 0. Denote by P„(0, 0o, a) the least upper bound of P(Zf \ 8) with

respect to Z„*, where Z„* is restricted to regions in the space of the maximum

likelihood estimates for which P(Z„*| 0O) =a. The symbol P(Vn*\9) denotes

the probability of Vn* calculated under the assumption that the joint dis-

tribution of w1/2(0i —01), • • • , w1/2(0J — 9k) is normal with zero means and

covariance matrix ||c;j(0o)||-1. For any positive X we have

(100) lim ft3„(0, 0o, a) - P„(0, 0o, «)] = 0
n = oo

uniformly in 0 in the domain |«1/2(0 —0O)| ^X. Since for any sequence {0„}

for which lim | w1/2(0„ — 0O) | = + <=°, we have

lim %(6n, 0o, a) = lim P„(0„, 0O, a) = 1,
n=oo n=oo

we obtain from (100)

(101) lim ft3n(0, 0o, a) - P„(0, 0„, a)] = 0
n= oo

uniformly in 0. For any c let Sc be the surface defined by

££(«'- 0o)(0 - 0o)c,)(0o) = c.
j'-l <-1

Obviously ?„(0, 0o, a) is constant along the surface Sc. From (99) and (101)

we obtain

(102) lim {Lu.b. P„(0, 0O, a) - g.l.b. Pn(0, 0O, a) ) = 0
„=„    8GSC «G«o

uniformly in 0. We shall derive a contradiction from the assumption that

Theorem III is not true. If Theorem III is not true, there exists a sequence

{Z„| of regions such that P(Z„| 0O) =a and
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lim sup {l.u.b. [P„(0, 0o, a)
n=» Ö

(103) r I l>
- l.u.b. [Pn(0, 0o, a) - P(Z„ 0)]   = 5 > 0.

t

On account of (102) and since

lim [l.u.b. P(wt\ 0) - g.l.b. P{W*n\ 0)] = 0

uniformly in c (see Theorem II), we obtain from (103) that there exists a

sequence {cn} and a subsequence {«'} of {w} such that for all points 0„<

of £,

P(Z«. I 0,.) > P(wC I 0.0 + 5/2

for all m greater than a certain «0- But this contradicts Theorem I. Hence

Theorem III is proved.

8. Definitions of "best" tests of composite hypotheses. In this section we

shall extend the definitions given in the previous sections to the case of com-

posite hypotheses. Let w be a subset of the parameter space and denote by

Hu the hypothesis that the true parameter point is contained in w. In all

that follows the letter 0 printed in boldface will indicate that the parameter

point lies in w. For example, the symbol l.u.b.e/(6) denotes the least upper

bound of the function/(8) with respect to 8 where 8 is restricted to points of u.

For any point 8 and for any real value c let Kc(&) denote a surface in the pa-

rameter space. For instance ÜTC(8) may be given by r equations in 0

*i(0, »)=•• = #,(0, 8) = 0,

where <pi(0, 8), • • • , <pr(0, 8) are some analytic functions of 0 and 8.

Definition VII. A critical region W„for testing Hw is said to have uniformly

best average power with respect to a family of surfaces Kc(&) and a weight func-

tion w(6) if for any Z„for which

l.u.b. P(Zn I 8) = l.u.b. P{Wn I 8)
e e

we have

f   P(w„\e)w(e)dA ̂  f p(zn\e)w(e)dA

for any 8 and for any cfor which KC(Q) is defined.

Definition VIII. A sequence {Wn} (n = l, 2, • • • , ad inf.) of critical re-

gions for testing the hypothesis Hu is said to have asymptotically best average

power with respect to a family of surfaces ÜTC(8) and a weight function w(6) if

the following two conditions are fulfilled:
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(a) There exists a fixed a such that

l.u.b. P{Wn I 6) = a       (» = 1, 2, • • • , ad inf.)
6

(b) For any sequence {Z„} for which l.u.b.e P(Z„| 6) =a, we have

lim sup (l.u.b. (" f     F(Zn I 0)    rW((?) ■ dA

P(PF„ 6») —:-r dA  > ^ 0,

^[Zc(6)] = f w(0<W.
J /cc(e)

Definition IX. ^4 critical region Wnfor testing H„ is said to have uniformly

best constant power on the family of surfaces Kc(&) if the following two conditions

are fulfilled:
(a) P{W„\d')=P(Wn\d") for all pairs of points 6' and d" which lie on the

same surface Kc(0).

(b) P(Wn\d) ^P(Zn\ 0) for any 0 not in co and for any Z„ which satisfies

(a) and the condition

l.u.b. P(Z„ I 6) = l.u.b. P(Wn I 6).
e o

Definition X. A sequence of critical regions {Wn} for testing Ha is said

to have asymptotically best constant power on the surfaces KC(Q) if the following

three conditions are fulfilled:

(a) l.u.b.eP(Wn|e)=a (« = 1, 2, • • • , ad inf.).

(b) linw {l.u.b.e.o [l.u.b.9e*c(6) P(Wn\8)-g.\.b.eGKe(.d) P(Wn\8)]} = 0.
(c) For any sequence {Z„} which satisfies (a) and (b) we have

lim {l.u.b. [P(Zn\ 6) - P(Wn\ e]} = 0,
n=x> 9£«

where co is the complement of co.

Definition XI. Denote by P„(0, co, a) the least upper bound of P(Z„|0)

with respect to Zn subject to the condition l.u.b.e P(Z„ 16) =a. A critical region Wn

is said to be a most stringent test of the hypothesis H„ if for some positive a

l.u.b. P(Wn I 6) = a
e

and

Lu.b. [P„(0, co, a) - P(Wn I D] £ 1-u.b. [P„(0, co, a) - P(Z„ | 6)}
s e

for all regions Znfor which l.u.b.e P(Z„| 8) =a.
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Definition XII. A sequence of critical regions { W„} is said to be an asymp-

totically most stringent test of the hypothesis Ha if the following two conditions

are fulfilled:
(a) There exists a positive a such that

l.u.b. P(Wn I 6) = a       (» = 1, 2, ■ • • , ad inf.).
6

(b) For any sequence {Z„} which satisfies (a) for the same a we have

lim sup {l.u.b. [P„(0, co, a) - P{Wn \ 6) \ - l.u.b. [Pn(6, a, a) - P(Z„ j 0)]} go.
n=«> 0 9 »

In Definitions VII-XII we have formulated the condition

l.u.b. P(W» I 6) = a.
e

The question can be raised whether, in place of this condition, the require-

ment that

(*) P(JF.|#) - a

for all points 6 should be made; or whether the weaker condition that

(**) lim P(W„ I 6) = a

uniformly in 6 should be required. Condition (*) has the serious drawback

that regions satisfying it do not always exist. Even in cases where (*) can

be fulfilled, it imposes too strong a restriction on the possible choice of Wn,

which does not seem to be quite justified. It is conceivable that in some cases

a region may exist which does not satisfy (*) but has such an advanta-

geous power function that we prefer it to any region Wn which satisfies (*).

As to the condition (**), we shall see that it is satisfied for the sequence

{ Wn} which is shown in this paper to be asymptotically best according to all

three definitions VIII, X and XII. Hence the same sequence { Wn\ remains

asymptotically best if we replace the condition l.u.b.e P(W„| 6) =ct by (**) in

the definitions VIII, X and XII.
In the following §§9-11 we shall discuss a linear hypothesis of the follow-

ing type: 01=0q, • • • , 6T = 6'0 (r<k), where 6l, • • ■ , QT0 are some specified

values. That is to say, the set co is the set of all points 8 for which the above

equations hold. In §12 the general composite hypothesis will be discussed.

9. Tests of linear composite hypotheses which have uniformly best

average power over a family of surfaces. Let Ha be the hypothesis that

81 = 8n, • • • , 6r = 8T0 (r<k). We shall introduce the following notation: For

any parameter point 0 = (01, • • • , 8k) the symbol id will denote the vector

in the r-dimensional space with the components 81, • • ■ , 8r, and ■$ will de-

note the vector in the k—r dimensional space with the components

8T+1, ■ ■ • , 6h. For any function \p{8) of 8 we shall use the synonymous nota-
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tion        20). For instance P{W\ id, 20) is synonymous with P(W\ 6).

Let yl, ■ • • , yk be k variates which have a joint normal distribution

with unknown mean values 61, ■ ■ • , dk and known covariance matrix

110t,j I =||Xij||_1 (i, i=L • ■ • , k), which is nonsingular. Denote by W the
region in the space of yl, • • ■ , yk given by the inequality

(104) Z£M/-0o)(/-0o) d,
9-1 p—1

where ||Xj,g|| = ll0"^«!!—1 {P> 2 = L • • ■ , r). Consider the nonsingular linear

transformation of the variates y\ ■ • • , yk given by the equations

(105) y" ~ e' = ßpl(yl ~ ö»} + '"' + M* - *Ö      = i. • • , f),

y" = mf + • • • + yayk (t = r + 1, • • • , k),

such that yn, ■ • • , y'k are independently distributed with unit variances.

Denote by S«(6) the surface given by the equations

ZExP9(0P-0o)(0?-0o) =c,
(106) q=i p=i

k

ynd1 + ■ • ■ + ytkek = £ yt#<      {t = r + 1, • • • , k).
i-l

Consider the transformation of the parameter space given by

(107) e'P" e° = ßpl(el ~    + """ + M*' - «ro)        (# = i, • • •. f).

0" = ynd1 + ■■■ + ylk6k (t = r + 1, ■ • ■ , k),

where the coefficients ßpq and yti are the same as in (105). The transforma-

tion (107) transforms the surface 5C(6) into a sphere S'c (6) given by

(108) £ (0" - el)2 = c,      0" = £ 7(,0< = 6".
p-1 »=1

For any point 0 and for any positive p consider the set co(0, p) consisting of

all points *0 which lie on the same Sc(&) as 0, and for which | *0 — 0| ^p. Let

A[o>'{6, p)l
(109) £(0) =lim    1 ;'7J,

p-o 4 [co(0, p)]

where co'(0, p) is the image of co(0, p) (by transformation (107)) and, for any

set co, .4(co) denotes the (r— l)-dimensional area of co. We shall prove the

following proposition.

Proposition V. Let y1, ■ ■ • , yk be k variates which have a joint normal

distribution with unknown mean values 01, • • • , dk and known covariance ma-

trix [Jff=||Xi,-||-1. For testing the hypothesis i0 = i0o on the basis of a single
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observation on each of the variates yl, ■ ■ ■ , yk, the critical region W given in

(104) has uniformly best average power with respect to the family of surfaces

5C(6) defined in (106) and the weight function £(0) given in (109).

Proof. Because of (109) we have

(no) f   p(z\e)z(e)dA = f p(z'\e')dA,
J sM J s'M

where Z denotes an arbitrary region in the space of yx, • • ■ , yk and Z' is

the image of Z by transformation (105). The region W is transformed into

W given by

(in) (/ - el)2 + ■■■ + (y'r - e0)2 = d.

In order to prove Proposition V we have merely to show that

(112) f     P(W'\6')dA^ f P(Z'\0')dA
J s'M J s'M)

for any c>0, for any 6, and for any region Z' in the space of yn, • ■ ■ , y'k

for which l.u.b.2»- P(Z'|i0o, 26') =l.u.b.2»- P{W'\-fia, 26'). For any point 0' of

S<f (6) we have 20'=20'. By a lemma of Neyman and Pearson, (112) is proved

if we can show.that there exists a function d(c) such that

(113)
fs'Mp(yn, • • • , y'k\i6',2V)dA\ ^ d(c) within W,

P(y'\ • ■ • ,y* i0o, 26')   / = d(c) outside W

for all values of c and 6 where p(yn, • • • , y'k \ 0') denotes the joint probability

density of yn, • • • , y'k under the assumption that 0' is the true parameter

point. Obviously

P(yn, •'••./*! i0'. 26')     p(y'\ ■ ■ ■ , y"\ !0')

p{y'\ i0o, 26') I i0o)

Hence (113) is equivalent to

(114)
fs'A&)p(y'\ ■ ■ ■ , y'r\ i6')dA\ = d(c) within IF',

P(yn, ■ ■ ■ , y'T I i0o)      I = d{c) outside 17'.

The proof of (114) is omitted, since it is the same as that of the inequalities

(87) and (88). Hence Proposition V is proved.

Let the critical region W* be defined by the following inequality

r r

(115) »II (0"! - 0o)(0» - el)cpq{6n) ^ dn,
5-1 J)-1

where ||cP,(0)|| =||<rP5(0)||-1 (p, q = 1, ■ • • , r) and 11^(0) || =|[C</(0) Ih1 (*, j
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= 1, • • • , k). The constant dn is chosen so that

l.u.b. p(w*\ 6) = a.

Let Zl(d)=n^(6n-e') (i = l,
transformation

, k) and consider the nonsingular linear

(116)

ßPi(e)zn(e) + ■■■ + ßPr{e)zn(e)

zn{e) = yaimM + ■ ■ ■ + ylk(e)zn(d)

(P = i.

(f = r + 1, •

,r),

, k),

such that Z^iß), • • • , Zn{9) would be independently distributed with unit

variances if the covariance matrix of Z^ifi), • • • , Z\[9~) were given by

||ff,-,-(0)||. Denote by 5C(0) the surface defined by the equations

(117)
ZE(«'- ep0)(e" - el)cPM = c,
4=i P=i

yn(0W + ■ ■■ + 7«(e)0* = Z 7(i(e)0'' (/ = r + 1, , k).

For any positive 8 denote by St the set of all points 9 for which

\9v — 9q\ 5=5 (p = l, • • • , r). We shall prove the existence of a positive 8

such that for any point 9 in S0 there exists exactly one surface 5C(8), that is

exactly one value of c and exactly one point 6, such that 9 lies on the surface

5C(6). This statement is obviously proved if we show that for any point 9 in

St the set of k— r equations

(118) 7a(e)(0l - e1) + ■ ■ • + 7i*(e)(0* - e*) = o

has a' unique solution in the unknowns 6r+1, ■ • ■ , 6*.

of the quantities ßpq(Ö) and 7fi(6) it follows that

(119) 4(6)11^(6)11 J(6) = I,

where A (6) denotes the matrix

(/ - r + 1, • ■ • , *)

From the definition

(120)

ßn(0)

012(6)

012(6)

022(6)

0n(6) 0r2(6)

7r+l l(6)      7r+l 2(6)

7fci(6) 7*2(6)

01r(6)

02,(6)

0

0

0rr(6) 0

7r+l r(6)    7r+l r+l(»)

TtrW 7*rfl(e)

0

0

0

Tr+1 *(e)

Z(6) is the transposed of A(Q) and I denotes the unit matrix. Since ff.Xö)

is a continuous and bounded function of 6 and since the determinant | <rt-,(6) |

has*a positive lower bound, we find that 0P3(6) and 7(i(6) are continuous and
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bounded functions of 6 and that the absolute value of the determinant .4(6)

has a positive lower bound. Hence also the absolute value of the determinant

(121) 7(e) =

7r+lr+l(0) • • • 7r+l*(0)

7*r+i(e) • ■ • 7*t(e)

has a positive lower bound.

Let 0 = 6* where 6* denotes an arbitrary point of w. Then, since the de-

terminant in (121) has a positive lower bound, the equations (118) have a

unique solution in the unknowns 6r+1, • • • , 6*, namely the solution 6 = 6*.

Furthermore we see that the Jacobian of the equations (118), taken at the

point 6 = 6*, is equal to 7(6*). Since the absolute value of 7(6*) has a positive

lower bound, there exists a positive 8 such that the equations (118) have a

unique solution in 6 if |0 — 6*| ^6". This proves the existence of a positive 8

such that for any point 0 in Ss there exists exactly one surface Sc(6) such that

0 lies on Sc(6).

Since for the critical region W* defined in (115) we obviously have

lim„=00 P(W*\ 0) = 1 uniformly over the domain 16P — 6V0\ ^5, we shall restrict

ourselves to the consideration of points 0 for which | 0P —0g | ^ 5 (p = 1, • • • , r).

Consider the transformation of the parameter space given by

(122) = °' = /3pl(6)(el ~ öo) + • • ■ + PV(6)(0r - 0o)     (P = 1, ■ ■ • , r),

6" = 7n(6)0' + • • • + 7u(6)0* {t = r + 1, • • • , k),

where 6 denotes the point for which 0 lies on Sc(6). The transformation (12 2)

transforms 5C(6) into the sphere Si (6) given by

(123) £ (e'p - 0o)2 = c;  d" = Z yu&W -•"       (t = r + l, ■ • ■ , k).

We define a weight function £(0) as follows:

AW(6, p)l
(124) m = iim ;'P;J,

»-0 A[co(e, P)]

where the symbols on the right-hand side have the same meaning as in (109).

Theorem IV. Let the critical region W* for testing i0 = i0o be the region

defined in (115). Furthermore, let Sc(6) be the surface defined in (117) and let

£(0) be the weight function defined in (124). Then {W*} has asymptotically

best average power with respect to the family of surfaces 5C(6) and the weight

function £(0).

Proof. Because of Lemma 1, we can restrict ourselves to subsets of the

space of the maximum likelihood estimates. Because of Lemma 2, Theo-
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rem IV is proved if we show that for any {Z„*} for which l.u.b.e P{Z„*\0) =a

we have

lim sup jl.u.b. I" f 6)U6)dA - [     ^(W*n \ 0)fn(0)<M~|l g 0,
n-«>   l c,e  LVscCe) JsM J)

where

r.w = m / f mdA.

If Theorem IV were not true, there would exist a sequence {c„|, a se-

quence {6„}, a sequence {Zn*}, and a subsequence {«'} of {«} such that

l.u.b. P{Zt\ 6) = a,

(125) '

lim j f <ß(Z*, I 6)tA8)dA - f %(wt | 0)f„-(0)<M> = 5 > 0.
»=« Wswd,J «/sCn,(en,) /

It is easy to verify that for any sequence {c„} for which lim wc„= + oo we

have fs<-n(ß,'$(Wf\d){n(d)dA = 1 uniformly in 6. Hence (125) can hold only

if the sequence {n'tv} is bounded. If {w'cv} is bounded, for any sequence of

regions { V*} we obviously have

(126) lim I f        Wvl\6)tA«)dA - f        Pe ,(vt\ 0)^(0)^1 = 0,

where P^{V* \ 0) denotes the probability of V* calculated under the assump-

tion that nin{6ln-0l), ■ ■ ■ , »v*(45—0*) have a joint normal distribution with

zero means and covariance matrix o-„(6). Let Wn*(6) be the region defined by

»EE {€ - 0o)(0* - el)ePM ^ dn.
9-1 p=l

It is clear that if {w'cv} is bounded, we have

(127) hm {PB(wt I 0) - i>e[W*{0) I 0]} = 0

uniformly in 0 and 8 over the domain in which 0 is a point of 5C„'(6). From

(125), (126) and (127) we obtain

lim \ f        P6 ,(Z*. I 6)U(e)dA

(128) -rVS^
- f        Pe„,[wC(e„0 I 0]fn-(0)^l = 5 > 0.

The surface 5C(6) defined in (106) is identical with the surface S„(6) defined
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in (117) if in (106) we substitute Ci,(8) for Xj„ that is we substitute cP9(8)

for f\pq. Similarly, if we substitute c,,(8) for X,-,- for any point of the surface

Sc(&), the value of the weight function £(0) defined in (109) is the same as

the value of £(0) defined in (124). Hence, since

lim [l.u.b. P6(Z*n, I 6)j = a,

equation (128) is in contradiction to Proposition V. Thus Theorem IV is

proved.

10. Tests of linear composite hypotheses which have best constant power

on a family of surfaces. The critical region W defined in (104) satisfies condi-

tion (a) of Definition IX if Kc{&) is equal to 5C(8) given in (106). Hence from

Proposition V we obtain the following proposition.

Proposition VI. The region W given in (104) has uniformly best constant

power on the surfaces SC(B) defined in (106).

If W* is the region defined in (115) and if Kc(&) is equal to the surface

Sc{&) defined in (117), then { W*} satisfies conditions (a) and (b) of Defini-

tion X. Hence, from Theorem IV we easily obtain the following theorem.

Theorem V. Let Wn* be the region defined in (115) and let Sc(8) be the sur-

face defined in (117), then for testing i0 = i0o, { W*\ has asymptotically best con-

stant power along the surfaces Sc(6).

11. Most stringent tests of linear composite hypotheses. We shall prove

the following proposition.

Proposition VII. Let y\ • • • , yk be k variates which have a joint normal

distribution with unknown mean values 01, • ■ • , 0* and known covariance ma-

trix \\oij\\ = ||X,-,j|-1. For testing the hypothesis i0 = i0o on the basis of a single

observation on each of the variates y%, ■ • • , yk, the region W given in (104) is a

most stringent test.

Proof. First we shall show that P(0, co, a) is constant along Sc(&) where

5C(8) is defined in (106). Consider a linear transformation of yl, ■ ■ • , yk as

defined in (105). Then the transformed variates yn, ■ ■ ■ , y'k are independ-

ently distributed with unit variances. Denote by 0' the image of 0 obtained by

the transformation (107) and let P'(0', w, a) be equal to l.u.b. P(Z'|0') with

respect to Z', where Z' may be any region in the space of yn, • • ■ , y'k sub-

ject to the condition that

l.u.b. P(Z' I i0o, 20') = a.
/

Obviously P'(0', co, a) = P(0, co, a).
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Hence we have merely to show that P'(6', co, a) is constant along Si (6) where

Si (6) is the image of 5C(6) and is given by

± (6'p - el)2 = c;    e" = e" (t = t + 1, • • • , k).

0') with respect

i6o, 20')=«- Ob-

Let P*{8', i0o, a) be equal to the least upper bound of P{Z'

to all regions Z' in the space of y'1, • • • , y"° for which P(Z'

viously P*(0', i0o, a) 2:P'(0', co, a). It is easy to verify that the region V for

which P(V'|i0', 20')=P*(0', i0o, a) is a subset in the space of y'\ • • • , y'\

Hence

P(V'\ 10„, 201 )  = P(V'\ 100, 202')

for any pair of points 0/ and 02', and therefore

P*(0', i0o, a) = P'(0', co, a) = P(0, co, a).

Since P*(0', i0o, a) is constant along 5C(6), our statement is proved. From

this and Proposition V, Proposition VII easily follows.

Theorem VI. Let W„* be the region defined in (115). Then {W*\ is an

asymptotically most stringent test of the hypothesis i0=i0o.

Proof. Denote by $„(0, co, a) the least upper bound of $(Z„*|0) with re-

spect to Z*, where Z* is restricted to regions in the space of the maximum

likelihood estimates for which

i.u.b. *Kz!|e) = a.
e

On account of Lemmas 1 and 2 we have

(129) lim {Pn(6, co, a) - <ß„(0, co, a)} =0
n= w

uniformly in 0.

Denote by P„(0, i0o, a) the least upper bound of Pn(Z„*|0) with respect

to Z* where Z„* is restricted to regions in the space of the maximum likeli-

hood estimates for which

l.u.b. P(Z*| A, 20) = a.

The symbol P{V*\d) denotes the probability of V* calculated under the as-

sumption that the joint distribution of nxli(6n — 01), • • • , n1/2(6n — 0*) is nor-

mal with zero means and covariance matrix ||c,->(6)||-1, where 6 denotes that

point for which 0 lies on the surface 5C(6) defined in (117). It can be shown

that for any positive X we have

(130) lim {$„(0, co, a) - P„(0, !0O, a)} =0
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uniformly in 0 in the domain |i0 —i0o| ^A/«1/2. Since for any sequence {0„}

for which

iimWi/2(t(0p-ö„vy/2=+-,
n=«o        \ p=i /

we have

lim $(0„ co, a) = lim P„(9n, A, a) = 1,
n= co n= oo

we obtain from (130)

(131) lim {$„(0, co, a) - P„(0, !0O, a)} = 0
n= oo

uniformly in 0. The function P„(0, i90, a) is constant along the surface 5C(6)

defined in (117). This can be proved in the same way as the constancy of

P(0, w, a) on Sc(8) defined in (106). Hence from (129) and (131) we obtain

(132) lim { l.u.b. P„(0, co, a) - g.l.b. P„(0, co, a)} =0
»    es «o(0) »G So(8)

uniformly in 8 and c. According to Theorem V we have

(133) lim { Lu.b. P{W*n\ 0) - g.l.b. P(W*n\ 0)} = 0
«=.  9g sc(e) «e sc(e)

uniformly in c and 8. Theorem VI follows from (132), (133) and Theorem IV.

12. The general composite hypothesis. In §§9-11 we have considered the

linear composite hypothesis i0 = i0o- Now we shall discuss a general composite

hypothesis Ha where co denotes a subset of the parameter space given by r

equations

(134) ?(9) = m = ■■■ =        = 0 (r < k),

that is, co is the set of all points 0 which satisfy equations (134). We make the

following assumption.

Assumption VI. There exist k—rfunctions £r+1(9), • • • , £*(0) such that the

following three conditions are fulfilled:

(a) The transformation which transforms the point 9 into the point £ with

the coordinates ^(9), • • • , £*(0) is a topological transformation of £2 into itself.

(b) The first and secoHd order partial derivatives of ^(9), • • • , £*(0) are

uniformly continuous and bounded functions of 9.

(c) The greatest lower bound of the absolute value of the Jacobian

• • • , £*)/d(0\ • • • , 0*) is positive.

Let £ = (!\ ••*,£*) denote a variable point of the parameter space ß.
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Since according to Assumption VI the transformation

(135) ? = m (»- 1, • • • , *)

is topological, we can solve the equations (135) and we obtain

(136) 0; = t*(P, ■■■ , (»=!,..., k).

From conditions (b) and (c) of Assumption VI it follows that the first

and second order derivatives of 9'(i-1, • • • , £*) are uniformly continu-

ous and bounded functions of { and the absolute value of the Jacobian

3(0', • • • , 0*)/d(£1, •••,!*) has a positive lower bound.

Letf*(x, £) be the probability density function we obtain from the proba-

bility density function f(x, 8) of x by substituting the right-hand side of (136)

for 0\ Hence f*(x, £) is the probability density function of x in the trans-

formed parameter space. It is clear that the maximum likelihood estimate

of £' is equal to & = £'(<£> • • • , ©, where 0n is the maximum likelihood esti-

mate of 0.

Denote by I*, II*, ■ • • , V* the assumptions which we obtain from As-

sumptions I-V respectively by substituting/*^, £) for f(x, 0), £ for 0 and

£„ for 0„. We shall show that Assumptions I*-V* can be derived from Assump-

tions I-VI.
Assumption I* is an immediate consequence of Assumptions I and VI.

Since according to Assumption VI the first derivatives of £'(0) are continu-

ous and bounded functions of 0, the transformation (135) is uniformly con-

tinuous. Hence, for each positive e* there exists a positive e such that the

inequality | 6n — 6\ implies the inequality 11„ — £| ^e*. From this and As-

sumption II we obtain Assumption II*.

Denote by Vi{x, 6i, 5) the least upper bound, and by fii(x, t%, 5) the great-

est lower bound of d \ogf(x, 8)/d8i in the interval 8X— 8 ̂ 0 ^0i + 5. Using the

Taylor expansion we obtain

* log/(*. h)     d log /(*, 00 i   Ö2 log /(*, 0,)
(137) -;-=-h 2^i°i  — "v -;—:-'

00« 00i T 00*00'

where 0i lies in the interval [9i, 8*]. From (137) it follows that

0 1og/(z, 0*) aiog/(*.«i)
(138) ^ 25 £ [ I *.■;(*, 0, 5) I + I ki{x, 0, 5) I ]

00*' 00*

for any 0 and 8 for which

0-5g0ig0 + 5   and   0-5^0*^0 + 5.

From (138) we obtain for any positive 5

(139)      I *(*, 0, 5) - *(*, 8, 5) I g 25 £ [ | cb^x, 0, 5) | + | *,7(?, 0, 5) |].
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Let {öi„} and {02n} (n = l, 2, • • • , ad inf.) be two sequences of parameter

points such that

(140) lim (flln - Otn) = 0.
n= oo

According to Assumption III the expectations [<pi,(x, 02, 5)]2 and

j5»,\^a{x, 02, o)]2 are bounded functions of 8i, 62 and 5 in the domain Dt de-

fined in Assumption III. Hence also the expectations 2£«,| <?<,-(%, 82, 8)\ and

Ee\ipii{x, 82, 5)I are bounded functions of 81, 82 and S in the domain Dt.

From this and relations (139) and (140) it follows that for any sequence { 5„}

of positive numbers for which lim„=00 5„ = 0 we have

(141) lim {EelnVi(x, 02„, 8n) - Ee,nßi(x, 02n, 5„)} = 0.
n= 00

Since
0 lOg f(x, 02„)

Hi(x, 02n, S„)  g - ^ Vi(x, 02„, 0a)
00*

it follows from (141) that

0 log f(x, din)i d log f(x, e2n)\
lim < Ee,nvi(x, 02„, on) - Ehn-■-> = 0,
n=«  I, 00* )

I 0 log/(*, 02n))
lim < ESlnpi(x, 02n, 5„) — E6ln-■-> = 0.
B=oo   v 00* )

Using the Taylor expansion we have

0 log /(*, 6in)     0 log /(*, 0i») „ j     j   d2 log /(*, 0„)
(143) -■-=-;-h 2-, (Ö2n - 0m)-:—:-

00*                               00" i 00*00J

where 0„ lies in the interval [0i„, 02n]. Since the expectations £», !•&,•(*, 02, 5)|

and Et,\ipa(x, 02, l)| are bounded functions of 0i, 02, and 5 in the domain Dt,

we obtain _

limE9JZ(0L-0L)^^l=O.
»=«>   It 00i00' J

Hence it follows from (143) and Assumption IV that

,.    _    0 log /(*, 02n) 3 log/(at, 0i»)
(144) hm E«. - = hm Ehn- = 0.

00*' n= 00 00*

We obtain from (142) and (144)

(145) lim Ee,nVi(x, 02„, 8») = lim Eeußi(x, 02„, S„) = 0.

Denote by c6*(x, £1, 5*) the least upper bound, and by ^(x, £, 5*) the great-
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est lower bound of d2 log/* (x, fi/d^d^'m the interval £i-5*^£^£i + 5*. We

have
a2 log/*(*,£) a2 log f(x, 0) ae>_ ae™

d&p i »    MW" a£«' 0£>'

(146) „ a log fix, o) a20'

i      ae1 a^af
Since

we obtain from (146)

a2 log /*(*, £) = ra2 log f(x, 0) ae<_ ae™!

'ap i •   "L   ae'ae"1    a£* a£'_r

Hence the determinant

(147)

(148)
a2 log /*(*, q

a^a£'

a2 log/(^e) I /affl, ■ • ■ , o*)y

00*00

Since the determinant | — E«<92 \ogf(x, B)/d8id8'\ has a positive lower bound,

it follows from (148) and Assumption VI that

(149) I - ££a2 log fix, Q/am*\

has a positive lower bound.

For any positive 5* let 5(5*) be the smallest positive number such that

for any two points £i and £2 for which | £1 — £a| =5* we have \d\ — 021 ̂ 5(5*)

where 0i and 02 are the image points of £1 and £2 by transformation (136).

From (146) we obtain

„      *    _ ^ _ .       * . as' dem
<*>*(*, €, 5)^EI 0, 5(5*)] — —

1 m 0£* a^'

a20

(150)
a£*a£'

*       *        _ _ r       * . ae1 aem
£. 5 ) ^ E E*.- *. 0, 5(5 )]— —

;   « 0£' 0£J

a20'
+ ££.[*, 0, 5(5*)]

0£'0£'

where 0 is the image point of £ by transformation (136), and the derivatives

00i/d£i, d20'/d£'ö£'' are taken at some points in the interval [£-5*, £ + 5*],

and the functions 4>tm(x, 6, 5), ipim{x, 0, 5), pt(x, B, 8) and Vi{x, 9, 8) satisfy the

inequalities
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tim(x, e, 5) g 4>tm(x, e, 8) g <j>lm{x, M);

i//[m(x, 0, 5) ^ $im(x, 0, 5) ^ (t>im(x, 0, 5);

«(*, 0, 5) g ?,(*>    2) ^ 3);

M*. 9, 5) ^        0, 5) ^        0, 5).

Let {£in} and {£2n| be two sequences of parameter points such that

Hm £i„ = lim £2n = £. Let 0i« be the image point of £i„, 9in the image point

of £2», and 0 the image point of £ (by transformation (136)). Let furthermore

{S*} be a sequence of positive numbers such that lim ö„* = 0. Then we ob-

viously have lim 5(5„*)=0 and therefore using (145) and Assumption III we

obtain

lim Ehn4,lm[x, 02», 5(5*,)] = Eed2 log/(*, 0)/00'00m,
n= «

lim ^„«/-.„[a:, 02„, 5(5*0] = £*02 log/(*, 0)/00'00™,
n= »

lim £»Inv; [*, 02n, 5(5*) ] = 0,

lim E6lnpi [x, 02„, 5(5*)] = 0

(151)

uniformly in 0. From (150) and (151) and the uniform continuity of the deriv-

atives 30Vö£< and d20yd£"d£> we obtain

* * * *        02 log /*(%, £)
(152) lim Eiln4>ij(x, £2n, 5„) = lim £{lnf,,(x, £2fl, 5n) = £{-■—■-

n=«o n=°° 0£'0£1

uniformly in £. '

Because of (150) we have both

I 4>*i(x, £. 8*) I    and   | i*u{x, £, 5*) |

^ El|[k<4*,9. S(5*)]|
2     m V

,r     I 00' 00m I "ii
(153) + \4>lm[x, 0,5(5*)      l.u.b.-\\

L   £   I 0£'' 0£'' IJj

+ Z{ [ I "«[*, 0, «(«*)] I + I M*. Ö- 5(5*)] |] |"l.u.b. I 111

where the least upper bound with respect to £ is to be taken over the interval

[£-5*, £ + 5*].
We shall show that £9, [vt{x, 02, 5) ]2 and Eet [ßi(x, 02, 5) ]2are bounded func-
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tions of öi, Ö2 and 5 in the domain Dt for sufficiently small e. Our statement is

proved if we show that [d \ogf(x, 0i)/d0*]2, E,, [?<(*, 0a, 5) -d \ogf(x, öi)/dö*]2

and Etl[pi{x, 0i, 5)-3 log/(*. 0i)/d01']2 are bounded in De. The first of these

expressions is bounded because of Assumption V. From (138) it follows that

0 1og/(*, 0i)
k,(;c, 02, 5)-;-

00*

and

0 log/(*. 00
m(x, 02,5)

00*'

= 25'D [| *<,-(*, 02, 50 I + I 02, 50 I ]

= 25'E [| 02, 50 I + I 02 , 50 I ]

where 5' = o+Ej'I6{ — 6J2\. From the above inequalities and the fact that

are bounded in Dt it follows that for

sufficiently small e the expressions Ee^v^x, Ö2, 5) — d log/(*, 0i)/30i]1 and

£9l [m{x, Ö2, 5)—3 log/(a;, 0i)/d0']2 are bounded in Dt. Hence our statement

is proved.

Since the derivatives ddl/d^ and 320yd£*d£' are bounded functions of £,

and since £«, [<pi,(x, 02, 5)]2 and £«, [i/',•,(«, 02, 5)]2 are bounded functions of

0i, 02 and 5 in the domain D„ it follows from (153) that there exists a positive

€* such that E(l [<p*(x, £2, 5*) ]2 and £fl \}p%{x, £2, 5*)]2 are bounded functions

of £1, £2 and 5* in the domain defined by | £1 —£2| = e* and | 5*| ^e*. Assump-

tion III* follows from the latter statement and the relations (152) and (149).

Assumption IV* is an immediate consequence of Assumption IV.

We have

0 log /*(*, Ö 0 log /(*, 0) 00'
(154) -;-= 2-, -:-

0£« i        00' 0£*

For any points x and 0 denote the maximum of the k expressions

\d logf(x, 0)/d01|, • • • , \d log f(x, 0)/30*| by p(x, 0). From Assumption V
it follows easily that

(155) Ee[o(x, 0)]2+>

is a bounded function of Ö. Since the derivatives c30'/d£* are bounded func-

tions of £, Assumption V* follows from (154) and (155).

Denote by c%{0) the function of Ö we obtain from -££d2 log f*{x, £)/d£'d£''

by substituting £(0) for £. Then we obtain from (147)

*      ^ ^      00' aem
(156) Cij{e) = IE cUB) — — ■

l      m 0£* 0£'

Denote by A the matrix ||d0'/d£'j| {i, j = l, • ■ ■ , k) and let A be the trans-
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posed of A. Then equation (156) can be written as

(157) ||c*-(0)|| = MaMllA.

Let ||cr<*(e)|| be the inverse of the matrix ||c*,(0)||. Futhermore let B be the

matrix ||d£yd0>|| (i, J = l, • • ■ , k) and denote by B the transposed of B.

Since B=A~r, we obtain from (157)

(158) ||ff4»|| = HU'mWP,

where ||<rif(fl)|| =||c«W||~1- Equation (158) can be written as

* _ _ 0£' dp

(.59) .^-i.Zsr-.UB.

Let

(160) ||4(0)|| = lk«(0)|h (p,q= , r).

Denote by W* the critical region defined by the inequality

t r

(161) n£ E ^n)H^)c*PQ(L) ^ d»,
9-1 P-l

where the constant dv is chosen so that

l.u.b. P(W* I 6) = a.
6

The point 8 is restricted to points of the set w defined by equations (134).

For each positive c and for each point 6 of u we define the surface 5C(6) by

the equations

E E «'(*)£«(0)&(e) = c,
q=l p=l

E ytMVW = E T!,(e)e)'(e) (* - r + 1, • • •, k),
j=i )=i

where the coefficients 7i/(8) satisfy the following condition: There exists a

matrix ||/3P4(8)|| (p, g = 1, • • • , r) such that if we form the matrix .4(8) given

in (120) then

(163) 4(8)||o-*(8)||J(8) = /,

where A (8) denotes the transposed of A (8) and I denotes the unit matrix.

Consider the transformation of the parameter space given by

0'" = j8,1(e)t1(0) + • • • + MDr<0 = l, ■ • • - r),
(164)

0" = 7u(8)^(0) + • ■ • + 7«*(e)t-*(fl) (/-r+1, ••-,*),
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where 6 denotes the point of co for which 0 lies on 5C(6) for some value of c.

The matrix ||/3P9(6)|| is chosen so that (163) is fulfilled. The transformation

(164) transforms 5C(6) into the sphere SI (6) given by

i:(^)2 = c,  e" = ZyMvm-
p-i j-i

We define a weight function rj(6) as follows:

(165) v(e) = lim A Wie, p) ]/a [co(e, P)},
P-0

where the symbols on the right-hand side of (165) are denned as in (109).

Since Assumptions I*—V* are fulfilled if Assumption VI holds, we obtain

from Theorems IV, V and VI the following theorem.

Theorem VII. Let W£ be the region defined in (161) and let Sc(ti) be the

surface defined in (162). Furthermore let r](d) be the weight function defined in

(165). If Assumption VI holds, then for testing the hypothesis £1(ö)= • • •

= £r(0) = 0 the sequence { Wn*}

(a) has asymptotically best average power with respect to the surfaces 5C(8)

and the weight function rj(ö);

(b) has asymptotically best constant power on the surfaces 5C(0);

(c) is an asymptotically most stringent test.

13. Optimum properties of the likelihood ratio test. For testing a com-

posite hypothesis Ha, Neyman and Pearson introduced a statistic(6), called

likelihood ratio, defined as follows: The density function in the sample space

is given by Y[a-if(xa, 6). Denote by P{x\, • • • , xn) the maximum of this

function with respect to 6l, • • • , 6k, and let Pu(xi, • • • , x„) be the condi-

tional maximum with respect to 01, • • • , dk, subject to the condition that 6

must be a point of co. Then the likelihood ratio for testing the hypothesis Hu

is given by X„(co, E„)=Pa(xi, • • • , xn)/P(xu ■ • ■ , x„). It is obvious that the

value of X„(co, En) always lies between 0 and 1. Neyman and Pearson recom-

mend the use of the left tail as critical region, that is the hypothesis Hu is

rejected if the value of X„(co, E„) is less than a certain constant Xn(co). Denote

the region X„(co, En) <X„(co) by Ln(co). In all that follows we choose the con-

stant X„(co) so that

l.u.b. P[Ln(fii) I 6] = a.
e

We shall prove that there exists a finite value B such that —2 log X„(co) <B

for all n and for all co. Consider the Taylor expansion

(*) See in this connection J. Neyman and E. S. Pearson, On the use and interpretation of

certain test criteria for purposes of statistical inference, Biometrika vol. 20A (1928).
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2 log /(*«. o) = Z log /(*., K)
a a

+ »(«» -e)(en -e) I-—-

where 6n lies in the interval [0„, $]. Since

2 log /(*«, <U - I log /(*„, 6) ^ - log X„(co, E»),
a a

we have

^ r v XT' A/*'    A   1       a2 log/(*„, 0„)
- 2 log xn(co, EJ z -22 22 »(«*» - •;(*. - 0 ) — I-

« « aew

Since «-'E^2 log/(*„, 9n)/d9id9>' converges stochastically to — c,-,(6) under

the assumption that 6 is the true parameter point, it follows easily from

Proposition I that for any e>0 there exists a positive value A(e) such that

for any co

limsuP(i.u.b.pf-EE 0t - eW. - e^9'10«^"^ as^«|ell^e
»-«  l e    L «      00*00' JJ

and lime=0 4(e) = + 00. Hence

(166) lim sup {l.u.b. P[- 2 log X„(co, En) ^ 4(«) | e]} g «.

This proves the existence of a finite number B with the required property.

For any subsets V and V of the parameter space we denote by 5(T, V)

the greatest lower bound of the distance between 0 and 0' where 0 is restricted

to points of r and 9' is restricted to points of V. We shall call 5(r, V) the

distance of the sets Y and V.

Let {#„} be a sequence of parameter points such that Iim 5(9n, co) =0 and

lim„_,o w1/25(0„, co) = + oo. We shall prove that there exists a positive v0 such

that for any constant A

(167) lim p\ I log /(*„, 6n) - £ log /(*-, e*) > A I 0,1 = 1,

where 8* denotes a point of co for which |0* — 0„| ^j»0 and Ea log/(xa, 0*)

ss£a log/(*ai Ö) for all 0 in the domain |8 — 0„| gi»0. Consider the Taylor

expansion

£iog/(x„,e*) - £ i°g/(*..*«)

2 «   „ d9'd9'
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where 0„ lies in the interval [6n, 6*]. Because of conditions (a) and (b) of

Assumption III for any e>0 the positive number Vo can be chosen so that

(169)
l _ ö2 log /(*«, e„)

lim p\ c„(e*) + - £ -^—^ < e e„ =
»—       LI Ma 00*00' J

Since ||c,-,(6)|| is positive definite and the determinant |ci,(6)| has a positive

lower bound, we obtain from Proposition I, (168) and (169) that for some

positive, vo, (167) holds. Hence our statement is proved.

We say that the likelihood ratio test is uniformly consistent if for any

positive v
lim P[Z,„(co) I 6] = 1

uniformly in to and 0 over the domain 5(0, co) ̂ v. We postulate the following

assumption.

Assumption VII. The likelihood ratio test is uniformly consistent.

This assumption together with the uniform consistency of the maximum

likelihood estimate 0„ will be proved in a forthcoming paper on the basis

of some weak assumptions on the density function f(x, 6).

Let 03,(6) be the intersection of co with the set of all points 6' for which

£*„i| 6' — 0'*| z^v. From Assumption VII it follows that for any positive v

(170) lim P{ - 2 log X„[co,(0), En) ^ - 2 log X\,[co,(0)] | 6} = 1
n - - oo

uniformly in d.

Let {#„} be a sequence of parameter points such that limn=00 8(dn, co)=0

and limn_M nin8(6„, co) = + °o. Denote by co„ the set of all points 8 for which

I 8 —0n| =>o. Since —2 log X„ [co„(0) ] has a finite upper bound it follows from

(167) that for a sufficiently small v0

(171) lim P{ - 2 log X„[con, En] g; - 2 log Xn[co,o(0„)] | Bn) = 1.
n= oo

Obviously

— 2 log X„(co, E„) = minimum { — 2 log X„[o.\o(0„), En], — 2 log X„(co„, En)}.

From (170) and (171) we obtain

(172) lim P{ - 2 log X„(co, En) ^ - 2 log Xn[co,0(9n)] | 6n\ = 1.
n=oo

Since -2 log X„[co,o(0„), £„]^ - 2 log X„(co, £„), we have -2 log X„[co,„(0„) ]

^ — 2 log X„(co). Hence from (172) we obtain

(173) lim P[L„(co) I On] = 1.
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From Assumption VII it follows that (173) holds for any sequence {0„} for

which lim w1/25(0„, «) = + «>.

Now let us consider the case where co is the set given by ifl = 10o. Let {dn}

be a sequence of parameter points for which the sequence n1/2o(0„, co) is

bounded. Denote by 0„(co) the parameter point in co for which

n

Ii/t*«. =  -P«(*l. • • *  » *»}•

Let 8n be the point for which 5(0„, co) = o(0„, 8„). Denote by Tn(v) the region

given by the inequalities

(174) , J<V'
10»(to) - ej < v.

We shall prove that

(175) lim P[Tn(v) | 0„] = 1 for any v > 0.

Consider the Taylor expansion

E log f(xa, 6„) = E log /(xa, 0„)

(176) "
+ - E E («t - •!)(/. - e,5 — E a,l08/(x;>g-)-

2 m « 00'00>

Since [«-E«<32 log/(x„, SJ/deW+cniOn) ] converges stochastically to zero,

and since w1/2|0„ — 6„| is bounded, we easily obtain from Proposition I that

for any t>0 there exists a constant Bt such that

lim sup P[E log /(**. Ö») - E log /(*«, 6„) ^ 5. | 0„] = e.

Since -2 log X„(co, £„) ^2E log/(*<,, 0„) -2E log/(xa, 8„) we have

(177) lim supP[- 2 log X„(«, £„) ^ 251 | 0„] ^ t.

Denote by co„ the subset of co in which | 6 — 8„| ^v. From Assumption VII

it follows that

(178) lim P[- 2 log Xn(co„,      £ - 2 log XB(co„) | 0„] = 1.
»= »

Since —2 log X„(co) ̂ — 2 log X"„(w„) we have

(179) lim P[- 2 log X„(con, En) £ - 2 log X„(co) | 0„] = 1.
n= oo

For any given constant 3 there exists a positive a<l such that —2 log X„(co)
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^B if l.u.b.e P | 0] =a. Hence from (179) we obtain

(180) lim P[- 2 log \n(con, En)^B\ 0»] = 1
n= »

for any constant B. From (180) it follows that

(181) lim {P[- 2 logXB(co, En)    BI «,] - P[|        - e„| ^ r| 0»]} ^ 0
n= «

for arbitrary values of B. From (181) and (177) we obtain

lim P[| *„(») - 6„| > »{ 0„] = 0.
n= so

Hence (175) is proved.

Consider the Taylor expansion

Z iog/(*„, e.) = Z iog/[*-, *.(«)]

(182) "

+        [*»(«) -ö« ö«(«) -•»] — Z ————

where 8n lies in the interval [6„, 0„(co) ]. In the following arguments we shall

use the following lemma: Let ||X<,-|| (i,j=l, • • • , k) be a definite matrix and

for each integer s let Xy be a real number such that lim,»«, X^ = X<,-. Then

lim (E E Vivi^a/H Z ViVjX'ij) = 1
J*= 00

uniformly in vi, • • • , Vh- From (175), the Taylor expansions (176) and (182),

and the above lemma it follows that for any e>0

lim P[(l + e)q% ~ (1 - 0<Z» £ - 2 log X»(«, En)
n= »

(183)
^ (1 -€)9n- (1 + «)S»|0»] = l,

where

*      i . . .

(184) ?«= Z Z w(^n - e„)(0B - en)c,-,-(e„)
i i

and

(185) §, = Z Z       -»»] [*-(«) - e»We„).
r+1 r+1

Since —2 log X„(w, £„) 2:0, we obtain from (183)

(186) lim P[(l 4- t)qn - (1 - t)qn =2; 0 | 0„] = 1.
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Since the sequence {m1/25(0„, 6„)} is bounded, the expression qn is bounded

in the probability sense, that is for each positive p there exists a positive

value A„ such that

lim P(qn >A,\0„) £ p.
n= ce

From (186) it follows that qn is also bounded in the probability sense. Hence

because of (183) we have

(187) lim P[qn - qn + e ^ - 2 log X„(co, £„) 1 qn - qn - e | 0„] = 1

for any e > 0. From the Taylor expansions

i ■ .    l _ a log /(*„, e„)

yA>-^? -00*-
(188) *

= — Z^n   (On — 8„) — 2^ - (* = 1, • ■ • , *)" » « 30*00»

and

(189) yn(fin) = - I»   [#»(«) -•»   — Z -
»    a dO'dO'

(i = r 4- 1, • • • , k)
we obtain

t
(190) y„(e„) = + Z »1/2(0n - e„) [c<)(e«) + «,,-»(£»)],

*
(191) »     (£ - Ol) =  Z lWe») + Viin(En)]y'n(6n) (* = 1, ■ ■ • , *),

1-1

and

(192) «1/2[<C(w) - en] = Z ■>«(•») + Uin(En)]y{(K) (f - f + i, • •. , k),

Whei"e II II        II II

lk«(e,)|| = IMeOlh1 (ij = l, • • • , *),
\\öa(e)\\ = WaMW-1      (i, j = r + l, • • •, *),

and for any positive v we have

Um P[\ Uin(En) I  < P\ On]  = lim P[ I H*(A) I  < V I On]

= lim P[ |fijn(En) I < v| 0.] = 1.
n= «

Hence
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=  ZEEE [cii(&n}ffil(&n)ajm(K) + Piilmn{En)]yn{bn)yZ{bn)
r+l r+l r+l r+l

k     k . .

= II !>«(•») + K(e»)yi.(e»)
r+l r+l

it t        lb k

= I   I E Z hiWciW^^e«) + p.'w«(£n)]»(öl - ei)(C - or),
j'=r+l   »W+1 m=l i—1

where

lim P[\ P,','mi„(£„) I 1

for any positive v. If at least one of the integers / and m is greater than r,

we have
k k

y.       yi   £r,',(6n)c,i(6n)cym(8„)  = Cmi(ön).
J=r+1 «'=r+l

Hence

I £ 0m»jC|m(6B)  ~     I       III ffii(0B)c<m(Bn)c,m(On)l>jt>m
m—1 i—1 )'=r+l   i—r+l   !=1 m=l

r      r P" k k -|

I I C!m(6„)  —    I       I ff^(6n)Cim(6„)c/.(6„)
m—1 Z=l L j—r+l   t'=r+l J

The coefficient

Alm(&n) — Clm(Qn) —  I I <T»j(8B)c»m(0»)cj'j(8n)
r+l r+l

can be written as the following ratio:

C(m(6n) Cl r+l(6n)      ' ' - Clk(Bn)

Cm r+l(6n)      Cr+1 r+l(6B) ' ' ' t"r+l fc(8„)

(193) CmJ;(8„) Ck r+l(©n) C**(ft„)

Cr+1 r+l(8B) ' 1 ' CV+1 .(«»)

Ck r+l(0n)      - - - Ckki^n)

It is known that if A' is the adjoint of any determinant A, and M and M'
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are corresponding w-rowed minors of A and A' respectively, then M' is equal

to the product of Am~x by the algebraic complement of M.

Let A be the &-rowed determinant |o",,(8„)| (i, j = l, • • • , k) and let M

be the (k — r+l)-rowed minors

Cim(6n) CZ r+l(8„) Cjifc(6„)

(194) If =

Then we have

(195)       M' = A k~r+1

Cr+l »>(6n)     CTr+ir+l(6„) • • • OV+l fc(8n)

0"fcm(8„) Cfcr+l(8„)

Cfm(8n) C; r+l(8„)

Cm r+l(0n)      t"r+l r+i(8„)

Cm&(8,i) Ck r+l(0>i)

ffcÄ;(6n)

cr(6„)

Cr+l k(fin)

c**(8„)

where If denotes the algebraic complement of If

= A^M,

Let Mi be the (k — r) -rowed

minor |<7,,-(8)| (i, j = r + l, ■ ■ ■ ,k). Then we obtain

Cr+l r+l(8„) ■ • • Cr+l

(196) M{

Ck r+l(8„) Ckkißn)

■'Mi,

where Mi denotes the algebraic complement of Mi.

From (193), (195) and (196) we obtain

Aim(en) = Ml Mi = cim(8„) (/, m = 1, • • • , r),

where || c"im(8n)|| =||o-Jm(0„)||-1 (/, m = 1, • • • , r). Hence

r r

?»-g» = »EL^»- — 8„)[cpg(8„) + 7Jp9„(£„)] + Pn(jEn),
9=1 P=l

where for any positive v

lim p[ I ,MÄ) I <v\6n] = lim P[ I Pn(En) I < „ I 0„] = 1.

From (187) it follows that for any positive e

lim p\ - 2 log X„(co, £,)-f^E »(4? - 8^(0' - 8„)

(197)

• [cP,(8n) + rjP3„(£„)] g - 2 log Xn(co, £n) + e I 6n\ = 1.
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Since &„ = 6% (p = Ii • • • , r) from (197) we obtain because of the boundedness

of the sequence {m1/2(0„ — 0„)}

lim P[- 2 log X„(co, ÄJ-VS'EE n(0' - 0o)(0n ~ 0o)cP9(6„)

g - 2 logX„(co, E») + c| On] = 1.

The above equation remains valid if we substitute 0„ for 6„, that is

lim P[- 2 log Xn(co, £j-eiS»XE     - 0o)(0n - el)cpq{6n)
n— «

(198)
£ - 2 logXn(to, £n) 4- «|#,}* 1.

Let PF„* be the critical region defined in (115). Since (173) holds for any

sequence {0„} for which lim «1/25(0„, co) = oo, we obtain from (198)

(199) lim {P(Wn I 0) - P[£«(«) I 0]} =0
n= «

uniformly in 0.

Now we consider the general case where co is given by r equations

m = • • • = £7(0) = o

such that Assumption VI is satisfied. As we have seen in §12, the whole the-

ory remains valid if we replace the parameters 01, • • • , 0* by the new pa-

rameters

? = m, •••.** = £*(«),
where the functions £'(0), • • • , £*(0) satisfy Assumption VI. Hence from

(199) it follows that

(200) lim {P{W*n I 0) - P[L„(co) I 0]} = 0

uniformly in 0, where W* denotes the region defined in (161).

From (200) and Theorem VII we obtain the following theorem.

Theorem VIII. Let Sc{&) be the surface defined in (162) and t){ß) be the

weight function defined in (165). If Assumption VI holds, then for testing the

hypothesis %l(6) = • • • = £''(0) = 0 the likelihood ratio test

(a) has asymptotically best average power with respect to the surfaces SC(B)

and weight function ;

(b) has asymptotically best constant power on the surfaces SC(B);

(c) is an asymptotically most stringent test.

14. Large sample distribution of the likelihood ratio. S. S. Wilks(6) has

derived the large sample distribution of the likelihood ratio X„(co, £„) if co is

(') S. S. Wilks, Distribution of the likelihood ratio in large samples, Ann. Math. Statist. 1938.
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a linear subspace of the parameter space and if the hypothesis to be tested is

true. Here we derive the large sample distribution of X„(co, En) for any set to

satisfying Assumption VI in both cases, when the hypothesis to be tested is

true, and when it is not true.

Let Mi, • • • , ur be r independently and normally distributed variates with

unit variances. Denote the expected value of up by nP. The distribution of

the statistic
2 2 2

U ==»!+•••+«,

is known(7)-The only parameter involved in this distribution is X2=/ii+ • • •

+l4. Let us denote the cumulative distribution of U2 by Fr(X2, t), that is,

(201) P[(<72< t)] - Fr(\ , t)        (X2 = pi H-4- fil).

Obviously Fr(0, t) is the x2-distribution with r degrees of freedom.

Let ,»,bef variates which have a joint normal distribution. Denote

by fip the mean value of vp and by o-pq the covariance between vp and vq.

Consider the statistic

r r

(202) V2 = XP9V„
9-1 p-1

where ||XP5|| =||crp5||_1. It is easy to verify that the distribution of V2 is given

by

(203) P(V2 <t)= Fr(\2, t),

where

(204) XJ=EEW,.

We will now derive the limit distribution of the expression on the left-

hand side of (161), that is of the statistic

r r

(205) Qn = «E E H0n)H0„)4(0„).
9-1 p—1

The joint distribution of the variates Hvt[&(in)—&(8)], • • • , «1/2[£r(0n)

— £r(0) ] converges with n—uniformly towards the cumulative normal dis-

tribution with zero means and covariance matrix ||o"*e(0)|| =||cp^(ö)||-1. Since

0„ is a uniformly consistent estimate of 6 and since Ciy(0) is a uniformly con-

tinuous function of 6, the statistic

(206) Qn = n X, E £KWW4(0)

(7) See for instance P. C. Tang, Tfte power function of the analysis of variance tests, Statistical

Research Memoirs vol. 2 (1938).
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has the same limit distribution as Qn, that is,

(207) lim {P[Qn < t\6] - P[Qn < t\B}\ = 0
n= «

uniformly in 9 and t.

It is easy to see that

(208) lim {P[Qn < t\8] - Fr[\l(8), t] = 0
n= »

uniformly in 6 and t, where

(209) An(0) = n £ E £>)$'(0)4(0).

Hence, because of (207) we have

(210) Km {P[Qn <t\8}- Fr[\n(6), t]} = 0
n= »

uniformly in 0 and

Let {ö„} (n=l, 2, • • • , ad inf.) be a sequence of parameter points for

which w1/25(0„, co) is bounded. Then we obtain from (198)

(211) lim P[- 2 log X„(co, En) - « ̂  0„ g - 2 log X„(to, £,) 4- c| 0n] = 1

for any positive e. From (210) and (211) it follows that

(212) lim {P[- 2 log Xn(co, En) < t\ 8n] - Fr[\n(8n), t}} = 0
71= co

uniformly in /. Since (173) holds for any sequence {(?„} for which lim M1/25(0n,«)

= + oo , we obtain from (212)

(213) lim {P[- 2 log X„(co, En) <t\8]- Fr[\l(9), t}} = 0
n= oo

uniformly in 6 and t. Hence we have proved the following theorem.

Theorem IX. Let Fr(\2, t) be the distribution function defined in (201)

and let X„(w, En) be the likelihood ratio statistic for testing the hypothesis

£'(#)= • • • = £r(0) =0. Let furthermore Xn(0) be the expression defined in (209).

Then, if Assumption VI holds, we have

lim {P[- 2 log A„(o>, En) < t\ B] - FT[\n(6), t]} = 0
n= oo

uniformly in t and 9. If the hypothesis to be tested is true, that is if 9 is a point

of co, \l(9) — 0 and therefore the limit distribution of —2 log X„(co, En) is the

■^-distribution with r degrees of freedom.
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■

15. Summary. Let fix1, ■ ■ ■ , xm, 61, ■ ■ ■ , 0k) be the joint probability

density function of the variates x1, • • ■ , xm involving k unknown parameters

61, • • ■ , 6k. Any set of values 01, ■ • • , 0k can be represented by a point 0

of the ^-dimensional Cartesian space with the coordinates 61, ■ • • , 0k. Let co

be the subset of the parameter space defined by the equations

£i(0) = £2(0) = . . . = £'(0) = 0 Hi),

that is, co is the set of all points 0 for which the above equations are fulfilled.

Denote by Ha the hypothesis that the true parameter point 0 is an element

of co. In this paper the question of an appropriate test of the hypothesis Hu

is discussed when the number of observations is large.

The following notations have been introduced. The point 0„ denotes the

point with the coordinates 0n, • • ■ , 6„ where 0„ is the maximum likelihood

estimate of 0' based on n independent observations on xl, ■ • ■ , xm. The ex-

pected value of -d2 log/(a:1, • • • , xm, 0\ ■ • • , 0k)d6iB0i is denoted by eit{Q)

and 11^,(0)11 =|k(0)lh- Furthermore TS-iIZ-iMp/W)Mt/dOm)<'i»iO)
(p, g=l, • • • , r) is denoted by tr*,(0) and

114(0)11 = H4(0)||-' (P, q - 1, • • • , r).

The region W* denotes the critical region defined by the inequality

4=1 p=l

where n is the number of independent observations on x1, ■ ■ ■ , xm, and the

constant dn is chosen so that the least upper bound of the probability that

the sample point falls within W*, calculated under the restriction that the

true parameter point lies in co, is equal to a given positive a<l.

Let X* be the likelihood ratio statistic for testing Hu and let L„ be the criti-

cal region defined by the inequality

X« = A„,

where the constant X„ is chosen so that the least upper bound of the probabil-

ity that the sample point falls within L„, calculated under the restriction that

the true parameter point lies in co, is equal to a.

Under certain assumptions on fix1, • • ■ , xm, 01, • • • , 0*) and the func-

tions |l(0), • • • , £r(0) the following results have been obtained:

I. For testing the hypothesis Hw the critical regions W* and Ln both:

(1) have asymptotically best average power over a family of surfaces defined

in (162); (2) have asymptotically best constant power along the surfaces de-

fined in (162); (3) are asymptotically most stringent tests. The exact defini-

tions of these notions are given in Definitions VIII, X and XII, respectively.

II. The statistics -2 log X„ and n Ej-iZp-iH^H0«)^0«) have the
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same limit distribution. The limit distribution of —2 logX„ is the x2-distribu-

tion with r degrees of freedom if the hypothesis to be tested is true. If the

true parameter point 0„ is not an element of to, the distribution of — 2 log X„

approaches the distribution of a sum of non-central squares

2        s 2
U   = U\ + • • •  + Ur,

where the variates Ui, • • ■ , u, are independently and normally distributed

with unit variances and

E (EU,)' = «E E £P(0n)£'(O4(0n).
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