
TOPOLOGICAL   INVARIANTS  OF  KNOTS AND  LINKS*

BY

J. W. ALEXANDER

1. Introduction. The problem of finding sufficient invariants to

determine completely the knot type of an arbitrary simple, closed curve

in 3-space appears to be a very difficult one and is, at all events, not solved

in this paper. However, we do succeed in deriving several new invariants

by means of which it is possible, in many cases, to distinguish one type of

knot from another. There exists one invariant, in particular, which is quite

simple and effective. It takes the form of a polynomial A(x) with integer

coefficients, where both the degree of the polynomial and the values of its

coefficients are functions of the curve with which it is associated. Thus, for

example, the invariant A(x) of an unknotted curve is 1, of a trefoil knot

1 — x+x*, and so on. At the end of the paper, we have tabulated the various

determinations of the invariant A(x) for the 84 knots of nine or less crossings

listed as distinct in the tables of Tait and Kirkman. It turns out that with

this one invariant we are able to distinguish between all the tabulated

knots of eight or less crossings, of which there are 35. Repetitions of the

same polynomial begin to appear when we come to knots of nine crossings.

The invariants found in this paper are all intimately related to the so-

called knot group, as defined by Dehn. This is, of course, what one would

expect; for many, if not all, of the topological properties of a knot are reflected

in its group. The knot group would undoubtedly be an extremely powerful

invariant if it could only be analyzed effectively; unfortunately, the problem

of determining when two such groups are isomorphic appears to involve

most of the difficulties of the knot problem itself.

In §11, we indicate, very briefly, how the results obtained for knots may

be generalized to systems of knots, or links. We also establish the connection

between the new invariants derived below and the invariants of the «-sheeted

Riemann 3-spreads (generalized Riemann surfaces), associated with a knot.

2. Knots and their diagrams. In order to avoid certain troublesome com-

plications of a point-theoretical order we shall always think of a knot as

a simple, closed, sensed polygon in 3-space. A knot will, thus, be composed

of a finite number of vertices and sensed edges. We shall allow ourselves to

operate on a knot in the following three ways:

* Presented to the Society, May 7,1927; received by the editors, October 13,1927.
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(i) To subdivide an edge into two sub-edges by creating a new vertex

at a point of the edge.

(ii) To reverse the last operation : that is to say, to amalgamate a pair

of consecutive collinear edges, along with their common vertex, into a single

edge.

(iii) To change the shape of the knot by continuously displacing a

vertex (along with the two edges meeting at the vertex) in such a manner

that the knot never acquires a singularity during the process. It would, of

course, be easy to express this third operation in purely combinatorial terms.

Two knots will be said to be the same type if, and only if, one of them is

transformable into the other by a finite succession of operations of the three

kinds just described. A knot will be said to be unknotted if, and only if, it is

of the same type as a sensed triangle.

To make our descriptions a trifle more vivid we shall often allow ourselves

considerable freedom of expression, with the tacit understanding that,

at bottom, we are really looking at the problem from the combinatorial point

of view. Thus, we shall sometimes talk of a knot as though it were a smooth

elastic thread subject to actual physical deformations. There will, however,

never be any real difficulty about translating any statement that we make

into the less expressive language of pure, combinatorial analysis situs. In

the figures, we shall picture a knot by a smooth curve rather than by a poly-

gon. A purist may think of the curve as a polygon consisting of so many

tiny sides that it gives an impression of smoothness to the eye.

A knot will be represented schematically

by a 2-dimensional figure, or diagram. In

the plane of the diagram a curve, called the

curve of the diagram, will be traced picturing

the knot as viewed from a point of space

sufficiently removed so that the entire knot

comes, at one time, within the field of vision.

The curve of the diagram will ordinarily

have singularities, but we shall assume that

the point of observation is in a general posi-

tion so that the singularities are all of the

simplest possible sort: that is to say, double

points with distinct tangents. The singular-

ities of the curve of the diagram will be called

crossing points, and the regions into which it subdivides the plane regions

of the diagram. At each crossing point, two of the four corners will be dotted

to indicate which of the two branches through the crossing point is to be
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thought of as the one passing under, or behind the other. The convention

will be to place the dots in such a manner that an insect crawling in the

positive sense along the "lower" branch through a crossing point would

always have the two dotted corners on its left. Two corners will be said to be

of like signatures if they are either both dotted or both undotted; they will

be said to be of unlike signatures if one is dotted, the other not. Figure 1

represents a diagram of one of the two so-called trefoil knots.

To each region of a diagram a certain integer, called the index of the

region, will be assigned. We shall allow ourselves to choose the index of any

one region at random, but shall then fix the indices of all the remaining

regions by imposing the requirement that whenever we cross the curve from

right to left (with reference to our imaginary insect crawling along the curve

in the positive sense) we must pass from a region of index p, let us say,

to a region of next higher index p+i. Evidently, this condition determines

the indices of all the remaining regions fully and without contradiction.

To save words, we shall say that a corner of a region of index p is itself of

index p.

*+i t+\

p-i p-\

(») (b)

Fig. 2

It is easy to verify that at any crossing point c there are always two

opposite corners of the same index p and two opposite corners of indices p — 1

and p+\ respectively. The index p associated with the first pair of corners

will be referred to as the index of the crossing point c. Two kinds of crossing

points are to be distinguished according to which branch through the point

passes under, or behind, the other. A crossing point of the first kind, Fig. 2a,

will be said to be right handed, one of the second kind, Fig. 2b, left handed.

At either kind of point the two undotted corners are of indices p — i and p

respectively, the two dotted ones of indices p and p+i. However, at a right
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handed point the dotted corner of index p precedes the dotted corner of

index p+1 as we circle around the point in the counter clockwise sense,

whereas at a left handed point it follows the other. At a crossing point c,

the two corners of like index p may belong to the same region of the diagram.

We observe for future reference that on the boundary of a region of index p

only crossing points of indices p — 1, p, and p+1 may appear. Finally, we

recall again that the entire system of indices is determined to within an

additive constant only, since the index of some one region or crossing point

has to be assigned before the indexing of the figure as a whole becomes de-

terminate.

3. The equations of a diagram. In reality, the same diagram represents

an infinite number of different knots, but this indétermination is, if anything,

an advantage, as the knots so represented are all of the same type. The knot

problem is the problem of recognizing when two different diagrams represent

knots of the same type. Now, to tell the type of knot determined by a dia-

gram it is evidently not necessary to know the exact shapes of the various

elements of the diagram, but only the relations of incidence between the ele-

ments and the signatures at the corners of the regions. Because of this

fact, the essential features of a diagram may all be displayed schematically

by a properly chosen system of linear equations, as we shall now prove.

If a diagram has v crossing points

(3.1) a «- 1,2,- ••,*),

we find, by a simple application of Euler's theorem on polyhedra, that it must

have v+2 regions

(3.2) r, (/-O, 1, ...,f+1).

Now, suppose the four corners at a crossing point c¿ belong respectively to

the regions r¡, rk, r¡, and rm, that we pass through these regions in the cyclical

order just named as we go around the point d in the counterclockwise sense,

and that the two dotted corners are the ones belonging to the regions r,

and ft respectively. Then, corresponding to the crossing point c< we shall

write the following linear equation :

(3.3) Ci(r) = xr¡ — xrk + rx — rm = 0.

The v equations (3.3) determined by the v crossing points d will be called the

equations of the diagram. The cyclical order of the terms in the left hand

members of these equations plays an essential rôle and is not to be disturbed.

The distribution of the coefficients x determines in which corners of the

diagram the dots are located.
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By way of illustration we shall write out the equations of the diagram

of the trefoil knot (Fig. 1). They are as follows:

ci(r) = xr2 — xr0 + r3 — r4 = 0,

(3.4) c2(r) = xr» - xr0 + U - r« = 0,

c3(r) = xri — xr0 + r2 — r4 = 0.

The equations of a diagram determine the structure of the diagram com-

pletely unless there happen to be two or more edges incident to the same

pair of regions. For, barring this exceptional case, two cyclically consecutive

terms in any equation correspond to a pair of regions that are incident

along one edge only, and, therefore, determine the edge itself. In other words,

the equations of the diagram tell us the incidence relations between the edges

and crossing points. But they also tell us the relative position of the four

edges at a crossing point; therefore, we have all the information needed to

reconstruct the curve of the diagram. Moreover, the distribution of the

coefficients x tells us how the corners must be dotted.

In the exceptional case, where the boundaries of two regions have more

than one edge in common we are either dealing with the diagram of a

composite knot K or with a diagram that admits of obvious simplification.

Suppose the edges ei and e2 are on the boundary of each of two regions rt

and r2. Then, if we join a point Pi of the edge e\ to a point P2 of the edge

e2 by means of an arc a lying wholly within the region f\, the Extremities of

the arc a will subdivide the curve of the diagram into two non-intersecting

arcs 7i and 72 which may be combined respectively with the arc a to form

the two closed curves

a + 71,        a + y2.

Moreover, these last two curves may be regarded as the diagram curves of a

pair of non-interlinking knots Ki and K2 in space. If neither of the knots

Ki nor K2 is unknotted we may regard Ki and K2 as factors of the composite

knot K. If one of them, Ku is unknotted, the knot K must evidently be of

the same type as the other one, K2. Hence, in this case, the diagram of the

knot K may be replaced by the simpler diagram of the knot K2.

4. The invariant polynomial A(x). Let us now treat the equations of the

diagram as a set of ordinary linear equations E in which the ordering of the

terms in the various left hand members is immaterial. Then, the matrix of

the coefficients of equations E will be a certain rectangular array M of v rows

and v+2 columns, one row corresponding to each crossing point and one

column to each region of the diagram. We shall presently show that the
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matrix M has a genuine invariantive significance; for the moment, let us

merely observe that it has the following property:

If the matrix M is reduced to a square matrix M0 by striking out two of its

columns corresponding to regions with consecutive indices p and />+l, the de-

terminant of the residual matrix M0 will be independent of the two columns

struck out, to within a factor of the form ±xn.

To prove the theorem, let us introduce the symbol RP to denote the

sum of all the columns corresponding to the regions of index p and the

symbol 0 to denote a column made up exclusively of zero elements. Then,

we obviously have the relation

(4.1) £*, = 0;
p

for in each row of the matrix there are only four non-vanishing elements,

namely x, —X, 1, and — 1, and the sum of these four elements is zero. We

also have the relation

(4.2) YiX-'Rp = 0 ;
p

for if we multiply the elements of each column by a factor x~p, where p is

the index of the (region corresponding to) the column, the four non-vanishing

elements in a row of index q become a;1-«, —xl~q, x~q and — x~" respectively,

so that their sum is again zero.   By properly combining relations (4.1) and

(4.2) we obtain the relation

(4.3) £(*-*- l)JK, = 0
p

in which the term in R0 disappears.

Now, let
± Apq(x) = ± Aqp(x)

be the determinant of any one of the matrices MM obtained by striking out

from the matrix M a pair of columns of indices p and q respectively. Then,

by (4.3), we clearly have

(4.4) (x-« - l)Ao,(«) = ± (*-» - 1)A„.

For relation (4.3) tells us that a column of index p multiplied by the factor

x~' — 1 is expressible as a linear combination of the other columns of the

matrix M of indices different from zero (that is to say, of columns of the

matrix Mep), and that in this linear combination the coefficients of the

columns of index q are — (x~q — 1). Moreover, since indices are determined

to within an additive constant only, relation (4.4) gives us
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(x*-« - l)Arp = ± («-» - 1)AP„,

(*«"« - 1)A„ = ± (««-' - l)Aa. ;

a-i-r^r-p _ j)

A,p = ±-—-—A,..
x«-* — 1

But, as a special case of (4.5), we have the relation

(4.6) Ar(r+D = ± *'-rAî(g+1),

which proves the theorem.

Let us now divide the determinant Ar(r+i) by a factor of the form ±x"

chosen in such a manner as to make the term of lowest degree in the resulting

expression A(x) a positive constant. Then,

The polynomial A(x) is a knot invariant.

The theorem will be proved in §6 and again in §10, as a corollary to a more

general theorem.

Let us actually evaluate the invariant A(x) in a simple, concrete case.

From the equation of the diagram of the trefoil knot, (3.4), we obtain the

matrix

- x      0     x     1      - 1

(4.7) - x      1     0     x     - 1

- x      x     1     0      - 1.

Now, if we assign indices in such a way that the first row of the matrix is

of index 2, the next three rows will be of index 1 and the last row of index 0.

The determinant A0i obtained after striking out the last two rows of the

matrix (4.7) will be

Aoi = — x(l — x + x2) ;

the determinant obtained after striking out the first two rows,

A12(x) = - (1 - x+x2).

The difference between these two expressions is of the sort predicted by

relation (4.6). The invariant A(x) is, of course,

A(x) = 1 — x + x2.

5. Further new invariants. It will now be necessary to obtain a some-

what more precise theorem about the matrix M than the one proved in §4.

whence,

(4.5)
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Any two columns of the matrix M of consecutive indices p and p + 1 may be

expressed as linear combinations of the remaining v columns, where the coeffi-

cients of the two linear combinations are polynomials in x with integer coefficients.

Here, and elsewhere throughout the discussion, we shall use the term

"polynomial" in the broad sense, so as to allow terms in negative as well as

positive powers of the mark x to be present.

Since indices are determined to within an additive constant only, we may

assume that p is zero in proving the theorem. Now, in relation (4.3) there

is no term in R0, and the coefficient of the term in Rx is x~l — 1. Let us divide

the coefficients of all the terms in (4.3) by this last expression so as to make

the coefficient of Ri equal to unity. The coefficients of the remaining terms

will then be expressible as polynomials in the broad sense; for if p is positive,

we have
x-» - l/*-1 - 1 = ar'+1 + x-p+2 + • ■ • + 1,

while if p is negative, we have

x-p _ i/x-i — i = _ x-p — x~p-1 — ••• — *.

Therefore the simplified relation (4.3) tells us that any column of index 1

is expressible as a linear combination with polynomial coefficients of columns

of indices different from zero. But if we start from the relation

£(*-» - 1)RP = 0

which also follows, at once, from (4.1) and (4.2), we conclude, by a similar

argument, that any column of index 0 is expressible as a linear combination

with polynomial coefficients of columns of indices different from one. The

theorem follows at once.

Two matrices Mi and M2 will be said to be equivalent if it is possible to

transform one of them into the other by means of the ordinary elementary

operations allowed in the theory of matrices with integer coefficients:

(a) Multiplication of a row (column) by — 1.

(ß) Interchange of two rows (columns).

(y) Addition of one row (column) to another.

(8) Bordering the matrix with one new row and one new column, where

the element common to the new row and column is 1 and the remaining

elements of the new row and column are O's; or the inverse operation of

striking out a row and a column of the type just described.

Two matrices Mi and Af2 will be said to be e-equivalent if it is possible

to,transform one of them into the other by means of the operations (a),

(ß), (y), (S), along with the further operation
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(e) Multiplication or division of a row (column) by x. Two polynomials

will be said to be e-equivalent if they differ, at most, by a factor of the form

±xB. We now state the following theorem, which will be proved in the next

section and again in §10.

If two diagrams represent knots of the same type their matrices M are

e-equivalent.

As a corollary to this theorem it follows that

If two diagrams represent knots of the same type the elementary factors of

their matrices M are e-equivalent, barring factors of the form ±xp (those

e-equivalent to unity).

For operations (a), (j8), and (7) leave the elementary factors invariant;

operation (5) merely introduces or suppresses a unit factor; operation (e)

merely changes one of the factors by a factor x. By an elementary factor

of a matrix M we here mean the highest common factor of all the minors of

the matrix M of any given order p divided (for p > 1) by the highest common

factor of all minors of order p — 1. If all the minors of order p vanish, the

corresponding factor is zero.

The theorem about the invariance of the polynomial A(x) announced in

§4 is an obvious consequence of the corollary, for A(x) is e-equivalent to the

product of the elementary factors of the matrix M.

The theorem suggests the problem of finding normal forms for the

matrices M under operations (a), (ß), (7), (5), and (e). Under this par-

ticular group of operations, the elementary factors of a matrix M are not a

complete set of invariants. They would be if we replaced operation (a)

by the more general operation

(a') Multiplication of a row (column) by an arbitrary rational number.

The matrix M<¡ obtained by deleting from the matrix M two columns of con-

secutive indices p and p+l is e-equivalent to the matrix M.

This follows, immediately, from the first theorem proved in this section.

It should be remarked that the matrix N obtained by changing the signs

of all negative elements of the matrix M is equivalent to the matrix M. For

if we change the signs of all the elements of M belonging to the columns of

odd indices we obviously obtain a matrix of such a form that the elements in

any given row are of like sign. Therefore, by further changing the signs of

the elements in the rows containing no positive elements we obtain the

matrix N. Thus, the matrix M is transformable into the matrix N by ele-

mentary transformations. For theoretical purposes, the matrix M offers

certain advantages over the matrix N; when actual computations are to be
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made, the matrix N is generally to be preferred, as mistakes in sign are

less likely to be made when it is used.

6. Diagram transformations. When a knot is deformed, the equations

of its diagram remain invariant so long as the topological structure of the

diagram does not change. Now, a change in the structure of the diagram may

come about in one or another of the following ways:

(A) The curve of the diagram may acquire a loop and crossing point

(Fig. 3) or it may lose a loop and crossing point by a deformation of the

inverse sort.

Fig. 3

(B) One branch of the curve may pass under another with the creation

of two new crossing points (Fig. 4); or by a deformation of the inverse

sort, one branch may slide out from under another with the loss of two cross-

Fig. 4

ing points. In this case it must be borne in mind that the corners at the

two crossing points must be so dotted as to imply that the lower branch at

one is also the lower branch at the other.
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(C) If there is a three-cornered region in the diagram, bounded by

three arcs and three crossing points, and if the branch corresponding to

one of the three arcs passes beneath the branches corresponding to the other

two, then any one of the three branches may be deformed past the crossing

point formed by the intersection of the other two (Fig. 5). The effect is

the same, topologically speaking, whichever of the three branches undergoes

the deformation.

Fig. 5

It is a simple matter to verify that any allowable variation in the structure

of the diagram may be compounded out of variations of the three simple

types indicated above.*

With these facts before us, it is now easy to prove the theorem about the

«-equivalence of the matrices of two diagrams which determine knots of

the same type. For it is sufficient to show that under each of the trans-

formations (A), (B), and (C) the matrix of the diagram is carried into an

«-equivalent one.

First, consider case (^4), where a branch of the curve acquires a new loop

and crossing point. Let M0 be the matrix of the original diagram after

the two redundant columns corresponding to the region ri and r2 (Fig. 3),

have been struck out. Then, the effect of the transformation is merely to

border the matrix M0 with a new row and column in which all the elements

are zero except the one which the row and column have in common. This

last element will be ±1 or ±x according to how the corners at the new

crossing points are dotted. Evidently, the new matrix is «-equivalent to the

original one.

* Cf., for example, Alexander and Briggs, On types of knotted curves, Annals of Mathematics,

(2), vol. 28 (1927), pp. 563-586.
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Under case (B), let M0 be the matrix of the original diagram after the

two redundant columns corresponding to the regions fi and r2 (Fig. 4) have

been struck out, and let M¿ be the corresponding transformed matrix.

Then, if we add column r¿ of M ó to column r{ we obtain the original matrix

Mo bordered by two new rows and columns in the manner indicated sche-

matically by the following figure:
1    II

0   1

0   0

0

Mo"

Thus, clearly, the new matrix is again É-equivalent to the old. It may happen

that the corners are not dotted in the manner indicated in the figure, but

that the two corners of the region r0' are dotted ones. The method of proof is,

however, essentially the same in this case as in the case just considered.

In disposing of case (C), we shall replace the matrix M of the original

diagram by the equivalent matrix N, as defined at the end of §6, so as not

to be troubled about the correct evaluation of the signs of the various

elements. Moreover, we shall change the rôles of the rows and columns of the

matrix N and think of this last as the matrix of a set of equations in the

symbols d associated with the crossing points, rather than in the symbols r,-

associated with the regions. Then, with the aid of Fig. 5, we may verify,

at once, that the matrix N undergoes the transformation induced by the fol-

lowing change of symbols:

C\   =   — XCi,

(6.1) c2 - xc\ + c»,

c{ = C\ + c2.

In making the verification we must not overlook the relations

xc\ + c2 + c» = 0

and
-i + xc{ + xci = 0

corresponding to the regions r0 and r¿ (Fig. 5) respectively. Now, the sub-

stitution (6.1) is, clearly, the product of a substitution

ci = XC\

which induces an «-operation on the matrix N, and a substitution of de-

terminant unity which induces a set of elementary operations, by a well

known theorem. Therefore the matrix N is carried over into an «-equivalent

one. The cases where the corners are dotted in a different manner from that

shown in Fig. 5 are treated in a similar manner.



1928] TOPOLOGICAL INVARIANTS OF KNOTS 287

This completes the proof of the invariantive character of the matrix M,

whence, also, it follows that the polynomial A(x) is an invariant.

In the next sections we shall establish the connection between the matrix

M and the so-called group of the knot, as defined by Dehn. This will necessi-

tate the interpolation of a few preliminary remarks bearing, very largely,

on questions of terminology and notation.

7. Abstract groups. In expressing the resultant of two or more operations

of a group A we shall use the summation, rather than the product notation.

Thus, if the symbols a<, a,-, • • ■ represent operations of the group, the

symbol — a¿ will represent the inverse of the operation a<, the symbol ai+a¡

the resultant of the operation a i followed by the operation a,, the symbol 0

the identical operation. Furthermore, the symbol Xa,-, where X is any positive

integer, will denote the resultant of the X-fold repetitions of the operation a<,

and the symbol —Xa< the resultant of the X-fold repetitions of the operation

—ai. It goes without saying that we must distinguish, in general, between

the operations at+a¡ and a,+a<.

If two consecutive terms of a sum of operations

c(a() = Xidj! + Xüfli, + •-h X«a<.

involve the same letter aip they may be contracted into a single term in a^.

After all possible contractions of the sort have been made the sum c(a<)

will be said to be in its reduced form. We shall use the identity sign between

two sums,

c(a() m d(oi),

to indicate that the sums, when reduced, are formally identical. An equality

sign between two symbols

c = d

will merely indicate that the two symbols represent the same operation of

the group, without implying their formal identity.

Let

(7.1) a, (i- 1,2, ••• ,»)

be a set of generators of a group A : that is to say, a set of operations of the

group A in terms of which all the operations of A may be expressed. Then,

in most cases, there will exist certain identical combinations of the generators

of the form

(7.2) Ci(at) « 0 0" = 1, 2, • • • , m).
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Now, if we know any set of identities (7.2) among the generators there are

three standard processes whereby we may enlarge the set (7.2) by the forma-

tion of new identities:

(i) The process of inversion, giving identities of the form

(7.3) -Ci(ai) = 0;

(ii) The process of summation, giving identities of the form

(7.4) cA\ad + <*(a<) - 0 j

(iii) The process of transformation, giving identities of the form

(7.5) e(a.) + cfa) - e(a%) - 0,

where g(a<) is any operation of the group.

The set (7.2) will be said to be complete if there is no identical combination

of the generators which cannot ultimately be brought into the set by repeated

application of the three processes just indicated. Thus, if the set (7.2)

is complete, the most general identical combination of the generators must

be of the form

(7.6) c=  £(«. ± cu- et) = 0.
■

A group A is fully determined by a set of generators (7.1) together with a

complete set of identities (7.2) among them. In all of the discussion we

shall confine our attention to the case when the number of generators (7.1)

and defining identities (7.2) is finite.

With every group A there is associated a commutative group Ac de-

termined by adjoining to the defining identities (7.2) of A all possible rela-

tions among the generators of the form

a¡ + a,- = a, + a,-.

The group Ac may also be thought of as the one determined by the generators

(7.1) and identities (7.2) alone, where, however, we must now assign a new

meaning to our symbolism and regard addition as commutative. If we do

this, equations (7.2) simplify, by collecting terms in like symbols, to the form

Í7.7) c,=  X;e<ia.- = 0
i

while relation (7.6) which displays the form of the most general identical

combination among the generators becomes

(7.8) c m  2>, - 0.
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The group Ac is, obviously, an invariant of the group A, whence, also,

its own invariants are invariants of A. For future reference, we quote

without proof a classical theorem about the commutative group Ac. Let

|| «i,|| denote the matrix of the coefficients in equation (7.7). Then

The elementary factors of the matrix

II «ill

which differ from unity form a complete set of invariants of the group Ac.

Therefore, also, they are invariants of the group A.

8. The knot group. The group R of a knot, as defined by Dehn,* is merely

the ordinary topological group of the space 5 exterior to the knot. Let us fix

upon some point of the space S, such as the observation point P from which

we are supposed to be viewing the knot when we look at its diagram. Then, in

the space S, each closed, sensed curve beginning and ending at P determines

an operation of the group R. Moreover, two different sensed curves deter-

mine the same operation if, and only if, one may be deformed continuously

into the other within the space S, while its ends remain fixed at the point P.

During the deformation the curve may cut through itself at will, but it must

never come into contact with the knot, as that would involve its leaving the

space S. The condition that a curve determine the identical operation is

that it be continuously deformable into the point P itself. If two sensed

curves G and C2 correspond respectively to the operations n and r2 of the

group R, the sensed curve Ci+C2 obtained by joining the initial point of C2

to the terminal point of G determines the operation ri+r2.

The group R of a knot may be obtained, at once, from a diagram of the

knot.f Let us flatten out the knot until it coincides, sensibly, with the curve

of its diagram. Then, if we pick out, at random, a region r0 of the diagram,

there will be one generator of the group corresponding to each of the other

v+1 regions r,-, where the generator in question is the operation determined

by a curve which starts from the point P, crosses the region rj} passes behind

the plane of the diagram, and returns to the point P by way of the region r0.

It is easy to see, by inspection, that to each crossing point of the diagram

there corresponds an identical relation of the form

(8.1) ri-rk + n-r„ = 0,

* M. Dehn, Topologie des dreidimensionalen Raumes, Mathematische Annalen, vol. 69 (1910),

pp. 137-168.
f Dehn, loc cit.



290 J. W. ALEXANDER [April

where if the symbol r0 appears in this relation it must be set equal to zero.

Moreover, it is not difficult to verifyf that the set of relations (8.1) is com-

plete. We, therefore, have the following theorem:

The group R of a knot is the one determined by the equations of the diagram,

§3, when we setx equal to unity, together with one more equation of the form

r0 = 0.

9. Indexed groups. We shall now make another short digression leading

to a generalization of the theorem quoted at the end of §7. A group A will be

said to be indexed if with each operation of the group there is associated an

integer, called the index of the operation, such that

(i) The index of the identical operation is zero ;

(ii) There exists an operation of index unity;

(iii) The index of the resultant of two operations is the sum of the

indices of the two operations.

Two indexed groups will be said to be directly equivalent if they are

related by a simple isomorphism pairing elements of like indices, and in-

versely equivalent if they are related by a simple isomorphism pairing ele-

ments of index p (p = 0, ±1, ±2, • • • ) with elements of index — p.

Let A be an indexed group determined by a finite number of generators

connected by a finite number of identical relations. Then, clearly, the

generators may always be chosen in the canonical form

(9.1) s, oi, a2, ■ ■ ■ , an,

where the first generator s is of index 1 and the others a> are of index 0. For

any arbitrary finite set of generators may be reduced to the above form by a

process analogous to the one used in finding the highest common factor of a

set of integers. The defining identities of the group, expressed in terms of the

generators (9.1), will be certain linear expressions which we shall denote by

(9.2) Cj(s, oi, a2, ■ • ■ , a„) = 0.

Now, it wül be observed that the operations of the group A which are of

index 0 determine a self-conjugate subgroup A* of A. Let a be any operation

of this subgroup. Then if the operation a is expressed in terms of the genera-

tors (9.1) of the group A,

(9.3) a = a(s, oi, a2, ■ • ■ , o„),

the sum of the coefficients of the terms in 5 must evidently vanish.   Con-

t Dehn, loe. cit.
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sequently, if we interpolate between every two terms of (9.3) a pair of

redundant terms of the form —Xs+Xs, where the various coefficients X

are suitably determined, we shall obtain a representation of the operation a

in the form

(9.4) a =   £(X<5 ± aPi-\is).
i

It will be convenient to introduce the abridged notation

± xxOi = Xs ± a,- — Xs

to denote a succession of three terms like the ones appearing in the sum

(9.4). We shall then be able to express the sum a in the form

(9.5) a =   £ ± ¿<aPi.
i

Conversely, every sum of terms ±xx<aPi represents an operation of index 0:

that is to say, an operation of the subgroup A* of A. In particular, the de-

fining relations (9.2) of the group A may be written

(9.6) c,(x, a) =   £ ± x**aPij - 0.

Now, let us reexamine the three processes (7.3), (7.4), and (7.5) of §7,

whereby new identities are to be formed from the identities of a given set

(9.6). The first two processes require no particular comment; in the new

notation they may be expressed by

(9.7) -Ci(x, a)-0

and

(9.8) Cj(x, a) +ck(x, a) = 0

respectively.  The third process, however, is expressed by

(9.9) e(x, a) + x^c^x, a) - e(x,a) = 0,

where the presence of the coefficient xx before the middle term is to be ac-

counted for by the fact that in reducing expression (7.5) to the form (9.9)

we must, in general, interpolate a pair of redundant terms —Xs+Xs after

the term e(a<) in order to obtain a group of terms

e(x, a) = e(oj) — Xs

of index zero. Relation (7.6) which exhibits the most general identity among

the generators (9.6) becomes, in the abridged notation,

(9.10) c(x, a) =   £[e<(*, a) ± xXicu(x, a) - ei(x, a)] = 0.
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We may now regard the subgroup A* ol A as determined by the n generators

(9.11) ai, a2, ■ ■ ■ , an

of A of indices zero together with the identities (9.6), which, for convenience,

we shall now rewrite:

(9.12) Ci(x, a) = 0.

Relation (9.10) shows us how to form the most general identity in the genera-

tors ai.

With the group A* there is associated a commutative group A* de-

termined by adding to the identities (9.12) all relations of the form

xxa< ± x"aj = ± x"aj + xxa,-.

The group A * bears the same relation to the group A* as the group Ae of §7

to the group A. It may be thought of as the one determined by the generators

(9.11) and identities (9.12) alone, where, as in §7, we change the meaning

of our notation and regard addition as commutative. Here, however, we

must bear in mind that it is only when we express the operations of the

group A* in abridged notation that addition is commutative. The operations

a and

x*a = \s + a — \s

are still to be regarded as distinct, otherwise we would get only trivial

results. The defining identities (9.12) of the commutative group A* may

evidently be simplified, by collecting the terms in the various symbols ai,

to the form

(9.13) c,(x, a) =   ^Xi,ai = 0,
<

where the coefficients Xa are polynomials in x with integer coefficients.

(Here, again, we are using the term "polynomial" in the broad sense so as

to allow negative as well as positive powers of x to be present.) Relation

(9.10) exhibiting the form of the most general identity in the generators

simplifies, in this case, to

(9.14) c(x, a) =  £XiC,/*, a) = 0,
i

where the coefficients Xi are also polynomials in the broad sense.

Now, let ||X<,|| be the matrix of the coefficients of equations (9.13).

Then, as a generalization of the theorem quoted at the end of §7, we shall

have the following proposition:



1928] TOPOLOGICAL INVARIANTS OF KNOTS 293

If two indexed groups A and B are directly equivalent, their associated

matrices ||Xi}|| and ||F<,|| are e-equivalent.

The proof will be made in a series of easy steps. Let us choose a canonical

set of generators

(9.15) s, ai, fl2, • • • , am

of the group A, and a set of defining identities

(9.16) Cj(x, a) = 0 (xa = s + a-s).

Then, corresponding to these last, we shall have the identities

(9.17) £xijaj = 0

of the commutative group A* associated with the group A.

Now, let us observe the following simple facts:

(i) If we enlarge the set (9.16) by the adjunction of one new relation which

is dependent on the ones already in the set, the matrix ||X<,|| is, thereby,

transformed into an «-equivalent one. For, by relation (9.4), the matrix

H-XtfH merely acquires a new row, expressible as a linear combination

of the old ones with polynomial coefficients.

(ii) If we adjoin a new generator am+1 of index zero to the set (9.15) and,

at the same time, add to relations (9.16) an identity of the form

cm+i(x, a) + am+i = 0

expressing the new generator in terms of the old ones, the matrix ||Xj,j|

is again transformed into an «-equivalent one. For the matrix ||X</|| is

merely bordered by a new row and column, where the elements of the new

column are all zero except the one in the new row which is unity.

(iii) If we replace the generator s by another operation t of index unity

such that the operations

(9.18) t, ox, at, • • • , am

also generate the group A we leave the matrix ||Xi}|| invariant. For suppose

we write
yxa = X/ + a — \t

to denote transformation through this new operation /. Then, since s and /

are both of weight unity, it must be possible to write

(9.19) 5 = / + 0(y, a)

where <p(y, a) is of index zero and, therefore, expressible in the abridged

notation. Therefore, we have
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(9.20) xa = s + a - s = t + <t> + a - <p - t = y(<f> + a - q>).

But suppose we make the substitution (9.20) in equation (9.17). Since, in

these last equations, addition is to be regarded as commutative, the substi-

tution (9.20) produces the same effect as the substitution x=y. Therefore,

the matrix ||-Xy|| is left invariant, except for a change of notation.

With the above facts established, the proof of the theorem is immediate.

Let the generators of the group B, written in canonical form, be

(9.21) /, fti, h, •■ • , K,

and the defining relations,

(9.22) d,(y, b)=0.

Then, since the groups A and B are directly isomorphic, we may express the

isomorphism either by the identities

(9.23) t = s + á>(x, a) [yb = x(<p + b-<t>)],

(9.24) bi = *.(*, a)

or by the inverted identities

(9.25) s = t + *(y,b) [xa, y(* + a-*)],

(9.26) a-i = Hy,b).

Now, starting with the generators (9.15) and identities (9.16), let us ad-

join successively the generators bi of the group B along with the correspond-

ing relations (9.24) expressing these last in terms of the generators of the

group A. Moreover, let us next adjoin successively relations (9.22) and

(9.26), in which we think of y as expressed in terms of

x, a\, • ■ ■ , am, bi, • • • , bn

by means of relation (9.23). We finally obtain the group A determined by

the generators

s, at, • ■ • , an, bi, • • • , bn

with the denning identities (9.16), (9.22), (9.24) and (9.26). Moreover,

by (ii) and (i), the matrix \\X¡j\\ corresponding to this new mode of defi-

nition is e-equivalent to the matrix ||-Xo-||-

By a similar argument, we may define the group B by means of the

generators
t, Ol, • • • , flm, bi, • • • , bn

along with the same defining identities (9.16), (9.24), and (9.26), where the

matrix ||Fj,-|| corresponding to the new mode of definition is «-equivalent
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to the matrix ||F.-,||. Finally, by (iii) the matrix ||-X^|| must be identical

with the matrix \\Y¡j\\ except for a change of notation. Therefore, the

matrices \\Xa\\ and ||F<,|| must be «-equivalent.

If two indexed groups A and B are inversely equivalent, the matrix \\Xn\\

associated with the group A goes over into a matrix which is ^-equivalent to the

matrix ||F<,|| associated with the group B if we make the change of marks

x'=x-K

The proof is similar to that of the previous theorem. The one essential

difference is that in place of relation (9.19) we must write

s = - / + 0(y, a) ;

whence, in place of (9.20), we have

xa — y-1(0 + a — 0).

The matrices \\Xij\\ and ||Xy|| corresponding to two different ways of

defining an indexed group A are e-equivalent. Moreover, the effect on the matrix

of changing the signs of the indices of all the operations of an indexed group A

is that produced by the substitution x' =*x~x.

This is, of course, a consequence of the two previous theorems, when A

and B are regarded as symbols for the same group.

10. Application to knots. The group R of a knot may evidently be

thought of as an indexed group, for with each curve C determining an

operation r of the group there is associated a certain integer measuring the

number of times (in the algebraical sense) that the curve C winds around or

loops the knot. This integer will be denned as the index of the operation r.

With proper conventions as to what shall be the positive sense of winding

around the knot, the index of an operation r< of the group will evidently be

equal to the index of the region r< diminished by the index of the region r0 or,

if we choose the additive constant at our disposal so as to make the index

of the last named region equal to zero, the index of the operation /■< will

simply be the index of the region r¿.

Now, let us choose our notation so that r0 and ry+i are two regions with

consecutive indices 0 and 1. Moreover, let us denote by p, the index of a

general region r,. Then, if we make the substitution

(10.1) r^PiS + rl (*« 1,2, •••-,*),

r,+\ = s

the new set of generators

Ji fi i fi i '   " > r'



296 J. W. ALEXANDER [April

will evidently be in canonical form, for the index of the first one will be unity

and the indices of the others zero. Let us examine the form that the defining

relations

(10.2) ri-rj + rt-n = 0

of the group R take when written in the abridged notation. If an equation

(10.2) corresponds to a right handed crossing point of index p it may be

expressed as

ps + rl - r¡ -(p+ l)i + ps + rl - r{ - (p - î)s = 0

in terms of the canonical generators. Therefore, if we put

xr' = j + r' — s

it reduces, after we leave off the primes,-to

xn — xr, + ft — ri = 0.

A similar reduction leading to the same final result may be made if equations

(10.2) correspond to a left-handed crossing point.  Therefore,

The equations of the diagram taken in conjunction with two more equations

of the form
r0 = 0,      r,+i = 0,

corresponding to regions with consecutive indices are the equations of the group

of the knot written in abridged notation.

In other words, the matrix M0, §5, obtained by striking out two columns

of consecutive indices from the matrix M is simply the matrix \\Xa\\, §9,

of the group equations written in abridged notation. This gives us a second

proof of the e-invariantive character of the matrix M from which most of

the other theorems in §§4 and 5 are immediately deducible.

11. Links. A link will be defined as a figure composed of the vertices and

sensed edges of a finite number of non^intersecting knots. The most obvious

link invariant is the number of knots into which the link may be resolved.

We shall call this number the multiplicity n of the link. A knot will thus be a

link of multiplicity one. Evidently, the entire discussion up to this point

applies not only to knots but to links of arbitrary multiplicities. That is

to say, with every link there will be associated a matrix M having the

same e-invariantive significance as for the case of a knot, an invariant

polynomial A(x), and so on. In the case of a link of higher multiplicity a

broader generalization is, however, possible, as we shall now indicate.
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Let L be a link of multiplicity ¡i made up of the elements of p different

knots

(11.1) JTi, Kt, ■   • , Kß.

Then, at each crossing point c< of the diagram of the link L the lower branch

will belong to some knot Ka of system (11.1), the upper branch to some knot

Kb which may, or may not be the same as the knot Ka. To the crossing point

Ci we shall attach the number a associated with the knot Ka determined by

the lower branch through the point. Moreover, we shall replace the equation

(3.3) of the diagram associated with the crossing point c< by a similar equation

(11.2) xfi — xark + r¡ — r„ = 0,

where the coefficient x of the original equation has been replaced everywhere

in the equation by the coefficient xa. The matrix M„ of the system of equa-

tions (11.2) determined by the various crossing points c< will thus be an

array in the marks 0, ± 1, and ±xa (a = 1, 2, • • • , ju). It will reduce to the

matrix M, as defined in §4, if we replace all of the marks xa by one single

mark x.

Two matrices AiM will be said to be «-equivalent if it is possible to trans-

form one of them into the other by means of a finite number of elementary

operations (a), (ß), (y), (8), §5, in combination with a finite number of

operations of the following type:

(«) Multiplication or division of a row (column) by xa.

This last operation is, of course, the natural generalization of the operation

of the same name defined in §4 for the case where we have a simple mark x.

We now have the following broad generalization of one of the theorems

of §5:

// two diagrams represent links of the same type their matrices MM are

e-equivalenl.

The theorem may be verified directly by the elementary method of §6.

It may also be derived by group theoretical considerations analogous to those

developed in §§9 and 10. We shall indicate, briefly, the second method of

proof.

The group A of a link of multiplicity n is a ¡i-luply indexed group; for with

each operation a of the group there may be associated a composite index

(11.3) ipi, p2, • • • , ft)

such that the number pi is the linkage number of a curve determining the

operation with the ith component knot ÜT¡ of the group.   By a process
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analogous to the one used in finding the highest common factor of a set of

integers, it is easy to reduce any set of generators of the group A to the

canonical form

(11.4) 5i, s2, • ■ ■ , Su, ai, ■ ■ ■ , am,

where the index of each generator 5,- of the first type is composed of zeros

except for the number p{ which is one, and where the index of each generator

ai of the second type is composed exclusively of zeros. The identical relations

in the generators will be certain linear expressions of the form

(11.5) Cj(si, ■ ■ ■ , s„, oi, • • • , am) = 0.

We shall denote by A' the group determined by the relations (11.5) together

with all additional relations of the form

(11.6) 5, + Sj = Sj + Si

expressing that any two generators (11.4) of the first type are commutative.

Moreover, we shall denote by A* the self conjugate subgroup of the group

A' consisting of all operations of the group A' of index (0, 0, • • • , 0). Let

us now use the abridged notation

(11.7) Xjö = Si + a — Si.

Then, by an obvious extension of the argument used in §9, we may show that

the operations of the group A* are precisely the ones which may be repre-

sented by sums of the form

23 ± xi^'ixn**' ■ ■ ■ x^'iaij.

Finally, if we impose a further set of relations making any two operations of

the group A* commutative, we obtain a group A* consisting of all operations

which may be represented in the form

(11.8) Ex,*.,
i

where Xt is a polynomial in the marks Xi, x2, ■ • • , x„. In the last expression,

addition is, of course, to be regarded as commutative. The group A* will

be the one determined by the generators

a\, a2, • • • , a»

together with the identities

(11.9) Zxj)a, = 0

to which the identities (11.5) reduce when expressed in the abridged notation

and when addition is regarded as commutative.
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By the methods of §10 it may be verified without difficulty that the

matrix of the group A of a link is the matrix ||Xi,|| of the coefficients in (11.8).

To obtain the direct generalization of the theory developed for knots, we

must set
X\ wm Xt ■"•••■« xß ■■ X.

A certain number of easily calculable invariants are obtainable by setting

all but one of the marks Xi equal to unity.

12. Miscellaneous theorems. Let the number of regions of a link dia-

gram be v+2. Then, if the curve of the diagram is a connected point set the

number of crossing points must be v, just as the special case of a knot dia-

gram. If the curve of the diagram is not a connected point set but is made

up of K+l connected pieces, the number of crossing points is only v — k.

We must then adjoin to the equations of the diagram a set of k equations

of the form 0 = 0 so that the matrices M and N, §4, shall have two less rows

than columns. For we want the matrix M0 from which we compute the

invariant A(x) to be a square array of order v. If the number k is greater than

unity the invariant A(x) evidently vanishes.

Several theorems are to be obtained by observing that when we set x

equal to 1 in the matrix M(x) =M the form of the resulting matrix M(l)

will be independent of how the corners at the crossing points are dotted and,

therefore, independent of which branch through a crossing point is regarded

as the one passing under the other. Suppose, for example, we start with the

theorem that the invariant A(x) of an unknotted knot is unity, as may be

verified, at once, by direct calculation. Then, as an immediate consequence,

we may obtain to the following theorem about knots in general :

The sum of the coefficients of the invariant A(x) of a knot is always numer-

ically equal to unity.

For, in the notation of §4, we have

(12.1) A(x) = ± x>Ar<r+i,(x),

whence, the sum of the coefficients of the invariant A(x) must be given by

A(l) = +Ar(r+1)(l).

Now, by changing upper into lower branches at a suitably chosen set of

crossing points we may always "unknot" the knot. For one obvious way of

doing this is to reverse crossings in such a manner that if we start at a

specified point P of the curve of the diagram and describe the curve in the

positive sense we never pass through a crossing point along an upper branch

without previously having passed through it along a lower one. But, as we
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have already observed, such a reversal of crossings leaves invariant the

value of the determinant AB(n+i)(l). Therefore, since A(x) is unity for an

unknotted knot, we have

1= +Ar(r+1)(l),

which proves the theorem.

The multiplicity /x of a link L is equal to the number of zero elementary

factors of the matrix M(\) obtained by setting x equal to 1 in the matrix M.

For, by an elementary calculation, we verify that the theorem is true

when the link L consists of n unknotted and non-interlinking curves.

It should be remembered that if we assign a constant integral value c to x

in the matrix M and then derive the elementary factors of the matrix M(c),

regarding the latter as a matrix in integer elements, we do not necessarily

get the same result as if we derived the elementary factors of the matrix

M(x) regarded as a matrix in polynomial elements and then substituted the

value c for x in these factors. For in calculating the factors of the matrix

M (x) we have to allow the operation of adding to one row (column) a rational

multiple of another row (column), which operation is not allowed in calculat-

ing the factors of the matrixM(c) unless the rational multiple is also integral.

It may, therefore, be worth while noting the following theorem:

The elementary factors of the matrix M(x) (c integral) that are not of the

form ± c are all link invariants to within a multiple of c.

For the matrix operations (a), (ß), and (7) of §4 leave the elementary

factors of M(c) unaltered, the operation (5) merely adds or takes away a

unit factor, and the operation (e) merely multiplies or divides one factor

by c.

Let v+2 be the number of regions of a link diagram and p the number of

distinct values taken on by the indices of the various crossing points (correspond-

ing to any one way of assigning indices). Then the degree of the polynomial

A(x) never exceeds v—p.

For, in the notation of §4, the degree of the polynomial A(x) never exceeds

that of the polynomial Ap(i+i)(x). Moreover, by (4.6) we have

Aoi(x) = ± x"Ap(p+i)(x).

But the degree of A0i(x) cannot exceed v since this expression is a v-rowed

determinant with elements that are linear in x. Therefore, the degree of

Ap(P+i)(x), and consequently also of A(x), never exceeds v—p.
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If K is a composite knot, §3, made up of the factors K~i and K2, the in-

variant A(x) of the knot K is equal to the product of the corresponding invariants

of the knots Ki and K2.

A composite knot is one which may be deformed in such a way that its

diagram will be of the sort considered in the last paragraph of §3, where two

edges d and e2 appear on the boundaries of two different regions n and r% of

the diagram. In the notation of §3, let a+71 and a+y2 be the curves of the

diagram of the two factors Ki and K2 of K. Moreover, let Arir+i)(x) be the

determinant of the knot K after elimination from its matrix M of the two

redundant columns corresponding to the regions n and r2 respectively. Thus,

clearly the determinant ArrT+i)(x) is equal to the product of the two similar

determinants Ar(r+i)0*0 and Ar(r+i)(*) corresponding to the two factors

Ki and K2; for the determinant Ar(r+i)(a;) is related to these other two in the

manner illustrated schematically by

Ai(r+1)
Ar(r+l)(s)   =

0
A if

r(r+l)

The theorem therefore follows, at once.

We shall bring these miscellaneous remarks to a close by obtaining a

relation between the polynomial invariants A(x) of three closely associated

links. Consider a link diagram Z' with a right handed crossing point of

index p (Fig. 2a). By changing this one crossing point into a left handed one

(Fig. 2b) we obtain a new diagram Z". Moreover, by cutting the two

branches at the crossing point, separating them slightly, and rejoining them

so as to unite into one the two regions of index p incident to the crossing

point (Fig. 2c) we obtain a third diagram Z. Now, suppose we form the

matrix N (§4) of the diagram Z' and arrange the rows and columns in such

an order that the first row corresponds to the crossing point c and that the

first four columns correspond to the four regions incident to the point c

and represented in Fig. 2a by the first, second, third and fourth quadrants

respectively. The first row of the matrix N' will, thus, start with the elements

x, #, 1, 1 followed by zeros. To obtain the corresponding matrix N" of the

diagram Z we shall merely have to interchange the first and third elements

in the first row of the matrix N'; to obtain the corresponding matrix N of the

diagram Z we shall merely have to add the first column of the matrix N'

to the third and then strike out the first row and first column. Now, let

Ap'fp+i), Ap(p+D and A,,(p+i) be the determinants of the matrices obtained by

striking out the first two columns of N', N", and N, respectively. Then,

clearly, the determinant Aj,(P+i) will be the principal minor of both the

determinants A^+d and A'p\p+i).   Let T be the minor of the second element
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in the first row of Ap(p+u (and of Ap(p+i)). Then if we expand each of the

determinants Ap(p+u and Ap(p+i) in terms of the elements of its first row

and their minors, we find

AP(P+d = APiP+D — T,     A,,(P+1) = xAp(p+i) — r,

whence,

(12.2) Ap(p+i) - AP(P+D = (1 - x)Ap(p+d,

which is the relation we had in mind to establish.

The argument needs to be slightly modified if the two corners of index p

at the crossing point c belong to the same region of the diagram. In this

case, however, the curve of the diagram Z must be a disconnected point set,

whence,
AP(j>+i) = 0.

Moreover, we obviously have

A   ' A  "Ap(p+D   -   Ap(p+1),

so that relation (12.2) continues to hold.

13. «-sheeted spreads. Further invariants of the matrix M are to be

obtained by regarding each element as the symbol for a certain square array

of order », where the connection between the symbols and the arrays which

they represent is as follows:

(i) 0 is the symbol for an array composed entirely of zeros,

(ii) 1 is the symbol for an array with l's along the main diagonal and

0's elsewhere.

(iii) x is the symbol for an array obtained from the array 1 either by

permuting the columns cyclically so that the first column goes into the

second or by permuting the rows cyclically so that the second row goes into

the first; the effect of either permutation is the same. xp is the symbol for

the array obtained from the array 1 by making p successive permutations

of the type just described.

Now, if we replace each element of the matrix M by the array which it

symbolizes we obtain a new array Mn of vn rows and (i*-r-2)» columns,

made up of integer elements.

The elementary factors of the array M" that differ from unity are link

invariants.

For to an elementary operation (a), (B), (7), or (5) on the matrix M there

evidently corresponds an operation on the matrix Mn which may be resolved

into elementary operations.   Moreover, to an extended operation (e) on
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the matrix M there merely corresponds a cyclical permutation of a block

of n rows (columns) of the matrix Mn, which may again be resolved into ele-

mentary operations. This proves the theorem.

Corresponding to a pair of redundant columns of the matrix M there

will be two sets of redundant columns of the matrix Mn composed of n

columns each. We may, therefore, always replace the matrix Mn by a square

matrix M" of order vn.

The elementary factors of the array M0n have an interesting geometrical

significance. If the link from which we start is a knot, the number of zero

factors is equal to the connectivity numbers,

(/>,- l) -(P,-l),

of an »-sheeted Riemann spread S" (the 3-dimensional generalization of an

«-sheeted Riemann surface) with the knot as branch curve (generalized

branch point). The divisors that are different from zero and unity are the

coefficients of torsion of the spread S".* This may all be proved very easily

by making a suitable cellular subdivision of the spread Sn, as we shall now

indicate, f

Let K be the knot under consideration and S the space containing it,

where to simplify matters, we shall suppose that the space S closes up to a

single point at infinity. Then, the first step will be to cut up the space 5 into

cells, in the following manner. Wherever one branch of the knot appears to

pass behind another, we shall join the upper branch to the lower one by a

segment c/. The ends of the segment c{ will be the vertices, or 0-cells, of

the subdivision; the segments c[ themselves, together with the arcs ai

into which the ends of the segments ci subdivide the knot will be the 1-cells.

Corresponding to each region r¿ of the diagram we shall construct a 2-cell

r[ of which r< will be the projection, bounded by the appropriate arcs ai

and el. The residual part of the space S will then consist of a pair of 3-cells.

Thus, to sum up, the subdivision 2 that we have just described will consist

of 2i> vertices, 3v edges, v+2 2-cells, and 2 3-cells. Corresponding to the

subdivision S of the space S there will be a subdivision 2" of the spread 5n

* In a paper read before the National Academy in November, 1920, cf. Veblen, Cambridge

Colloquium Lectures (1922), Analysis Situs, p. 150, I made the observation that the topological

invariants of the rc-shee ted spreads associated with a knot would be invariants of the knot itself, and

showed by actual calculation that these invariants could be used to distinguish between a number of

the more elementary knots. Later, these same invariants were discovered independently, by F.

Reidemeister, Knoten und Gruppen, Abhandlungen aus dem Mathematischen Seminar der Ham-

burgischen Universität, 1926, pp. 7-23. See also a paper by Alexander and Briggs. On types of knotted

curves, Annals of Mathematics, (2), vol. 28 (1927), pp. 563-586.

t Cf. Alexander and Briggs, loe. cit.
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such that each cell of the subdivision 2 which is not composed of points of

the knot will be covered by « cells of the subdivision 2n, one in each sheet of

the spread S", and such that each cell of the subdivision 2 which is composed

of points of the knot will be covered by just one cell of the subdivision 2".

Along the knot, of course, the « sheets of the spread 5B merge into one.

We may simplify the subdivision 2n somewhat by amalgamating all but

one of the 2v edges covering the edges al, along with their end points, into

one single 0-cell; or, if we prefer, by treating this group of 0-cells and 1-cells

as a single generalized vertex A. The remaining 1-cells of the subdivision

will then represent closed 1-circuits beginning and ending at the vertex A,

while the boundaries of the various 2-cells will give the relations of bounding

among these circuits. Clearly the number of 1-circuits will be vn+1, as there

will be n circuits

(13.1) c'a (j=l,2, ■■■ ,»),

corresponding to each segment c[, together with one additional circuit c cor-

responding to the residual arc of the branch system that has not been

amalgamated into the generalized vertex A. Moreover, there will be vn+2

relations among these circuits corresponding to the vn+2 2-cells

(13.2) r'a (j= 1,2, ••• ,»)

covering the 2-cells rl of the subdivision 2.

Now, it is easy to verify that the matrix M" is precisely the one exhibiting

the incidence relations between the 1-circuits (13.1) and 2-cells (13.2).

Therefore, to obtain a matrix exhibiting the incidence relations between all

the 1-circuits and 2-cells we have only to adjoin to the matrix Mn a new row

corresponding to the remaining 1-circuit c. As the 1-circuit d is on the boun-

dary of two blocks of » 2-cells each, corresponding to a pair of contiguous

regions r0 and rr+i of the diagram, the added row will consist of a block of

» l's, a block of » — l's, and zeros. The elementary factors of the matrix with

the added row will be the ones that determine the connectivity numbers

and coefficients of torsion of the spread Sn. But this last matrix is evidently

equivalent to the matrix M0", for the 2« columns having the elements ± 1

in the last row correspond to the redundant columns of the matrix Mn;

hence, by adding to these columns suitable linear combinations of the re-

maining vn ones we may make all their elements zero except the ones in

the last row. Thus, the geometrical interpretation of the divisors of the

matrix Mo is established.
Since the matrix with the added row may be transformed into one such

that in certain columns all the elements will be zeros with the exception of
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an element 1 in the last column, it follows that the 1-circuit c must be a

bounding curve,
c~0 ;

for each column determines a relation of bounding among the 1-circuits de-

termined by the rows. But the 1-circuit c, when we include the generalized

point A which really forms a part of it, is simply the branch curve of the

spread S" itself. Hence we have the theoremf

The branch curve of the n-sheeted spread determined by a knot K is always a

bounding curve of the spread.

The geometrical interpretation of the factors of the matrix M" is not

quite so satisfactory for the case of a link of multiplicity greater than unity.

However, by a similar argument to the one made above, it is easy to show

that these factors give the connectivity numbers and coefficients of torsion

of the spread Sn when we treat the entire branch system of S" as if it were a

single generalized point.

14. Tabulation of A(x). At the end of the paper referred to in the last

footnote a chart has been drawn up showing diagrams of the eighty-four

knots of nine or less crossings listed as distinct by Tait and Kirkman; also

a table giving the torsion numbers of the 2- and 3-sheeted Riemann spreads

3io

4,o

6u
9«.
72„

Si.
7<a

9u

8,„

9,a

9«.

5u
9«,

8so»

6,.

6ja

8ji»

9u„

94ta

7«a

1-1
1-3
2-3

2-5*

3-5
3-7

4-7+

4-9
6-11
7-13
1-1+1
1-2+1

1-2+3
1-3+3
1-3+5

1-4+5*

1-4+7
1-5+7

7ia

9«*
9«»

8l2o

7,.
7s„

Oía

8«o

88a

8no

8l3o

8uo

9,.
9)S.

9u.
9U.

9».

9a.
9.7.

9«a

9«»

1-5+9
1-6+9
1-7+11
1-7+13
2-3+3
2-4+5
2-5+5
2-6+7
2-6+9
2-7+9
2-7+11

2-8+11+

2-9+13
2-9+15
2-10+15
2-10+17
2-11+17
2-11+19
3-5+5
3-6+7

%a

8l6a

9a*

941a

939a

9l0.

9l3a

9l8.

9j3a

9s8a

8l9n

7,a

9«»
820

8ta

87a

89a

8100

9«„

8l3a

8l7o

3-7+9
3-8+11
3-12+17
3-12+19

3-14+21
4-8+9
4-9+11
4-10+13
4-11+15
5-14+19
1-1+0+1
1-1+1-1
1-3+2-1
1-3+3-3
1-3+4-5
1-3+5-5
1-3+5-7
1-3+6-7
1-4+6-5
1-4+8-9
1-4+8-11

9jla

9l7a

9a)a

922o

8l8a

9sia

9».

9í7a

928a

929a

9M„

9,la

982a

933 a

934a

9<0a

9,a

9«a

9,.

9l«a

9u

1-5+7-7
1-5+9-9
1-5+9-11
1-5+10-11

1-5+10-13*

1-5+11-13
1-5+11-15

1-5+12-15+

1-5+12-17
1-5+13-17
1-6+14-17
1-6+14-19
1-6+16-23
1-7+18-23
2-3+3-3
2-4+5-5
2-4+6-7
2-5+8-9
1-1+1-1+1

f A and B, loc cit.
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associated with the knots. We list below the values of the polynomial A(x)

for these same knots. It appears that the polynomial A(x) of a knot is always

of even degree and that its coefficients are arranged symmetrically with

reference to the middle one. Therefore, to reduce the space occupied by the

table we have merely indicated the values of the coefficients of A(x) up to,

and including, the middle one. To illustrate how the table is to be used,

let us turn, for example, to the entry

«9,1.1 1-6+14- 19||.

This indicates that an alternating knot of nine crossings listed as the thirty-

third in the chart referred to above has the polynomial invariant

A(x) = 1 - 6x + 14z2 - 19s3 + Ux* - 6*6 + *'.

In the table, six repetitions of the same polynomial appear. In the three cases

marked with (*) the two paired knots may be distinguished with the aid of

other invariants of the matrix M, such, for example, as the coefficients

of torsion of the associated Riemann spaces. In the three cases marked with

(+) the two paired knots have «-equivalent matrices M and, therefore,

cannot be distinguished (assuming that they actually are distinct, which

Tait never really proves) by the methods of this paper.

Princeton University,

Princeton, N. J.


