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BY

J. F. RITT

This paper is concerned with the development of a theory of systems of

algebraic ordinary differential equations, analogous to the theory of algebraic

manifolds.

We deal with any finite or infinite system of algebraic differential equa-

tions in the independent variable x and the dependent variables Vi • • •

yn. We write each equation in the form

F(x; yu ■ ■ ■ , yn) = 0,

where F is a polynomial in the y's and any number of their derivatives. The

coefficients in F will be supposed to be functions of ac meromorphic in some

given open region 21, and belonging to a given field fj of such functions. By a

field, we understand a set of functions of x, not all zero, such that, given any

function of the set, its derivative is also in the set, and such that, given

any two functions,/and g, of the set,

f+g,f-g,fg,—    (when g ^ 0)
g

are all in the set.f

An expression like F, above, will be called a. form. With respect to every

form introduced into our work, we shall assume, unless the contrary is stated,

that its coefficients belong to 'S.

By a solution of a system of forms, we shall mean any set of functions,

yi, ■ ■ ■ , yn, analytic in some area contained in 31, which cause all of the

forms to vanish.% The totality of solutions of a system of forms will be

called the content of the system. The content of any system will be called a

manifold. If 2 and 2' are two systems of forms such that every solution

of 2 is a solution of 2', then 2' will be said to hold 2.

* Presented to the Society, April 18, 1930; received by the editors May 9, 1930.

f We do not assume, as Picard does in his construction of the Galois theory of linear differential

equations, and as Landau does in his work on the factorization of linear differential forms, that J

contains all constants. See Picard, Traité d'Analyse, 2d edition, vol. 3, p. 562.

Î An alternative definition of a solution would be any set of convergent series of powers of

x—a, where a is any point of 31, which cause the forms to vanish.
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A system 2 of forms will be called irreducible if, G and H being any two

forms such that GH holds 2, either G holds 2 or H holds 2. A system which

is not irreducible will be called reducible. The system of equations obtained

by equating the forms of a system to zero, and also the manifold which is

the content of the system of forms, will be called reducible or irreducible

according as the system of forms is reducible or irreducible.*

We can now state the chief result of the first part of our paper. Every

manifold is composed of a finite number of irreducible manifolds. That is,

given any system of forms, 2, there exist a finite number of irreducible

systems, 2i, • • • , 2„ such that 2 holds every 2¿, and that every solution

of 2 is a solution of some 2,-. The decomposition into irreducible mani-

folds is essentially unique.

Let us consider an example. The equation

•y'2 _ 4y = 0)

which has the general solution y = (x — a)2 and a singular solution y = 0,

is a reducible system in the field of all constants. For neither y" — 2 nor y'

vanishes for all solutions of the equation, while (y" — 2)y' does. The equation

is equivalent to the two irreducible systems

y'2 _ iy =  0)     y" -  2  =  0,

and

y'2 _ 4y = o, y = o.

The decomposition theorem follows from a lemma which bears a certain

analogy to Hubert's theorem on the existence of a finite basis for any in-

finite system of polynomials. We prove that if 2 is an infinite set of forms

then 2 has a finite subset whose content is identical with that of 2.f

In the second part of our paper, we investigate the structure of an ir-

reducible manifold. We obtain, for every irreducible system, a differential

equation which we call the resolvent of the system.  Finding all non-singular

* The property that we have used in defining irreducible manifold is, of course, analogous to a

characteristic property of irreducible algebraic manifolds. Of the different treatments of algebraic

manifolds, that of van der Waerden, loc. cit., seems to be the only one that uses this property as a

defining property. By the method of the present paper, the theorem that every algebraic manifold

consists of a finite number of irreducible manifolds can be proved in a manner even simpler than that

of van der Waerden, without using Lasker's theorem.

f This result is very different in nature from that of Tresse for systems of partial differential

equations. See Tresse, Acta Mathematica, vol. 18 (1894), p. 4. Also, Drach, Annales de l'Ecole

Normale, vol. 34 (1898), p. 292. In solving his system algebraically for certain derivatives, Tresse

has necessarily to confine himself to a portion of the content of his system. The chief feature of the

present investigation is its completeness from the algebraic standpoint.
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solutions of the resolvent is equivalent to determining the content of the

irreducible system.

To see what is contained in the idea of the resolvent, let us consider a

differential equation cy = 0, where a is a form in the a+1 indeterminates w;

ui, ■ ■ ■ , uq, irreducible, as a polynomial in SF in the indeterminates and

their derivatives.

Let a be of order r in w. Let F =da/dwr, where wT is the rth derivative of

w. Let H be the coefficient of the highest power of wr in a. We call a solution

of a = 0, for which neither F nor H vanishes, a regular solution.

We prove that the totality of forms which vanish for all regular solutions

of a = 0 is an irreducible system. The content of this system is one of the

irreducible manifolds in the content of a. We call this irreducible manifold

the general solution of a.

Now, suppose that we have p rational combinations of w; uh ■ ■ ■ , uq

and their derivatives, with coefficients in SF,

(1) Ji = Ri(w; «!,•••,«„) (» - 1, • • • , p),

no denominator vanishing for all regular solutions of a = 0.

We prove that there exist forms in u\, ••-,«,; yi, • • • , yv, which vanish

for all «'s and y's in (1), it being understood that w; ui, ■ • ■ , uq belongs to

the general solution of a. The totality of these forms in the «'s and y's

constitutes an irreducible system.

Conversely, let us consider any irreducible system in yh • • • , yn. A

certain number, q, of the y's are found to play the rôle of arbitrary functions

in the content of the system. We call these «i, ■ • • , uq, and designate the

remainingy'sbyyu ■ ■ ■ ,yP(P+q=n).

We show that, if £F does not consist purely of constants, it is possible to

form a rational combination w of the «'s, y's and their derivatives, in

such a way that yi, • ■ • ,yP become rational combinations of w; «i, ■ • • , uq

and their derivatives. The new indeterminate, w, satisfies a differential

equation

a(«i, • • • , uq; w) = 0,

with a irreducible as a polynomial in fj. This equation is a resolvent of the

irreducible system.

The introduction of the resolvent creates a perfect analogy between

the notion of the content of a system of algebraic differential equations and

the notion of algebraic function of several variables.

The resolvent can be used to advantage in the study of such questions

as the influence on the reducibility of a system of the adjunction of new

functions to ff.
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Certain features of our proofs indicate that a theory of ideals of differential

forms underlies the manifold theory. We are at present investigating this

question.*

One will notice that we do not furnish a method for resolving a system

into irreducible systems, or a method for constructing the resolvent. These

questions, also, we expect to treat in further communications.

Our work has, apparently, nothing in common with the researches of

Riquier and others on the degree of generality of the solution of a system

of partial differential equations. \ We reserve for later papers the extension

of our results to partial differential equations.!

The irreducible differential equations of Koenigsberger,§ and Drach's

irreducible systems of partial differential equations,If are irreducible in the

sense explained above. The definitions of Koenigsberger and of Drach,

which demand much more for irreducibility than does ours, are the starting

points of group-theoretic investigations, which parallel the Galois theory. ||

Our definition leads, as we have seen, in a different direction.

This paper has a degree of contact with the work on field theory and

elimination theory of the modern school of German algebraists. We would

mention particularly the writings of Steinitz, Emmy Noether, Schmeidler

and van der Waerden.**

PART I.    RESOLUTION OF A SYS.TEM INTO IRREDUCIBLE

SYSTEMS

Classification of forms

1. Derivatives of functions y< will be indicated by means of a second

subscript. Thus
y a = (d'/dx')yi.

We write, frequently, y, = y¿o.

By the jth derivative of a form F, we mean the form obtained by differ-

entiating F j times with respect to x, regarding y\, • • ■, yn as functions of x.

By the order of F with respect to y,-, if F involves y< or some of its deriva-

* In this connection we have recently proved that if G holds the system F¡, ■ • ■ , Fp, then some

power of G is a linear combination of the F's and their derivatives, with forms for coefficients. This

is analogous to a theorem of Hubert for polynomials.  (Note added in proof, August 4, 1930.)

t See Janet, Systèmes d'Equations aux Dérhées Partielles, Paris, 1929.

î We have extended the theorem on the equivalence of a system to a finite number of irreducible

systems to partial differential equations.  (Note added in proof, August 4, 1930.)

§ Lehrbuch der Differentialgleichungen, Leipzig, 1889.

If Loe. cit., p. 295.
II In connection with Koenigsberger's definition, we have in mind the Picard-Vessiot theory.

** For references, see van der Waerden, Mathematische Annalen, vol. 97 (1927), p. 196.
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tives effectively, we shall mean the greatest j such that y a is present in a

term of F with a coefficient distinct from zero. If F does not contain y<,

the order of F with respect to y< will be taken as zero.

By the class of a form which effectively involves some of the y's, we shall

mean the greatest p such that some ypj is present in F. If F is simply a

function of ac, F will be said to be of class 0.

Let Fi and F2 be two forms. If F2 is of higher order than Fi in some yp,

F2 will be said to be of higher rank than Fi in yp. If Fi and F2 are of the same

order, say q, in yp, and if F2 is of greater degree than Fi in ypq* then, again,

F2 will be said to be of higher rank than Fi in yp. Two forms for which no

difference in rank is established by the foregoing criteria, will be said to be

of the same rank in yp.

If F2 is of higher class than Fly F2 will be said to be of higher rank than

Fi. If F2 and Fi are of the same class p>0, and if F2 is of higher rank than

Fi in yp, then, again, F2 will be said to be of higher rank than F. Two forms

for which no difference in rank is created by the preceding, will be said to

be of the same rank.f

Completeness of infinite systems

2. In §§2-11, we prove the following lemma:

Lemma. Every infinite set of forms in yi, • • ■ ,yn has a finite subset whose

content is identical with that of the infinite set.

An infinite system of forms whose content is identical with that of one

of its finite subsets will be called complete.% Systems which are not complete

will be called incomplete. In what follows, we assume the existence of ;n-

complete systems, and force a contradiction.

3. We prove the following lemma:

Lemma. Let 2 be an incomplete system. Let a form F, not in 2, and a

subset 2' of 2 exist, such that the system A, composed of the forms of 2 not in

2' and of the products of the forms of 2' by F, is complete. Then the system

2+F, obtained by adjoining F to 2, is incomplete.

Suppose that 2+F is complete. Let

(2) F;    Gi, ■ ■ ■ , Gp; Hu ■ • • , IIq,

where the H's, but not the G's, belong to 2', be a subset of 2+F whose

* Considered as a polynomial in yvq. If a form is identically zero (hence of order 0 in every yv),

it will be considered of degree 0 in every yp0. This leads to no difficulties,

f Thus all forms of class 0 are of the same rank.

Î If some finite subset has no solutions, the infinite set will be considered complete.
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content is identical with that of 2+F. We evidently may, and we shall,

assume that the content of

(3) Gi, ■■ ■ , GP; FHi, ■ ■ ■ , FHq

is that of A. Now, let ÍT be a form of 2 which does not hold

(4) Gx, • ■ • ,GP; Hi, ■ ■ ■ , Hq.

As FK holds (3), and as (3) holds (4), certain solutions of (4) which are not

solutions of K must be solutions of F. Thus K does not hold (2). This proves

the lemma.

4. By a. first form of a system of forms, not all zero, we shall mean a form

of the system, not zero, whose rank is not greater than that of any other non-

zero form of the system.

From among all incomplete systems in yi, • ■ • , y„, we select one whose

first forms have a rank not greater than the rank of the first forms of any

other incomplete system. Let 2X be such an incomplete system, and let ax

be one of its first forms.

Let ax be of class px. Then Px >0, else ax would have no solutions and 2X

would be complete.

5. Let a system 2 contain a form a of class p>0. We call 2 reduced

with respect to a if every form of 2, distinct from a, is of lower rank than

a in yp.

6. We prove the following lemma :

Lemma. Given any incomplete system 2 which contains the ax of §4, there

exists an incomplete system which has ax for first form, is reduced with respect

to ai, and contains every form of 2 which is of lower rank than ai in yPV

Let «i be of order r in yPl. The qth derivative of ax will be of order r+q

in yP1 and will be linear in yP1,r+q, with dai/dyp„r for coefficient of yPl,r+q.

Let F = dai/dyPl,,. Then F is of lower rank than ax.

Now, G being any form of 2 of order higher than r in yPl, it is possible,

using the algorithm of division, to find a non-negative integer w,depending

on G, such that, when we subtract from FmG a suitable linear combination

of the derivatives of ax, with forms in y\, • • • , y„ for coefficients, the re-

mainder, call it B, is of order not greater than r in yPl. Let such a B be found

for every G.

Let Q be the system composed of all B's and of all forms of 2 whose order

in yPl does not exceed r. We are going to show that fi is incomplete.

Let A be the system composed of the forms FmG and the forms of 2

whose order in yPl does not exceed r.
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Every FmG holds the system of two forms composed of its B and ai.

Every B holds the system formed of its FmG and «i. Thus, if ß were com-

plete, A would be complete. Now, if met!, FmG and FG hold each other.

Thus, if A were complete, the system obtained from 2 by multiplying some

subset of 2 by F would be complete. Then, by §3, 2+F would be in-

complete. This is impossible, because F is of lower rank than ai and is

not identically zero. Thus ß is incomplete.

Let H be the coefficient of the highest power of yPl,r in «i. Then H is

of lower rank than a\.

Let K be any form of ß which is not zero and which is not of lower degree

than «i in yP1,T. An integer m ̂  0 exists such that

HmK = Cai + D,

where C and D are forms in yu • • • , yn and where D is either zero or of lower

degree than «i in yPl,r. We see, as above, that the system composed of ai,

the forms of 2 which are of lower rank than «i in yPl, and the D's, is incom-

plete. Furthermore, this system is reduced with respect to «i. The lemma

is proved.

7. Consider any B of ß, and the G from which it is obtained.

We say that, if q*>Pi, then B is not of higher rank than G with respect

to yq.

For instance, let ß be a derivative of ai, of the same order as G in yPl.

Let

FmG = Aß + Gu

where Gi is of lower order than G in yPr Surely Gi is not of higher order than

G in yq. Suppose that G and & are of the same order, A, in yq. If Gi involved

yqk in a higher power than G does, then A would contain the higher power

of yqk, so that Aß would contain the higher power of yqk multiplied by the

derivative of highest order of yPl in ß. There would thus be terms in Aß

which would not be balanced by the terms of FmG and Gi.

Similarly, consider any D of the final system of §6, and the K which

corresponds to it. We see that, if q>pi, D will not be of higher rank than

K in yq.

The observations of this section will be of great utility in §9.

8. Consider any incomplete system which has ai for first form and is

reduced with respect to ai. In such a system, there cannot be a non-zero

form which is distinct from «i and of class not exceeding px, for such a form

would have to be of lower rank than «i.

It follows that pi<n.
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Of the non-zero forms in the above system which are distinct from ax,

there are some of lowest rank. Such forms, we call second forms of the

system.

From among all incomplete systems which have «i for first form, and are

reduced with respect to ax, we choose one, 22, whose second forms are of as

low a rank as is possible. Let a2, of class p2>px, be a second form of 22.

9. We prove the following lemma:

Lemma. Given any incomplete system 2 which contains ax and a2, there

exists an incomplete system containing ax and a2, which is reduced with respect

to ax and a2, and which contains all forms of 2 which are of lower rank than

«2 in yP2 and of lower rank than ax in yPl.

We note that the system whose existence is to be proved, being re-

duced with respect to ax, has a2 as a second form.

Let a2 be of order r in yP2. Let G be any form of order higher than r in

yP2. Let F = da2/dyp„r. Then there is an m ïï 0 such that when a suitable

linear combination of the derivatives of a2 is subtracted from FmG, the re-

mainder, B, has an order in yPl not greater than that of a2. The system £2

composed of the B's and the forms of 2 not of higher order than r in yp,

must be incomplete. If not, 2 +F would be incomplete. Now F, like a2, is

of lower rank than ax in yPl. By §6, there would be an incomplete system

with «i for first form, reduced with respect to ax and containing F. This is

impossible if the class of F does not exceed px, for then F must be of lower

rank than ax. It is impossible if the class of F exceeds px, since F is of lower

rank than a2.   Thus £2 must be incomplete.

Again, if H is the coefficient of the highest power of yPi,r in a2, we have,

for any form K of £2, distinct from zero and of degree in yPlir not less than

that of «2,

HmK = Ca2 + D

with D either zero or of lower degree than a2 in yVi,r.

We shall show that the D's, a2 and the forms of £2 which are of lower

rank than a2 in yp, (ax is among them) constitute an incomplete system S.

For, if S were complete, ti+H would be incomplete. By §6, there would

exist a system containing ax, reduced with respect to ax, and containing H.

As was seen above, this is impossible.

Proceeding now with ax as in §6, and operating on the forms of S of rank

in yp not less than that of ax, we obtain an incomplete system containing ax,

a2 and all forms of 2 which are of lower rank than a2 in yP2 and of lower

rank than ax in yp , the system being reduced with respect to ax.  Now this
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system is also reduced with respect to a2, for, as was seen in §7, when we

operate on a form of S with «i, the new form obtained has a rank with re-

spect to yPl not greater than that of the original form. This proves the

lemma.

10. Evidently an incomplete system containing ax and a2, and reduced

with respect to «i and a2, contains no non-zero form other than «i and a2

whose class does not exceed p2.

We conclude that p2 <n.

In the incomplete systems of the type just described, we call those forms

whose class exceeds p2, and whose rank is as low as it can be, with this con-

dition, third forms.

We select a system 23 with a third form a3 of as low a rank as is possible.

We operate as above, obtaining an incomplete system which contains ai, a2,

a3 and is reduced with respect to ax, a2, a3. It follows, if a3 is of class p3, that

p3<n.

11. Continuing in this fashion, we find that there exists an infinite se-

quence of integers

pi < pi < pi < ■ • ■ ,

all less than n. This absurdity proves the truth of the fundamental lemma

stated in §2.

NON-EXISTENCE OF A HlLBERT THEOREM

12. It might be conjectured that in every system 2 there is a finite

system of forms such that every form of 2 is a linear combination of the

forms of the finite system, and their derivatives, with forms for coefficients.

We shall show that this is not so.

We consider forms in a single dependent variable, y, and represent the

ttth derivative of y by y„.

Consider the system

yiy2, y2y3, ■ • ■, ynyn+u

We shall show that no form of this system with n > 1 is linearly expressible

in terms of the forms which precede it, and their derivatives.

We notice that all of the forms, and all of their derivatives, are homo-

geneous polynomials of the second degree in the y's. Also if the weight of

y<y,- is defined as i+j, the pth derivative of y,y,- will be isobaric, with its

terms of weight i+j+p.

Now if
d

ynyn+i = Aiyiy2 + • • ■ + An-iy„-iyn + Bi— (y¡y2) + • ■ • ,
dx
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with the A's, B's, etc., forms, the terms not independent of the y's in the

.4's, etc., may be cast out, for they produce terms of degree greater than 2.

Again, considering the weights of the various forms, we find that

d2n~2 d2

(5) ynyn+i = C1-——(yiyi) + ■ ■ ■ + Cn_i-— (y„_iy„)
dx2n~2 dx2

with C's independent of the y's. Now the (2w — 2)d derivative of yxy2 con-

tains a term yiy2n, and none of the other derivatives in (5) yields such a

term. We conclude that Ci = 0. Continuing, we find every C to be zero.

This proves our statement.

Irreducible systems

13. We prove the following fundamental theorem:

Theorem. Given any system 2 of forms in yx, • • • , y», there exist a finite

number of irreducible systems, 2i, • ■ ■ , 2„, such that 2 holds every 2¿, while

every solution of'S, is a solution of some 2 ¿.

Let the theorem be false for some system 2. Then 2 is reducible. Let

Gi and G2 be two forms such that GxG2, but neither Gx nor G2, holds 2.

Now 2 holds 2+Gi, and 2+G2, and every solution of 2, being a solution of

Gi or of G2, is a solution of 2+G\ or of 2+G2.

Thus at least one of the systems 2+& or 2+G2 is reducible. If either of

these systems is reducible, we call it a system of the first class. There must

be a system of the first class which, when treated like 2, yields either one or

two reducible systems, obtained by adjoining two forms to 2. The reducible

systems obtained through two adjunctions, we call systems of the second

class. Some of the systems of the second class, when treated like 2, must

yield reducible systems obtained from 2 by three adjunctions. We call

these systems of the third class. We proceed in this manner, forming systems

of all classes.

There must be a system of the first class whose forms are contained in

systems of all classes higher than the first. Let 2+271, where 27i is either

Gx or G2, be such a system of the first class. One of the systems of the second

class which contains the forms of 2+27x must have its forms contained in

systems of all classes higher than the second. Let 2+27i+272 be such a sys-

tem. Let an 27p be found in this way for every p. Then the system composed

of
2, Hi, H2, ■ ■ ■ , Hp, ■ ■ ■

is incomplete. This proves our theorem. It will be noticed that the proof

involves making an infinite number of selections.
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Uniqueness of resolution

14. We suppose, suppressing certain of the irreducible systems 2<, if

necessary, that no 2< holds a 2,- with ji*i.

It is then possible to prove that the systems 2¡ are essentially unique;

that is, if Qi, ■ • • , Hi'is a second set of irreducible systems, none of which

holds any other, each of which is held by 2, and which are such that every solu-

tion of 2 is a solution of some iliy then s = t, and every il{ holds, and is held by,

some 2<.

We shall show that there is some ß< which holds Si. If there were not,

then each ß< would have a form which would not hold 2i. Such forms being

selected, their product would hold each ili, consequently 2, thus Si. This

is impossible if 2i is irreducible and none of the forms holds 2l

Then let ßi hold Si. Now ßi, similarly, must be held by some S<, which

must be Si, since no S< with i¿¿ 1 holds Si. Thus ßi and Si hold each other.

The uniqueness is proved.

PART II. STRUCTURE OF AN IRREDUCIBLE MANIFOLD

General solution of a single equation

15. We are going to study the content of a single form, a, of class n>0.

We assume that a is an irreducible form, that is, that a cannot be expressed

as the product of two forms, each of class greater than 0, and each with

coefficients in £F.

It is our object to make precise the notion of the general solution of

a = 0.

We write yn = y, and, if «>1, we write q=« —1, y, = «,-, ¿ = 1,  ■ ■ ■ ,n — í.

Our definition of the general solution will appear, at first, to depend on

the order in which the dependent variables in a are taken; at least, on the

manner in which y is selected from among the dependent variables. But it

will turn out, finally, that the definition is actually independent of such

order.

Let a be of order r in y. Let F = da/dyr, where yr is the rth derivative

of y, and let H be the coefficient of the highest power of yT in a. A solution

of a which is not a solution of F ox oí H will be called a regular solution

of a.

Let A and B be forms in «i, ■ ■ ■ , uq; y, which are such that every

regular solution of a is a solution of AB.

We shall prove that either every regular solution of a is a solution of A or

every regular solution is a solution of B.

From Part I (§6) we know that there exists a form Ai, of lower rank
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than a, such that every regular solution of a which satisfies either of the

equations A =0 or vli = 0, satisfies the other. For B, similarly, we find a

form Bi, of lower rank than a.

If, then, we can show that either Axor Bx is zero identically, our result

will be proved.

Suppose that neither Ax nor Bx is identically zero. Consider any set of

numerical values of x and of ux, ■ ■ ■ , uq; y and their derivatives appearing

in a, Ax, Bx, for which a = 0. Let the value of x be a. Suppose that neither

F nor 27 vanishes for these numerical values.*

We construct functions ux, ■ ■ ■ , uq which have for themselves and for

their derivatives, at a, the values indicated above. The existence theorem

for differential equations assures us that a has a regular solution in which

the «'s, y and their derivatives have the indicated values at a.f This means

that the set of numerical values makes either Ax or Bx vanish. All in all,

AxBxFH vanishes for all numerical values for which a vanishes. This means,

since a is an irreducible form, that AxBxFH is the product of a by a form.

This cannot be, since none of Ax, Blt F, H can be divisible by a. This com-

pletes the proof.

16. It follows immediately, from §15, that the system of all forms in

ux, ■ ■ ■ ,uq; y, which vanish for all regular solutions of a, is an irreducible

system. The irreducible manifold which is the content of this irreducible

system will be called the general solution of <* = 0 (or of a).

We show that every solution of a, for which F does not vanish, belongs to

the general solution.

Let A be any form which vanishes for all regular solutions. As above,

let a be of order r in y. Let Ax be a form, not of order greater than r in y,

which differs from some FmA by a linear combination of the derivatives of a.

Some H'Ax equals the product of a by a form, plus a form ^42 of lower rank

than a. As ^42 vanishes for all regular solutions of a, A2, by an argument

used in §15, must be identically zero. Thus 27'.41 is divisible by a. This

means, since a is an irreducible form, and 27 is not divisible by a, that A t

is divisible by a. Thus Ax holds a. Hence A vanishes for all solutions of a

for which F does not vanish.  This proves our statement.

We shall prove that the general solution of a is not contained in any other

irreducible manifold of solutions of a.

Let M be any irreducible manifold of solutions of a which contains the

general solution. Those solutions in M which are not in the general solution

* We are assuming that the coefficients in a, Ax, Bit F, H are all analytic at a.

f That is, when the functions u are constructed, we regard a = 0 as an equation in y.
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make F vanish. Let B be any form which vanishes for every solution in

the general solution. Then BF vanishes for every solution in M. Since F

does not vanish for every solution in M, B must. Thus M is identical with

the general solution.

We shall prove that the definition of the general solution is independent of

the order in which the indeterminates yi,   ■ • • , yn are taken.

Let Mi, • • • , M, be í>1 irreducible manifolds, none containing any

other, which make up the content of a* Suppose that, when y = yn, the gen-

eral solution is Mi, whereas, when y = yi, the general solution is Mt.

Let F' have, relative to yi, the definition which F has relative to y„.

Then every solution in Mi must make F' vanish. For, let B be a form

which vanishes for every solution in Ms, but not for every solution in Mi.

Then, since BF' vanishes for every solution of a, F' must vanish for every

solution of Mi.

This means that every set of numerical values of ac, the y's and their

derivatives, which makes a vanish, and which does not make F vanish,

makes F' vanish; that is, for numerical values for which a vanishes, FF'

vanishes. For, according to the existence theorem for differential equations,

a set of numerical values with a = 0 and F^O furnishes a solution in Mi.

Then, since a is an irreducible form, FF' must be divisible, as a poly-

nomial in the y's and their derivatives, with coefficients in fj, by a. This is

impossible, for neither F nor F' can be divisible by a. Our statement is

proved.

Analytic constitution of the general solution!

17. A solution «i, • • ■ , w9; y of a, for which either F or H vanishes, will

be said to be semi-regular if there exists a set of points, dense in the area,

contained in 21, in which the functions of the solution are analytic, such

that, given any point a of the set, any positive integer m, and any «>0,

there exists a regular solution «i,  • • • , uq; y (analytic at a) such that

(6)   | Uij(a) - üii(a) | < e, | y ¡(a) - y ¡(a) \ < e (i = 1, • ■ •, q;j = 0, • • •, m).

Here, «¿,- is the jth derivative of «¿, and y¡ the^'th derivative of y (m<o = «¿,

yo=y)-

Any solution for which H = 0, but for which F does not vanish, is semi-

regular. This is an immediate consequence of the implicit function theorem

(applied to a with respect to yr) and of the theorem on the differentiability

* When j = 1 we have our result immediately.

t The results of §§ 17, 18, and the analogous results of § 24, have contact with the remainder of

the paper only in §28.
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of the solution of a differential equation with respect to the constants of

integration.

Let A be any form in «i, ■ ■ ■ , uq;y with coefficients meromorphic in 21.

The coefficients in A need not belong to fj. Suppose that A vanishes for every

regular solution of a. We shall prove that A vanishes for every semi-regular

solution of a.

Consider any semi-regular solution üi, • • • , üq ; y, and the points a

described above. Since the points are dense in an area, we can choose a

point a at which the coefficients in A are analytic. Let this be done. When

Wi, " • v, üq;y are substituted into A, A becomes a function <j>(x) of x,

which is zero at a. This is because A vanishes for all regular solutions, and

because of the m, e item in the definition of semi-regular solution. Again,

<t>'(x) must be zero at a, because the form obtained differentiating A with

respect to x vanishes for every regular solution. Similarly, every derivative

of (p(x) is zero at a. This proves that A vanishes for the semi-regular solution.

If we restrict ourselves to forms A with coefficients in fJ, we see that

the semi-regular solutions of a belong to the general solution.

18. We are going to prove that the general solution of a is composed of

the regular solutions and of the semi-regular solutions*

We denote by a¡ the/th derivative of a. If a is of order r in y, then a,-

is of order r+j in y. It is linear in yr+,> the coefficient of yr+¡ being F.

Also the order of a,- in each u effectively present in a exceeds the corre-

sponding order of a by j.

We shall examine the system of equations

(7) a = 0, «i = 0, • • • , a, = 0,

where 5 is any positive integer, considering the equations not as differential

equations, but merely as algebraic equations among a set of indeterminates

ua, Ji- That is, any set of functions «,„ y,-, analytic in some area in St,

and satisfying (7), will be considered as a solution of (7). We do not ask,

for instance, that y,- be the derivative of y,_i.

We know from the theory of algebraic manifolds that the solutions of

(7) form a finite number of irreducible manifolds. An irreducible manifold,

here, is the totality of solutions of a set of algebraic equations in the ua's

and y,'s appearing in (7) (coefficients in ff) the set of equations being such

that if A B vanishes for all of its solutions, where A and B are polynomials

* W. Weltmann, Archiv der Mathematik und Physik, vol. 58(1876), p. 337, defined a solution

of an equation of the first order as singular if it cannot be approximated by solutions distinct from

itself.
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with coefficients in SF, then either A vanishes for all solutions or B does.*

We may and shall assume that none of the irreducible manifolds contains

any other.

One of these irreducible manifolds must contain the general solution of a.

That is, there is one irreducible manifold such that, «i0, ■ • • , uq0; y o

being in the general solution of a, the irreducible manifold contains a solu-

tion Un, yi, with Un the yth derivative of uia and y,- the jth derivative

of y0.

Suppose that this is not so. Let Mi, • • ■ , Mt be the irreducible manifolds

of which the solutions of (7) are composed, and let Ai, i = 1, ■ ■ ■ , t, be a

form which vanishes for every solution in Mi, but not for every regular

solution of a. As the general solution of a is an irreducible manifold, there

are regular solutions which do not make A\- • • At vanish. This contra-

dicts the fact that every solution of a gives a solution of (7).

We shall identify an irreducible manifold M of the solutions of (7)

which contains the general solution of a.

We call any solution of (7) for which neither F nor H vanishes, a regular

solution of (7).

The equations (7) define yr, • • ■ , yr+, in terms of y, • • • , yr_i and the

«¿,'s. That is, if we let y, • • • , yr-1 and the «¿,'s be any functions, analytic

in an area in 2Í, which do not render zero the resultant of a and F with

respect to yr,f (7) determines yr, • ■ • , yr+s, in succession, furnishing a regular

solution.

It follows from the general theory of algebraic manifolds that there is

only one irreducible manifold of solutions of (7) whose solutions do not all

make F vanish. This irreducible manifold, which contains the regular

solutions of (7), is the manifold M we have been seeking. Furthermore,

in addition to the regular solutions of (7), M contains those solutions of (7)

which have the property that, in every area in which they are analytic,

there is an area in which they can be approximated arbitrarily closely by a

regular solution.%

Suppose then that «i, • • • , üq; y is a solution in the general solution of

* It should be emphasized that A and B involve only the indeterminates in (7), and not their

derivatives.

f This resultant vanishes if either Foi H vanishes.

| It is known that, given a system of algebraic functions %,•••, z<, of several variables, the

values of zi, • • • , z( where they are analytic, together with all sets of t numbers which can be approx-

imated arbitrarily closely by such values, form an irreducible manifold in the field of all complex

numbers. A similar result holds when the coefficients in the equations which determine the z's are

not constants, but analytic functions, and when the values of the z's are analytic functions.
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a. Consider any area P in which the solution is analytic. Let an m and an

e be assigned, as in the definition of semi-regular solution. Take s>m,

and consider the corresponding system (7). Let a regular solution «,,■, y¡

of (7) be found, analytic in some area Pi in P, such that, in Px,

(8) | un - un I < e, I y¡ - y¡ I < e

for all subscripts appearing in (7).* We may and shall suppose that F and 27

are distinct from zero throughout Px, for the solution üi¡, y ¡. Let a be any

point of Px- Let functions uu ■ ■ ■ , uq be taken, analytic at a, so that

Uij(a)=.üij(a) for all subscript pairs appearing in (8). We notice that, for

each Ui,j assumes values at least as great as m.\ Then, by (7), the differen-

tial equation a = 0 has a regular solution with ux, ■ ■ ■ , uq as just taken,

and with y ¡(a) =yj(a), j = 0, • • ■ , r+s. Thus, for the given m and e, any

point in Pi will serve as the point a in the definition of semi-regular solution.

Now, using 2m and e/2, we can find an area P2, interior to Pi, any point

a of which can be used as above. Similarly, using e/4 and im, we find an

area P3 in P2, etc. There is a point a which is interior to every P¡. Given any

€>0, and any m, the differential equation a = 0 has a regular solution,

analytic at a, for which (6) holds.

Thus, every solution of the general solution is either regular or semi-

regular.

The basic equations

19. We consider a system 2 of forms in yi, • • • , yn, not all zero. We

assume that 2 has solutions and that 2 contains every form which holds 2.

For the rest, 2 may be reducible or irreducible.

There may be some y, say y¿, such that no form of 2 involves only y{;

that is, every form in which y i appears effectively also involves effectively

some y¡ with/^i. If there exist such indeterminates y¿, let us pick one of

them, arbitrarily, and call it ux.

There may be a y, distinct from ux, such that no form involves only «i

and the new y. Let any such second y, if one or more exist, be denoted by u2.

Continuing in this way, we find a set, Ux, ■ ■ ■ , uq(q<n), such that no

form of 2 involves any of the u's alone. Let the remaining indeterminates

be represented now by y1; • ■ • , yv, p+q = n. Then, given any y, among

yi, ' ' " > yp, there is a form in 2 which involves only yt and the u's.

It will be seen, in §26, that, when 2 is irreducible, q does not depend on

the particular way in which the u's may be selected.

* If a Uik appears effectively in a, every ua withy ¿k is regarded as present in a. Similarly for y.

f No difficulty arises here if a m is not present effectively in a.
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In what follows, we shall speak, generally, as if «'s exist. It will be easy

to see, in every case, what slight modifications of language are necessary

when there are no u's.

Of all forms, not zero, in 2, which involve no indeterminates other than

yi and the «'s, let ax have a minimum rank in yx.

There exist forms (not zero), involving only yi, y2 and the «'s, which are

of lower rank in yi than «i. For instance, any form involving only y2 and

the w's is of this type.  Of all such forms, let a2 have a minimum rank in y2.

Continuing in this way, we find a sequence of forms,

(9) «i, a2, ■ ■ ■ , ap,

where

(I) ai involves only the «'s and yi, • • • , y<;

(II) «i is of a minimum rank in yi;

(III) for i>\, ai is of lower rank in y,- than «¿,/ = l, • • • , i — 1;

(IV) for i> 1, ai is not of greater rank in y i than any other form with the

properties (I) and (III).

We shall call (9) a basic system.

If a i is of order r¿ in y,-, weletFi = r3ai/r}yi,r(. We designate the coefficient

of the highest power of y¿,ri in a i by Hi.

No Fi can belong to 2, for F< is of lower rank than a¿ in y¿, of lower rank

than «i_i in y^i, etc. Similarly, no Hi can belong to 2.

A solution of the system (9) for which no F; or Hi vanishes will be called

a regular solution of (9).

We are going to show that every regular solution of (9) is a solution of 2.

Consider any form ß of 2 which involves only yi and the «'s. There exist

an m and an s such that, when a suitable linear combination of «i and its

derivatives is subtracted from FinHi'ß, the remainder, call it 7, is of lower

rank than ax in yi. Then 7, which belongs to 2, must be identically zero.

Hence every solution of «i for which F1H1 does not vanish is a solution of ß.

Consider any form ß, of 2, which involves only yi, y2 and the «'s. We

find, as above, a 7, belonging to 2, involving no y i with i>2 and of lower

rank than a2 in y2, such that every solution of a2 = 0, 7 = 0, for which F2H2

does not vanish is a solution of ß. Furthermore, for m and 5 appropriate,

FrHi'y is a linear combination of ai and its derivatives, plus a form 5 of

lower rank than «2 in y2 and of lower rank than «i in yi. (See §7.) Then 0 = 0.

Thus every «i, • • • , uq; yi for which ai = 0, and for which F1H1 does not

vanish, makes 7 = 0 for any y2. Thus a solution of «i = 0, a2 = 0, for which

none of Fi, F2, Hi, H2 vanishes is a solution of ß.
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Continuing in this way, we see that every regular solution of (9) is a

solution of 2.

20. Suppose now that 2 is irreducible. As no F{ or 27 < holds 2, the product

of all P's and 27's does not hold 2.

It follows that (9) has regular solutions.

Furthermore, if a form vanishes for all regular solutions of (9), the form

is in 2. For, if G is such a form,

GFi ■ • ■ FpHi ■ • ■ Hp

holds 2, so that G holds 2.

The resolvent

21. From now on, we shall understand, unless the contrary is stated,

that fj contains at least one function which is not a constant.

Let 2 be reducible or irreducible, but not without solutions. We under-

stand, as above, that 2 contains every form which holds 2.

We are going to show the existence, in fJ, of functions

px,---,pp

and the existence of a form G, in the u's alone, such that, given two solutions

of 2 with the same u's,

«i, ■ • •, ««; yx, • ■ •, yp,

«i, • • •, «i; yx", • • •, yP",

for the u's of which G does not vanish, and in which, for some i, y[ is not

identical with y*, then

ux(yx' - yi') + • • • + pP(yi - yi')

is not zero*

We consider the system of forms obtained from 2 by replacing each y<

by a new indeterminate z¿. We take the system £2 composed of the forms of

2, the forms in the z's just described, and also the form

Xi(yi - zx) + ■ ■ ■ + \p(yp - zp),

in which the X's are indeterminates. That is, £2 involves 3p+q indeterminates,

namely, the u's, y's, z's, X's.

Let A be any irreducible system which £2 holds. We understand that A

contains every form which holds A.

Suppose that some one of the forms yt—Zi does not hold A.   We shall

* Naturally, we assume that the two solutions have a common domain of analyticity.
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prove that A contains a non-zero form which involves no indeterminates

other than the «'s and the X's.

Since A has all forms of 2, A has, for i = 1, • •■■ , p, a form ßi involving

only yi and the «'s. Let ßi be taken so as to be of a minimum rank in y<.

Let ßi be of order r,- in y,- and put F, = ô/?i/dy<,,.,.. Similarly, let y<,

i = 1, ■ • • , p, be a form of A, in z, and the «'s alone, which is of a minimum

rank in z <. Each y i being of order s i in z¡, let Ki = dyi/dZi,ti.

Then no F< or K{ is in A.

To fix our ideas, let us suppose that yi—Zi is not in A. Consider any

solution of A for which

(yi - zx)Fi ■ ■ ■ FpKi ■■■ Kp

(which is not in A) does not vanish.

For such a solution, we have

,.„, .      X2(y2 - z2) i-+ \P(yP - Zp)

(1U) Ai— - •
yi — zi

From (10) we find, for the jth derivative of Xi, an expression

(11) Xi,- = Rj(\2, • • •, X„; yi, • • •, yp; zu • • •, zp),

in which R,- is rational in X2, • • • , X„, the y's, z's and the derivatives of the

foregoing functions, with coefficients in S. The denominator in each Rj is

a power of yi—Zi.

If an R, involves a derivative of y < of order higher than r<, we can get

rid of that derivative by using its expression in the derivatives of y,- of order

r< or less found from (3< = 0. Similarly, we transform each Rj so as to be of

order not exceeding s i in z(.

The new expression of each R„ which will involve the «'s, will have a

denominator which is a product of powers of yi —Zi, Fi, Ki} i = l, ■ ■ ■ , p.

Then, in (10) and (11), only a finite number of functions y,*, Zu, will

appear. If we use a sufficiently large number of equations (11), we can, using

rigorous principles of elimination, obtain from them an algebraic relation

among the functions X,-*, Uik, with coefficients in 'S, which holds for any

solution of A which does not cause yi—Zi, any Ft, or any Kit to vanish. Let

D = 0

be such a relation, where D is a form in the «'s and X's, with coefficients in

S.   Then

DFi-- FpKi ■ ■ ■ Kp(yi - zi)
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holds A, so that D is in A. We have thus proved that A has a form involving

only the u's and X's.

Let Ai, • • • , Ar be a set of irreducible systems such that £2 holds each of

them and that every solution of £2 is a solution of one of them. We suppose

each A,- to contain every form which holds that A¡. Let Ai, • • • , A, each

not contain some of the forms yi — Zi and let A,+i, ■ • • , A, each contain all

of the forms yi — Zi. Let D{ be a form in A„ i = l, ■ ■ ■ , s, involving only.the

m's and X's.

We wish to show the existence in if of p functions, jui, • • -, pp, such that,

when each X, is replaced by pi in E = Dx ■ ■ ■ D„ then E does not vanish

identically in the «'s.

Let E be written as a polynomial in the m's and their derivatives, with

forms in the X's as coefficients. Let K be one of the coefficients in E. If we

can fix each X< in CF so that K does not vanish, our result will be established.

Consider any non-constant function f in fj¡ Let P be a circle in SI in

which f is analytic and assumes no value more than once. Any function

analytic in P can be approximated arbitrarily closely, in any area interior

to P, by a polynomial in f, hence by a polynomial in £" with rational

coefficients. All polynomials in f with rational coefficients are in î.

Thus, if K vanishes for all X's in if, K vanishes if the X's are any functions

analytic in P.  This is certainly impossible.  Thus, the required /x's exist.

The solutions of £2, for X, = ju,-, / = 1, • • • , p, will be solutions of the

systems A j for X, = /i;. Now the solutions with X, = ju,- of each A¿, i = í, ■ ■ • ,s,

have m's which cause to vanish the form G, obtained from E by putting

\j=Pj. The solutions of A,+i, ■ • ■ , Ar, even with \¡-pj, have yi = Zi,

¿ = 1, ■■■ ,p.
We have thus the result stated at the head of this §21.

22. From this point on, to the end of our paper, we assume 2 irreducible.

Let A, B, G be forms in the m's and y's, not in 2, G involving only the

m's, which are such that for any two distinct solutions of 2, with the same

m's, for which neither G nor B vanishes, A/B gives two distinct functions of x.

We have seen that, when if does not consist entirely of constants, forms

A, B, G exist, that, in fact, one may take B = 1 and take A free of the m's.

On the other hand, when if contains only constants, there may be no A, B, G.

Consider, for instance, the system

dyi dy2
— = 0,    — = 0.
dx dx

Any rational combination of yi and y2 (and of their derivatives) with con-



1930] MANIFOLDS OF FUNCTIONS 589

stant coefficients, will have a single value for an infinite number of choices

of yi and y2.

We introduce a new indeterminate, w, and form a system A by adjoining

Bw—A to 2. Let ß be the system of all forms in w, the w's and y's, which

vanish for those solutions of A for which ¿MO.* We shall prove that ß is

irreducible.

Let P and Q be forms such that PQ holds ß. For s appropriate, B'P

minus a linear combination of Bw—A and its derivatives, is a form R free

of w. We obtain similarly, from a BlQ, a form 5 free of w. Then RS vanishes

for every solution of 2 with ¿MO, since every such solution furnishes a solu-

tion of ß. Hence BRS holds 2, so that either F or 5 is in 2. If R is in 2,

B'P vanishes for all solutions of A. Hence P vanishes for all solutions of A

with ¿MO, so that P is in ß. Thus ß is irreducible.

We notice that those forms of ß which are free of w are precisely the forms

of 2.

We shall prove that ß has a form in w and the w's alone.

Let ßi,i = \, ■ ■ ■ , p, be a form of 2 involving only y¿ and the w's, of a

minimum rank in y». Let F¿ have its customary significance.

For any solution of ß with ¿MO, we write

A
w = — •

B

Representing the jth derivative of w by w„ we have

(12) Wj = Rj(ui, ■ ■ ■ ,uq; yu ■ ■ ■ , yp),

where R¡ is rational in the «'s, y's and their derivatives, the order of the

highest derivative of y¿ in R¡ not exceeding the maximum of the orders of

ßi, A and B in y.-.f The denominator of each R, will be a product of powers

of B,Fi, ■ ■ ■ , Fp. Using a sufficient number of relations (12), we eliminate^

the y's and their derivatives, obtaining a relation in w and the «'s,

K = 0,

which holds when ¿?Fi • • • Fp does not vanish.   As ¿JFi • ■ • Fp is not in ß,

and as ß is irreducible, K must be in ß.  This proves our statement.

23. We take, for ß, a basic system of forms, analogous to (9),

(13) a, «i, • ■ • , ap

* Of course, forms in U may also vanish when 5=0.

f We could depress the order in y¿ to the order of ft, but this would complicate what follows.

| It is clear that this elimination is of a perfectly rigorous nature.
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in which a involves only w and the m's, and in which ax, ■ ■ ■ , ap introduce

in succession yi, ■ • • , yP.

If a is not irreducible as a polypomial in the m's, w and their derivatives,

with coefficients in if, we can replace it by one of its irreducible factors. We

assume, therefore, that a is an irreducible form.

We are going to prove that ax, ■ ■ ■ , ap are of order zero in yi, • • • , yp,

and, indeed, that a i is of the first degree in y t. Thus, since a,- with i>\

must be of lower degree in y,- than a¡ with /<*, eacA equation a¡ = 0 will

express y i rationally in terms of w, the u's and their derivatives.

The determination of the content of 2 will, in this way, be made to

depend on the determination of the general solution of a = 0, which equation

will be called a resolvent of 2.

It is hardly necessary to call attention to the analogy which the intro-

duction of w creates, between the content of 2, and a system of p algebraic

functions of q variables.

Suppose that «i is of order higher than zero in yx. Consider any regular

solution of (13) for which BG^O. By the final remark of §20, such regular

solutions exist. Without changing w or the m's, in the solution, we can alter

the initial conditions for yi slightly, obtaining a second regular solution of

(13) with BG^O. That is, we can solve «i = 0 for yi with the modified initial

conditions, substitute the resulting yi into a2, solve a2 = 0 with the same initial

conditions for y2 which obtained in the first regular solution, and continue,

determining each y,-. Thus, we would have two distinct solutions of £2, with

the same m's, with BG^O, and with the same w.

Hence, «i is of zero order in yi. Similarly, every ai is of zero order in y<.

Furthermore, as a¿ is of lower rank in y,- than «,, for/<i, ai is of zero order in

y,iorj^i.

We shall now prove that every a< is linear in y ¿.

We start with ap. Suppose that ap is not linear in yp.

Let Fi = dai/dyi and let 27¡ be the coefficient of the highest power of

y<ina¿.

By the familiar process of reduction, we can obtain from B a form 2?i,

involving w, not in £2, of lower rank than each a < in y,- and of lower rank than

a in w, such that any regular solution of (13), which causes either of the

forms B or Bi to vanish, causes the other to vanish.

If we can show that the system

(14) a, ax, ■ ■ ■ , ap_i
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has a regular solution* w, yl} ■ ■ ■ , y„_i for which ap has two distinct solutions

in yp with FpHpBiG¿¿0, we shall have forced a contradiction.

If we cannot get two distinct solutions of ap of this type, it must be that

for every regular solution of (14) with ¿¿„^0, ap has a solution for which

FpBiG vanishes.f

Dividingt FpBiG by ap, we obtain a form ß, not in ß, of zero order in the

y's, and of lower degree than ap in yp, such that every common solution of

FpBiG and ap is a solution of ß.

Of all forms not in ß, of zero order in the y's, which are of lower degree

than ap in yP, and which, for every regular solution of (14) with Hp^0,

have a solution for yp in common with ap, let 7 have a minimum degree in

yp. Then 7 must be at least of the first degree in yp, else Hpy would vanish

for all regular solutions of (13) and would be in ß.

Let K be the coefficient of the highest power of yp in 7. Then K is not

in ß. For m appropriate,

AT »a, = dy + V,

with 8 of lower degree than ap in yp, and rj of lower degree than 7 in yp.

Every common solution of ap and 7 makes 77 vanish. Then 77 must be in ß.

Thus 8y is in ß, so that 5, which is not zero, is in ß. Since Kmap is of

higher degree in y„ than n, the coefficient of the highest power of yp in

Kmap — 77 = 87 is not in ß. Then the coefficient of the highest power of yp

in 5 is not in ß. Thus, reducing 5 with respect to aP-i, • • • , a, by the familiar

method, we would obtain from 5 a form in ß, not zero, of lower degree than

every a¿ in y¿ and of lower rank than a in w.

This contradiction proves that ap is linear in yp.

We now consider a„_i, assuming that it is not linear in yp_i. Since ¿?i

is of lower degree than ap in yp, Bi is free of yp. It must be that, for every

regular solution of

(15) a, ai, ■ ■ ■ , ap_2

with ¿7p_i=?0, ap-i has a solution which causes Fp-iHpBiG to vanish. The

proof continues as for ap.

In dealing with ap-2, we consider that both Bi and Hp are free of y,,_i.

The proof continues as above.

Thus every a¿ is linear in yf, and eocA y¿ has an expression rational in

in w, «i,--- , uq and their derivatives, with coefficients in fj.

* A solution with FFt • • • ¿V-ifffli ■ • ■ H^-i^O.
t Because (13) has regular solutions, (14) has regular solutions with Hpt¿0.

J After a multiplication by a power of Hp.
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24. We propose to determine which solutions of (13) other than the regu-

lar solutions are solutions of £2.

We notice first that if

«i, " " " , uq; w; yu • • • , yp

is a solution of £2, then

Ux, • ■ ■ , uq; w

belongs to the general solution of a.

For, if a form K in the m's and w vanishes for every solution in the general

solution of a, then K vanishes for every regular solution of (13) and so

is in £2.

The question then arises as to which solutions of (13), for which 27i • • • 77p

vanishes, are solutions of £2.

This question is settled by the method of §§17, 18. One sees that for a

solution

(16) «i, • • ■ , uq; w; yi, ■ ■ ■ , yp

of (13) to be a solution of £2, it is necessary and sufficient that in every area in

which the functions of (16) are analytic, a point a exist such that, for every

positive integer m, and for every e>0, there is a regular solution of (13) in

which the values of the functions and their first m derivatives at a differ from the

corresponding values for (16) by quantities less than e in modulus.

It follows, as in §18, that if a form with coefficients meromorphic in SI,

the coefficients not belonging necessarily to if, vanishes for all regular solutions

of (13), the form vanishes for all solutions of £2.

25. We shall derive a result which is, to some extent, a converse of the

result of §23.

Suppose that we have a differential equation

(17) a(uu • • • , uq; w) = 0,

a being an irreducible form, with coefficients in if.

Let there be given p rational combinations oí Ux, ■ • ■ , uq; w and their

derivatives, with coefficients in if,

Paw; Ux, ■ ■ • , ua)
(18) y«-     , -'-^ (i=l,..-,p),

Qi(w; ux, ■ ■ • , u„)

no Qi vanishing for every solution in the general solution of a.

Consider any regular solution of (17) and (18), that is, a set

ux, ■ ■ ■ , uq; w; yx, ■ ■ ■ , yP
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consistent with (17), (18), in which «i, • • • ,uq;w is a regular solution of (17),

and for which, naturally, no Q¿ vanishes. It can be shown, as in the preceding

sections, that there is, for every i, a form in y¡ and the u's which vanishes

for all regular solutions.

Consider the system 2 of all forms in the y's and «'s which vanish for

all regular solutions of (17), (18).

We shall prove that 2 is irreducible.

Let RS hold 2. If we substitute (18) into R, R becomes a rational com-

bination of «i, • ■ • , uq ; w and their derivatives

T(w; «i, • • • , uq)

U(w; «i, ••-,««)

where U is a product of powers of the Qi's. Similarly, 5 becomes a rational

combination V/W of the «'s, w etc.

For the w and «'s of any regular solution of (17), (18), TV vanishes.

This means that, for every regular solution of a,

TVQi • • • <?„

vanishes. Then either T vanishes for all regular solutions of a, or V does.

Hence either F vanishes for all regular solutions of (17), (18), or S does.

Thus 2 is irreducible. Its content is an irreducible manifold which is

contained in every manifold which contains the regular solutions of (17),

(18) with w suppressed.

Consider the system ß of all forms in the u's, y's and w, which vanish

for the regular solutions of (17), (18). The above discussion shows also that

ß is irreducible.

The results of this section hold even if S consists purely of constants.

Invariance of the integer q

26. We propose to show that the number q of arbitrary indeterminates

depends only upon the system 2 and not on the manner in which the u's are

selected.

The assumption that 2 is irreducible is essential. But it must be realized,

in this connection, that §19 develops the idea of arbitrary indeterminate in

a rather special way.*

* Consider the system of equations «o,i = «2yí = «3y2 = 0. These equations imply no relations

either among the «'s or among the y's. Still each u appears in a form with y's alone, and each y

appears with «'s alone.
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It will suffice to prove that, given any q + l indeterminates among the

m's and y's,

Zi, • • • , Z4+i,

there exists a form of 2 which involves only the z's.

Let us suppose that if does not consist purely of constants, and let us

consider the regular solutions of (13). For «i, • • • , ut; w in such a solution,

(13) gives a rational expression for each z¡. If a z< happens to be a u, say m3-,

the expression for z< is simply «,-. We write

(19) Zi = Ri(w; Mi, • • • , uq) (i = 1, • • • , q + 1) .

On differentiating (19) repeatedly, we get expressions for the derivatives

of the z's which are rational in terms of the m's, w and their derivatives.

Making use of the relation a = 0, we transform these expressions so as not

to contain derivatives of w of order higher than r, the order of the resolvent

in w.

None of the expressions thus obtained will have a denominator which

vanishes for m's and w in a regular solution of (13).

Now, if we differentiate the q + l relations (19) often enough, the z's

and their derivatives will become more numerous than the m's, their de-

rivatives andw, • ■ ■ ,wT.

It follows that there exists a polynomial in the z's and their derivatives,

with coefficients in if, which vanishes for all regular solutions of (13). The

form thus obtained belongs to 2.

Suppose now that if contains only constants. Let fJi be the field obtained

from if by the adjunction of x. Let 2i, • • ■ , 2, be irreducible systems in

fii such that 2 holds each of them and that every solution of 2 is a solution

of one of them.*

Suppose that 2 has, in if, two sets of arbitrary indeterminates, «i, • • • , »,

and Zi, • • ■ , Z( with tj^q. We are .going to arrive at the contradiction that

both the m's and the z's are arbitrary for some 2< in fJi.

Suppose that this fs not so, and that each 2¿ has either a form in the m's

alone or a form in the z's alone. Then the product of s such forms, one from

each 2¿, will vanish for every solution of 2.

Consider then any form K, taken from some 2,-, which is a polynomial

in x, the m's and their derivatives, with coefficients in ÍF. Let K be irreducible

as a polynomial in x etc.f Let K' be the derivative of K. Then the resultant

of K and K' with respect to x, which is not zero, vanishes for any m's which

* Whether 2 can be reducible in SFi is a question.

f Irreducibility may certainly be assumed for the s forms considered above.
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make K vanish. The resultant is a form in the «'s, with coefficients in fJ.

Thus, there is a product of s forms, some in the «'s alone, some in the

z's alone, with coefficients in S, which holds 2. This cannot be, as 2 is

irreducible in fJ. Thus, there is a 2,- for which both the «'s and the z's are

arbitrary. This completes the proof.

Invariance of order of resolvent

27. We propose to show that, «i, • • • , uq being selected, the order with

respect to w of the resolvent is independent of the choice of w.

Having taken a definite w, and having formed the resolvent in w, a = 0,

let us form a second rational combination of the «'s, y's and their derivatives,

C
(20) » = —,

D

with v meeting all specifications placed above on w. Let the resolvent in

v be (3 = 0.

Since D is not in 2, D is not in the system ß based on w. Hence, there are

regular solutions of (13) for which ¿MO. Taking any such regular solution,

let the y's in it, expressed in terms of w and the «'s, be substituted into the

expression (20) for v. We find, for v, an expression in the «'s, w and their

derivatives,

(21) î) = R(w; «i, • • • , uq).

Using the equation a = 0, if necessary, we may suppose that R involves no

derivatives of w of order higher than r, the order of a in w.

We differentiate (21) r times, and find that, Vi being the ith derivative of v,

(22) Vi = Ri(w; ui, ■ ■ ■ , uq) (i = 1, • ■ • , r),

each Ri being rational, and involving no derivative of w beyond the rth.

From (21), (22) and a = 0, we can eliminate w, ■ ■ ■ ,wr, and obtain an alge-

braic relation

(23) K(ui, ■ ■ ■ , uq; v) = 0,

at most of order r in v.

The relation (23) holds for any v given by (20), if the u's and y's, for which

¿M0, belong to a regular solution of (13). Now, if we replace v in (23) by

its expression (20), (23) becomes a relation in the «'s and y's,

Dm
= 0,
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with m a positive integer. Then L vanishes for all «'s and y's in a regular

solution of (13), for which ¿MO. Thus DL is in ß, and as D is not in ß,

L is in ß. Hence L is in 2, and (23) holds for any v given by (20), where the

w's and y's are any solution of 2 with ¿MO.

If, then, ß' is the system associated with v as ß is with w, K, in (23),

is in ß'. This proves that the order of ß in v does not exceed the order of a

in w. From considerations of symmetry, it follows that the two orders are

equal. This proves our statement.

The degree of the resolvent in the highest derivative of w does depend

on the manner of choosing w. Consider, for instance, the system, irreducible

in the field of all rational functions,

d
—yi = 1, y2 = yi2 •

dx

As the solution of the system is yi = x+a, y2 = (ac+a)2, we may evidently

takew=yi. The resolvent becomes dw/dx = 1. On the other hand, if we take

w=yi-\-y2, the resolvent becomes of the second degree in dw/dx.

The order of the resolvent depends on the choice of the u's. For instance

is an irreducible system in the field of rational functions. If we let «i = y2,

we get a resolvent of the first order. If we let «i = yi, we get a resolvent of

zero order.

Adjunction of new functions to S

28. Assuming S not to consist purely of constants, we shall study the

circumstances under which 2 can become reducible through the adjunction

of new functions to 3. The adjoined functions are assumed to be mero-

morphic in 21.

We form a resolvent a = 0 for S, using a w whose denominator, B, is unity.

Suppose that the irreducible factors of a, in the enlarged field, Si, are

ft, •••, ft-
Then, by §25, for each y from 1 to s, the system of equations

(24) ßi = 0, ai = 0, • • • , ap = 0,

where the a's are those of (13), defines a system 2,- of forms in the «'s and

y's, with coefficients in ïi, S,- being irreducible in Si.

We shall prove that 2 holds every 2„ that no 2h holds any 2fc with k^h,



1930] MANIFOLDS OF FUNCTIONS 597

and that every solution of 2 is a solution of some 2,. Thus, the systems 2,-

will furnish the resolution of 2 into irreducible systems, in ifx-

Every regular solution of a is a regular solution of some ßj. First, in

no ßj can the coefficient of the highest power of w* vanish for a regular

solution of a. Again, since

da dßi
— -ft- --ft— +•••,
OWr OWr

dßj/dwr cannot vanish for a regular solution of a if ßj does. Thus every

regular solution of (13) is a regular solution of some system (24). Hence a

solution of 2 obtained by suppressing w in a regular solution of (13) is a

solution of some 2,. Since B = 1, every solution of 2 is obtained from some

solution of £2.

Suppose now that some solution of 2 is not a solution of any 2,-. Let C¡

be a form of 2,-, / = 1, • • • , s, which does not vanish for the solution. Then

Ci • • • C, does not vanish for the solution. This contradicts the final re-

mark of §24. Hence every solution of 2 is a solution of some 2,-.

Let £2y(y = 1, ■ • • , s) be the system of all forms in w, the m's and y's, with

coefficients in ifx, which vanish for all regular solutions of (24). As was seen

in §25, £2,- is irreducible.

Let 27 be the coefficient of the highest power of wr in a. If 27 were in some

£2,-, it would vanish for all regular solutions of ßj. This cannot be, for 27 is

of order less than r in w.

If F=da/dwr were of order r and were in some £2,, it would be divisible

by ßj. Then a would be reducible in if.

Consider any form P of £2. Any regular solution of (24), for any /,

for which FH does not vanish, causes P to vanish. Hence P27P is in £2,-, so

thatP is in £2,-. Thus every form of 2 is in 2,-, so that 2 holds every 2,-.

The foregoing shows also that £2 holds every £2,-. Thus every £2,- contains

the form w—A used in building £2. It follows easily that £2, holds and is

held by the system A,- obtained by adjoining w—A to 2,-.

This means that if 2A held 2*, where k^h, then £2t would hold £2fc.

Then ßh would be in £2*, and would be divisible by ßk. This would make a

reducible in if. Thus no 2* can hold a 2fc with k^h.

Thus, for 2 to be reducible in ifx, it is necessary and sufficient that the re-

solvent of 2 relative to if be algebraically reducible in ffi.f

29. The question might be asked as to whether 2, irreducible in if for

* a of order r in w.

f We recall the assumption that ¿3 = 1.
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the area 21, can be reducible in S for some area 33 contained in 31.  We shall

show that the answer is negative.

We begin by showing that if a form K, with coefficients in S, vanishes for

all solutions of 2 analytic in a part of SB, then K vanishes for all solutions of

2. Suppose then that K is not in 2. By the familiar process of reduction,

we obtain from K a form L, in w and the w's, of lower rank in w than a,

which vanishes for every regular solution of a, analytic in a part of 33, for

which no Hi vanishes.* As in §15, we reach the absurdity that

LFHHi ■ ■ ■ Hv

is divisible by a.f
Now if P and Q are two forms, with coefficients in S, such that PQ

vanishes for all solutions of 2 analytic in a part of S3, than PQ vanishes for

all solutions analytic in any part of St. This means that either P or Q is in 2,

so that 2 is irreducible in 33.

* Hi is the coefficient of y< in <*<.

t When S contains only constants, we adjoin x to S and consider the irreducible systems into

which 2 decomposes.
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