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1. Introduction. A theory of non-associative algebras has been developed 0)

without any assumption of a substitute for the associative law, and the basic

structure properties of such algebras have been shown to depend upon the

possession of almost these same properties by related associative algebras.

It seems natural then to attempt to obtain an analogous treatment of

quasigroups. We shall present the results here. Most of the results in the

literature on quasigroups do depend upon special associativity conditions(2)

but no assumption of such conditions is necessary for our theorems.

Every quasigroup ® may be associated with the group ®T of nonsingular

transformations generated by its multiplications. The isotopy of two quasi-

groups may then be defined and, as in the case of algebras, two groups (that

is associative quasigroups) are isotopic if and only if they are isomorphic.

Every quasigroup is isotopic to a loop, that is, a quasigroup with an identity

element, and we derive all further results for loops.

The concepts of coset and normal divisor may be defined for loops without

any assumption of associativity(3). Then a subloop § of © is a normal divisor

of © if and only if &=eT where e is the identity of ® and T is a normal di-

visor of the group ®r. Isotopic loops have corresponding normal divisors, and

loops which are isotopic to simple loops are simple. We also combine the con.
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(') See the paper of N. Jacobson, A note on non-associative algebras, Duke Math. J. vol. 3

(1937) pp. 544-548, as well as the author's papers Non-associative algebras. I. Fundamental

concepts and isotopy, Ann. of Math. vol. 43 (1942) pp. 686-707; The radical of anon-associative

algebra, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 891-897.
(2) Cf. A. Suschkewitsch, On a generalization of the associative law, Trans. Amer. Math.

Soc. vol. 31 (1929) pp. 204-214. A suggestion of isotopy theory is given there and the assump-

tion is made that the right multiplications form a group. Then he shows that the quasigroup

is isotopic to a group. See also D. C. Murdoch, Quasigroups which satisfy certain generalized

associative laws, Amer. J. Math. vol. 61 (1939) pp. 509-522; ibid., Structure of abelian quasi-

groups, Trans. Amer. Math. Soc. vol. 49 (1941) pp. 392-109; H. Griffin, The abelian quasigroups,

Amer. J. Math. vol. 62 (1940) pp. 725-737.
(3) In this connection see B. A. Hausman and O. Ore, Theory of quasigroups, Amer. J.

Math. vol. 59 (1937) pp. 983-1004. These authors determined associativity conditions in order

that the classical coset decompositions be valid. A similar idea was used by D. C. Murdoch,

Note on normality in quasigroups, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 134-138 but not

by G. N. Garrison, in his Quasigroups, Ann. of Math. vol. 41 (1940) pp. 474-487, who also

discussed the concept of normal divisor but used the finiteness of the system in an essential way.

The definition we shall give here for loops seems to be much more natural than these others

and reduces to the classical definition in the case of groups.
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cepts of isotopy and homorphism to yield a new concept of homotopyif) of

loops. Then we show that if a loop ® is homotopic to a loop ©' it is homo-

morphic to a loop which is isotopic to ©'.

2. Permutation groups. A transformation on a set © is defined to be a

correspondence

on © to ®. If the correspondence is one-to-one it is usually called a non-

singular correspondence. It will be convenient here to refer to nonsingular

transformations as permutations. This is standard usage in the case where ©

is a finite set and there seems to be no reason why the terminology should not

be extended to the general case.

The set 2 of all permutations of © forms a group with respect to the oper-

ation of product defined by g(ST) = (gS)T. It is customary to call this group

the symmetric group.

If r is any set of permutations of @, and g is any element of ©, we define

gT to be the set of all elements gS for .S in T. When T is a subgroup of 2 it

contains the identity transformation / and gT contains gl = g.

We call a subset § of © a transitive system for a permutation group T

on © if hS is in § for every h of and S oi T and if, for every h and k of §,

there is an 5 in T such that k = hS. Then we have the following simple lemma:

Lemma 1. The transitive systems 1q for a permutation group T on & are the

sets § = h0T for h0 any element of

For if § = h0T then every element of § has the form h = h0S, (h0S) T = ho(ST)

is in §. Also h = h0S, k=h0T implies that k = (h0S-1)T=h0(S-1T) for S-'T

in T. Conversely if § is a transitive system and h0 is in § there is an S such

that k=h0S, &=k<,T.
We shall call a permutation group T a transitive or intransitive group ac-

cording as © itself is or is not a transitive system for T. When T is transitive

we have gT = © for every g of ®. If T is intransitive every gT is a proper sub-

set of ®.
3. Quasigroups. A set © is said to form a quasigroup if a product

a-x

is defined to be a unique element of ® for every a and x of © such that the

equations

(1) a-x = 6,     y ■ a = b

have unique solutions x and y for every a and b of ®. Then every x of ® de-

termines a transformation

(4) This term has a very different meaning in topology but its use here and in the theory of

algebras seems very desirable.
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g-* gRx = g-x

of ®. If aRx = gRx then ax = gx and the second uniqueness hypothesis of (1)

implies that a = g. Thus every Rx is a permutation of ®. We shall call Rx a

right multiplication of ® and shall designate by ®r the set of all right multi-

plications of ®. In general ®r is a subset but not necessarily a subgroup of 2.

In a similar fashion we determine the left multiplications

Lx: g~+gLx= xg

of ®. They are also permutations.

A quasigroup now consists of a set ® of elements g and a corresponding

set ®r of permutations Ra on ®. The left multiplications L„ are then deter-

mined transformations and will be permutations if it is true that gRx = gRv

only if x = y. This requires that the correspondence g—*Ry shall be one-to-one

and that if two distinct permutations of ®r be applied to the same element of

® the results shall be distinct. Conversely when these conditions are given ®

will be a quasigroup. For g k=gR, x = bLg~\ y — bRf1 are all uniquely deter-

mined elements of ® when every Rg and Lg is a nonsingular transformation.

Note that gS = gT is possible for distinct permutations S and T on ® but

that if xS = xT for every x of ®, where 5 and T are independent of x, then

S=T. Note also that in the case where ® is a finite set of n elements e\ • ■ • en

we are stating that ® consists of these elements and « permutations Ri • ■ • Rn

on them such that if XiRj = XiRk for any i then j = k.

4. Isotopy. Two quasigroups ® and ®(0) are said to have the same order

if there is a one-to-one correspondence g—>go between them. In our general

considerations there will be no loss of generality if we regard all quasi-

groups of the same order as consisting of the same elements and thus differing

only in their right multiplications.

Any quasigroup ® now consists of a set 90? of elements and a correspond-

ing set ®r of right multiplications. Let ®(0) be a second quasigroup consisting

of the same set of elements and a set ©r of permutations Rx on W. Then we

shall say that © and ®<0) are isotopic if there exist permutations A, B, C

on Wl such that

This is equivalent to the definition of product (g, x) in ©(0) in terms of that

in ® by

(2) Rx
(0)

= ARxbC.

(3) (g, x) * igA ■ xB)C.

Then (x, g) = (xA ■ gB) C and

(4) Lx
(0)

= BLxaC.

Note that if ® is given then the transformations Rx and Lx are products of



510 A. A. ALBERT [November

permutations and are permutations. Thus if ® is a quasigroup and we define

®(0) by (3) the resulting isotope is a quasigroup. As in the theory of nonasso-

ciative algebras the relation of isotopy is an equivalence relation.

5. Principal isotopes. Two quasigroups © and ©(0) of the same order are

said to be isomorphic if there exists a permutation P on their common set

of elements such that (gP, xP) = (g-x)P. Then (gP-1xP~1)P = (a, x) and, if

we define A =P~1, we see that the isomorphism of two quasigroups may be

regarded as the instance

(5) R.T = ARxAA~',      LT = ALlAA~l

of isotopy. Moreover we have

Lemma 2. Every isotope ®(1> of a quasigroup © is isomorphic to a principal

isotope ®(0) defined by

(6) RT = ARxB,      LT = BLxA.

For let Rxl) = SRxTU. Then ®(l) is isomorphic to ®<°> defined by

Rf=UR^U-l=ARmB where A = US, B= UT. The second formula of (6)
follows from the consequence (4) of (2) in the case C = I.

Principal isotopes are more convenient to study than general isotopes and

we shall use Lemma 2 frequently in our proofs.

6. Loops. A quasigroup ® is said to have an identity element e if

ex=xe=x for every x of ©. Then xRe = xLe = x for every x, and e is that

unique element of © such that Re = Le is the identity transformation I. It

will be very convenient to have a special name for such quasigroups and, as

we said in our introduction, we shall call them loops.

We shall show that every quasigroup is isotopic to a loop. A construction

of all loops will then yield quasigroups from which all quasigroups may be

constructed. Thus it will be at least reasonable to restrict all further study to

that of loops.

Theorem 1. Let f and g be any elements of a quasigroup © so that there exists

a unique h in ® such that f=g-h. Then f is the identity element of the loop which

is the principal isotope of @ defined by (6) with

(7) A = R^\      B = L~\

Conversely if a loop ®(0) is a principal isotope of ® it is defined by (6) and (7)

for elements g and h of ® such thatf = g-h is the identity element of ®(0).

For if / = g h = gRh = hLg we may write g=fA,h=fB for A and B of (7).

Then Rf = ARfB=ARh = I, Lf] = BLfA=BLa = I. Conversely if ®<°> is de-
fined by (6) and / is the identity element of ®<°> then Rf)=ARfB = Lf)
= BLfA = I. Put g=fA and h=fB to obtain (7) as well a.sf=gA~l = gRh = g h.
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7. Groups. A quasigroup © becomes a group when we assume the asso-

ciative law x-(a-y) = (x-a)-y for every a, x, y of ©. Then aRyLx = aLxRy.

Hence © is a group if and only if RxLy = LyRx for all right and left multiplica-

tions of ®. It is known that the group property implies the existence of an

identity element, that is, an associative quasigroup is always a loop. We also

have

Lemma 3. A loop © is a group if and only if ©r is a group. Then © and ©,

are isomorphic.

For x—>Rx is a one-to-one mapping of © on @r. If © is a group we have

(a-x)y = aRxRy = a- (x-y) —aRx RxRy = Rx.y, our correspondence is an iso-

morphism, ®r is a group. Conversely let ® be a loop with identity element e

so that

(8) eRx = eLx = x

for every x of ©. If ®r is a group we have RxRy = Rg where g is a uniquely

determined element of ®. For the permutations S of ®r are in a one-to-one

correspondence S—>g with the elements g of ® such that S = R„. But eRxeRy

= eRx-y = eRxRy = eRs= g = x■ y, RxRy = Rx .„, g—*R„ is an isomorphism of the

group ®r and ©.

Note that in the case of an arbitrary loop we have x y = eRx-eRy = eRxRv

= g = eR„, but we do not have RxRy = R„. For RXRV may not even be in ®r.

We may now prove the important theorem:

Theorem 2. A loop is isotopic to a group if and only if it is isomorphic to

the group and thus is itself a group.

For let ®(0) be a loop isotopic to a group ® so that we may assume ®(0)

to be a principal isotope of ® defined by (6), (7). Let e be the identity ele-

ment of ®, so that, if y=x~l, x-y = e, we have Rx.y = RxRy = I, Ry = Ri~1.

Similarly Iri= (Z,*)-1. Then xB—xLa~y = xLg-\ = g~x-x, xA^xR^^x-hr1.

But f-^ig hy^h^-g-1 and

(9) RT = R?RxB = Mf*.»

Similarly Lx0) =Lg-1LxA =Lg-\Lx .\-\ = LX      But then every Rx0) is commuta-

tive with every Lg°\ ®(0) is associative. By Lemma 3, ® and ®r are isomorphic,

*   ®^0) = ®r, ® and ®(0) are isomorphic.

8. Subloops. The right multiplications Rh of the elements h of any subset

§ of a loop ® generate a group of transformations which we shall designate

by It consists of all finite products of positive, negative and zero integral

powers of the transformations Rh for h in The left multiplications Ln also

generate a transformation group §x, and the right and left multiplications
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together a group §r. All of these groups are subgroups of the group ®T de-

fined as above for § = ®.

A subloop of a loop ® is a subset § which forms a loop with respect to

the defining operation of ©. It is sufficient that§ form a quasigroup, that is,

that § contain all products h-k and the solutions x and y of x-h = k, h-y = k

taken when h and k are in §. For then |) will contain the solution e of x- h = h.

Thus the identity element of a loop © is the identity element of all of its subloops.

Lemma 4. A set § is a subloop of © if and only if e{Qr = §•

For let § be a subloop of © so that § contains el = e. The elements of §T

are products of transformations Rh, Ln, RiT1, Lh1, and if k=eS is in then

e{SRh)=k h, e(SLh)=h-k, x = (eS)Rir1 = kRjr\ y=(eS)Lir1 = kLh-1 are all in

§. Hence e§r is contained in !q, every h = eRh is contained in e&T, e$£>r = §-

Conversely if e$T=§ we have eRhRk = h k and the solutions x = eRkRi~1,

y = eLicLhl of xh = k and h-y = k in     Then § is a subloop.

It should be observed that the order of a subloop § of a finite loop © need

not divide the order of ©. For example let © consist of e = e\, e2, e3, et, e^, and

let Rei = Ri be defined by Re = I, R2 = (12)(345), R3 = (13)(254), Rt= (14)(235),
i?6= (15)(243). Evidently e,• e = e,Re = e,, e ei = eRi = ei, e is the identity ele-

ment of ®. We compute e2 ei = e\, ei-e3 = es, e2 ei = e3, e2-es = ei so that

£2(12)(354). By symmetry L3= (13)(245), Lt = (14)(253), L6 = (15)(234) and
© is a loop. Its four subloops (e, e,), defined for i = 2, 3, 4, 5, are all groups of

order two.

9. Cosets. Every subgroup T of ©T defines subsets xT of © which we shall

call cosets of © relative to T. They are transitive systems of T by Lemma 1.

Thus every element of © is in one and only one coset and the sets xT provide

a coset decomposition of ©.

If § is a subloop of a loop © we shall call the cosets the right-hand

cosets of © relative to Similarly, we shall call the cosets x!Q\ the left-hand

cosets of © relative to and the cosets x!qt the two-sided cosets of © rela-

tive to §.

The sets xIq consisting of all elements x-h for h in the subloop § do not,

in general, have the property that each element is in one and only one such

set. For if x h=y-k then y = xRnRk~1 is in xf£>0 but may not be in x&. We

shall not call such sets cosets. However, our definition of normal divisors will

have the consequence x$$p = x§>T =xiQ.

With every subgroup T of © and corresponding coset decomposition of ®

we associate the set T* of all transformations S of ©r such that xS is in xT

for every x of ®. Then xT* is contained in *r. But clearly T is contained

in r*, *r is in xT*, xT = xT* for every x. Also we have

Lemma 5. The sets T* are subgroups of ®r.

For if H and K are in T* and x is in ® we have y=xH=xS where 5 is
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in T. Then yK=yT where T is in V, (xH)K = (xS)T, x(HK)=x(ST)=xU

for U = ST in T, HK is in T*. Also z = xH~1 has the property zH = zS where

S is in r if H is in Y*, x = zS, xY = zSY = zY since T is a group, SY = Y if 5 is

in r. Then z = xH_1 is in xY and H~l is in Y*.

Note that every subloop § of ® determines a unique subgroup §p* of ®r

such that eH0* = elQl, = !Q = e&T by Lemma 3. However §r is not necessarily a

subgroup of

10. Normal divisors. A homomorphism of a loop ® on a loop ®' is a

mapping g—*g' of ® on ®' such that every element of ®' is the image g' of

an element g of ®, and (x-y)' =x' -y' for every x and y of @. The mapping

x—*xtQ0 of ® on the quotient set ®/§ of all cosets x>Qp satisfies the first of

these properties. We shall call a subloop § of ® a normal divisor of ® if ®/§

is a loop and x—^x^>„ is a homomorphism of ® on ©/§.

The hypothesis that ®/§ is a loop implies that either of the equations

(10) x&yyQf, = x§„-w&0,      y&p-x&„ = w^>0-x^>p

is true if and only if y§P = w§P. The homomorphism hypothesis implies that

(11) x§f-y§„ = (x-y)§„,

and thus defines the product operation in ®/§. Conversely (11) and (10) im-

ply that ®/§ is a loop and that x—>x£>p is a homomorphism of ® on ®/§.

For § = e§p and by (11), we have §-;y§P = :y$P, x§P § is the identity

element of ®/§. Also g§p • y§p = (g • y)£p = b&0 and x£p • g£p = (* ■ g)£P = b&„ are

satisfied by y = bLg~l, x = bRg~1 and the corresponding coset solutions are

unique by (10). Then ®/§ is a loop as desired.

Note that if

(12) r = $*    § = er,    *£„ = *r

for every x, and (11) becomes

(13) xT-yT = (*-y)r.

Also we may use (11) to write (10) in the form

(14) (x-y)T = (wy)T,      (yx)T = (yw)V

if and only if xY=wY. We are now in a position to prove the fundamental

theorem:

Theorem 3. A subset § of a loop ® with identity element e is a normal

divisor of ® if and only if &=eY where Y is a normal divisor of ®T. Then

Y* = !Qo* is also a normal divisor of ®, and

(15) xT = xSq„ = x!q = xlQx = x&T

for every x.
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For let § be a normal divisor of ® and define T=^>* so that we have

(12), (13), (14). Since every permutation of © is a finite product of permuta-

tions Rg, Rg~\ Lg, Lf1 the group V will be a normal divisor of ©T if we can

show that T~lTT is contained in Y for T = Re, Rf1, La, Lg~l. Now for every

x and y of © and 5 of T we define w=xRySRy~1 so that xRyS = wRy,

(x-y)T = (w-y)F. By (14), xV = wT, w is in xT. But our definition of §*

implies that RySRf1 is in T, RyTRf1 is contained in V. Similarly define

w = xLySLy1 and obtain (y-x)S = y-w, (y■ x)T= (y■w)T, wT=xT, w is in xl?

and LyTLy~l is contained in V. We next put z^xR^1 and have z-y=x,

zS-y = (z-y)U where U is in T by (13). Then xRf1SRy = xU is in xT and

R^TRy is contained in T. A similar argument with z = yLx~1 yields x-zS

= {x-z)U, yLx~1SLx=yU and implies that LXXTLX is contained in T, r=§„*

is a normal divisor of ®T.

Conversely let t£> = eT where T is a normal divisor of ®T. If 5 and T are

in T then eSeT=eSReT = eReTU=eTU where U is in T, TU is in T. Also,

eS y=eT implies that eSRy = eRyU = eT,y=eTU~1 is a unique element of §.

Similarly xeS = eSLx = eLxU=xU = eT has the unique solution x = eTU~1

in Thus § is a subloop of ®. Now xS-yT = xSRvt=xRvtu={xyT)U

= yTRxU=yLxVU={x-y)VU where V and U are in I\ Hence xT yT is

contained in (x-y)r. But if 5 is in T we may determine U=RySRy~1 and

have (x-y)S = xRyS = xURy=xU-y, {x-y)T is contained in xY yY and we

have (13). If (x-y)T = (x-w)T then yLxT = wLxT. But LIF = rZx and yr=wr

as desired. Similarly (y-x)T = (wx)T and yi?ir=wi?ir, yr=«T. Now

xS = eLxS = eULx = hLx = x-h where h = eU is in § and so aT is contained in

x§. Also xh=xeS = eSLx = eLxU—xU for [/"in T, x§=xl\ It follows that

r* contains every Rh- Similarly h x = eSRx = eRxU = xU=xLh, T* contains

every Lk, T* contains §r, xr* = xr contains x§T which contains x§=xl\ This

gives (15). But x$>„ = xT and T* = !qp*, xT = x&p* and we have (13) and (14)

for r replaced by §*. This proves our theorem.

It should be observed that there may be several normal divisors T of ®r

such that £>=er is the same normal divisor of ®. Indeed § = er = eA if and

only if ^ is a transitive system of both T and A.

As an expected consequence of our definitions we now have

Theorem 4. Let g—>g' be a homomorphism of a loop & on a loop ®' and §

be the set of all elements h of ® such that h' is the identity element e' of ©'. Then

l£> is a normal divisor of ® and the correspondence x§—>x' is an isomorphism

of the quotient loop ®/§ and ®'.

For if h and k are in § we have (h-k)' = h'■ k' — e' and h-k is in Also

x-h = k implies that x'■ h' = k', x' = e', x is in Similarly h-y = k implies that

y is in § and that & is a subloop of @. The elements y of x§T are products

of x by a finite number of elements h of § with some order and grouping.

Since every h' = e' we have y'=x' no matter what the order and grouping.
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Conversely if y'=x' we may write y=x-z for z in © and y' =x' -z' =x'. But

©' is a loop and z' = e', z is in y is in x&. It follows that x£>t^x!q and, since

x&rsZxiQp^xlQ, then

x!qt = xS~>p = x!q\ = xfQ.

Moreover x'=y' implies that x$$p=y!qp so that the correspondence x!q—*x'

is one-to-one. We compute [(x-h) ■ (y- k)]' = (x- h)' ■ (y -k)' — x' -y' = (x-y)' for

every h and k of § and see that x& ■ y$ = (x ■ y)§. Conversely (x-y)-h = x-z

has a solution z in ® which may be written in the form z = y-w for w in @.

Then [x- (y-w)]' =x' ■ (y -w)'—x'- (y' -w') = [(x-y) ■ h]' = x' -y', y'—y'-w',

w' = e', w is in £>, (x-y)!g =x§-y&. This proves that xiQ—»x' is an isomorphism

of ©/§ and the loop ©'. Then ®/$Q is a loop and § is a normal divisor of ®.

11. The multiplications of quotient loops. If § is a normal divisor of ®

and r=§p*, the elements of ®/§ are the cosets xT. The elements of ®T/r

are the cosets Sr = FS for S in ®T. Each such coset defines a transformation

(16) gT^(gT)(ST) = (gS)T.

But if aST=gST we have aTS = gTS, aT = gT. Hence (16) is a permutation

of ®/§. We may identify the permutation (16) with ST and have shown that

the elements of the quotient group ®r/r may be regarded as being permuta-

tions of the quotient loop ®/§.

The right multiplications of ®/^> are the permutations

gT^gT-xT = (gT)(RxT),

that is, the permutations RXT of @r/r. Similarly the left multiplications of

©/§ are the permutations LXT. The group ®r is generated by the right and

left multiplications and thus ®,/r is generated by the RXY and LyY. But these

permutations also generate the group of permutations for ©/§.

Theorem 5. Let & be a normal divisor of ® 50 that T=^>* is a normal di-

visor of®r. Then (©/§), = ®r/r.

12. Finite loops. In our proof of Theorem 3 we showed that the hypothesis

xT-yY = (x y)T implies that S~lTS is contained in V for every S which is

either a right multiplication or a left multiplication. In the case where ® is

finite so is T and a comparison of orders then yields S~1TS=T, T = STS~1.

Indeed it is true that in the finite case if we have S~lTS^T, for elements S

which generate ®r, the group T will be a normal divisor of ®T. Thus we have

Theorem 6. Let § be a subloop of a finite loop ® and define x' =x(qI) for

every x of ®. Then if (x-y)' —x'-y' for every x and y of © the quotient set ©/§

is a loop and § is a normal divisor of ®.

We may also prove
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Theorem 7. The order of a normal divisor § of a finite loop © divides the

order of ®.

For if § is a normal divisor of ® we have seen that every element x of ®

is in one and only one set xi£>. If x-h = x-k then h = k so that each coset x!q

has exactly as many elements as does §. Then the order of © is the product

of the order of § and the order of ©/§.

This result evidently implies that if a finite loop © is homomorphic to a

loop ®' the order of ®' divides the order of ®.

13. Simple loops. A subgroup T of ®r defines a proper subset er of © if

and only if T is intransitive. As in the theory of groups we call a loop simple

if its only proper normal divisor is the identity group. Then we have

Theorem 8. A loop ® is simple if and only if the group ®T has no intransi-

tive normal divisor except the identity group.

Every isotope of a loop ® is isomorphic to a principal isotope ®(0) of ®.

If the original isotope is a loop so is ©(0) and we may let / be the identity ele-

ment of ®<0). Theorem 1 implies that ®'0)=®T. The relation of principal

isotopy is symmetric and thus ®r = ®t0). We pass to a loop ®(1> isomorphic

to ®(0) and defined by

with C = Rfl. Then ® <»> has e as its identity element. Moreover ®<l) = CG^C'1

= ®(r0) = ®r since C is in ®T. The application of Theorem 3 yields

Theorem 9. Every loop isotopic to a loop ® is isomorphic to a loop having

precisely the same normal divisors as ®.

Note that we are not stating that the normal divisors er of ®(1) are iso-

morphic or even isotopic to the normal divisors of ®. They merely consist

of the same elements. If § = eT then multiplication for § in ® is defined by

y-h = yRh and in ®U) by (y, h)=yCARnBcC~l. It does not appear necessary

for § in ® and in ®T to be isotopic.

As a consequence of Theorem 9 we have

Theorem 10. All loops isotopic to a simple loop are simple.

14. Centers. The center 6 of a loop ® is the set of all quantities c of ®

such that the commutative and associative laws for products hold whenever

c is one of the factors. The condition x ■ (y c) = (x -y) c is equivalent to

RCLX = LXRC for every x, and c-(xy) = (c-x)-y yields LeRy = RyLc for every c.

But x-c = c x is equivalent to LC=RC. Hence every Rc is in the center A of

the group ®T, every c = eRr, S = eA.

Suppose now that H is in A and that c = eH. Then x-c = cLx = eHLx = eLxH

= xH, H=RC. Similarly c x = cRx = eHRx = eRxH = xH, LC = RC. We also have

Rx   = CRXC C Lx =
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RCLX = LXRC so that x-(y-c) = (x-y)-c and similarly c-(x-y) = (cx)-y. But

then Ry .c = RvRc=RcRy = Rc.y and (x-c)-y=x-(c-y), c = eH is in 6. Hence

S = eA.
The correspondence c-^>H = Rc is one-to-one since if H is given then

c = eH. Also eH■ eK =eHReK = eIiK for every 17 and     of A. Thus we have

Theorem 11. The center So/a loop @ with identity element e is isomorphic

to the center A of @T, and E = eA.

If © and ®(0) are loops which are principal isotopes the group ©T = ®(T0)

and the centers of © and ©<0) are isomorphic. By Lemma 2 we have

Theorem 12. Isotopic loops have isomorphic centers.

15. Homotopy. While it has been convenient to define isotopy for alge-

braic systems consisting of the same elements it is not, of course, necessary.

Thus we may define two multiplicative algebraic systems © and ©' to be

isotopic if there exist nonsingular mappings A, B, C of © on ©' such that

(17) xA-yB = {x-y)C.

The concept of homomorphism may now be generalized. We call two

mappings A and B of a set © on a set ®' = ®^4 = &B equivalent if there exists

a nonsingular transformation N of ® and a nonsingular transformation 5 of

®' such that
B = NAS.

Then we shall say that a multiplicative system ® is homotopic to a multi-

plicative system ®' if there exist equivalent mappings A, 73, C on ® to ©'

such that ®' = ©C and (17) holds for all x and y of ©. Then A=NCS,

B = QCT, xNCS-yQCT=(x-y)C. Define (x', y')=x'S y'T for every x' and

y' of ®' and (x, y)=xN~l-yQ~1 to obtain (xC, yC) = (x, y)C. The argument

is readily reversed and we see that ® is homotopic to ®' if and only if an isotope

of @ is homomorphic to an isotope of &'.

We note now that ® is itself homomorphic to an isotope of ®' if there

exists a mapping P of ® on ®' and nonsingular transformations S, T, U of ®

such that ®' = ®P and (xP, yP) = (x y)P where (x', y') = (x'S-y'T) U. This is

equivalent to (17) with A =PS, B = PT, C = PU-K Then A=C{US),
B = P{CT). Hence (17) implies that ® is homomorphic to an isotope of ®'

if there exist nonsingular transformations 5 and T of @' such that A =CS,

B = CT. However such transformations may not exist.

For example let ® be any group of at least three distinct elements and C

be any singular mapping of © on a set ®' of at least two distinct elements.

Then there exist distinct elements g, h, k in ® such that gC = hC, gC^kC.

The transformation TV on © which interchanges h and k and leaves all other

elements of © unaltered is nonsingular and we define a homotopy of © on ©'
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with A = B = NC. This defines the product operation in ©' and is such that

gN = g, gNC — gC7£kN = hNC. However if A=CS we could conclude from

gC = hC that gCS = hCS, gA=hA, a contradiction.

Let us observe that if we designate the right and left multiplications of

©' respectively by R^l and Lv\\ then (17) is equivalent to xAR^^xRyC,

yBLxx\=yLxC and thus to

(18) ARyB = RVC,      BLxa — LXC.

We assume that ® is a loop homotopic to a loop ®' and let e be the identity

element of ®. Replace x and y in (18) by e to obtain

C = A Reb   = BLea .

Since ®' is a loop both R^j and L^l are nonsingular transformations on ®'

and ® is homomorphic to the isotope ®" of ®' defined by (x', y')=x'S-y'T

where S~1 = ReB), T~1 = L^A\ Since (xC, yC) = (x y)C we see that eC is the iden-

tity element of ®" and ®" is a loop. We have proved

Theorem 13. Let a loop ® be homotopic to a loop ©'. Then © is homomorphic

to a loop isotopic to ©'.

If § is the normal divisor of © which is mapped by C on eC the quotient

loop        is isotopic to ©'. We note also that we have the almost immediate

Corollary. Let a group ® be homotopic to a loop ®'. Then © is homo-

morphic to ©' and ©' is a group.

For by Theorem 13 the group © is homomorphic to ®", ®" is a group

isotopic to ®', ®" is isomorphic to ®' by Theorem 2.

16. Special loops. A loop ® may be called alternative if the conditions

Rg - R. Q   *j L Q Lq   *j RgL/gRx - R-q-xLgy R qL g • x - L (jL g

hold for every g and x of © where g g~l = g~1-g = e is the identity element of ®.

Then it is known(6) that every two elements of © generate a subloop which

is a group.

An example of such a loop is given by the nonzero elements of the non-

associative Cayley-Dickson division algebra of order eight over the field of

all real numbers. This loop contains a finite loop © of sixteen elements. It

consists of eight basal elements ei=l, e2, ■ • ■ , er and their negatives and

ei(ejek) = + (de^ek- The algebra is a central simple algebra and thus the center

©•of the knot © consists of the group of two elements 1, —1. Evidently the

(6) See R. Moufang, Struktur von Alternativkorpern, Math. Ann. vol. 110 (1935) pp. 416-

430, for a discussion showing that this set of postulates imply that every two elements of the

loop generate a group. The postulates are given also in the Hausman-Ore paper on page 993.
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quotient loop ®/6 is the abelian group of exponent two and order eight.

This is important as an example of a case where § is a group and ®/§ is a

group but ® is a loop which is not associative.

The theory of alternative loops is only one of many interesting questions

about loops suggested by topics of the theory of nonassociative algebras. For

example, the construction of new simple algebras recently(6) given by the

author yields, by the use of basal units, a construction of what may be called

a crossed extension Sß of every finite loop 21, in which 21 is a normal divisor

of 93, and the quotient loop 53/21 is a prescribed permutation group on 21 leav-

ing its identity element unaltered. The study of other properties of such loops

should prove to be of considerable interest.

(6) Non-associative algebras. II. New simple algebras, Ann. of Math, vol.43 (1942) pp. 708-

723.
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