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Frobenius I and C. S. Peirce § have shown that, in the domain of all real

numbers, the only linear associative algebras every number of which, except

zero, possesses an inverse, are quaternions and its subalgebras, and also that in

the complex domain no algebra has that property. In the present paper it is

shown that the Galois field is the only algebra of this type which possesses a

finite number of elements.

II.

Since addition is commutative in a linear associative algebra, it may be

shown, as in the Galois field theory,|| that for any number x of the algebra

there exists a prime integer p for which p times x is zero and further that p is

the same for every x. It follows that, in the group formed by the numbers of

the algebra under addition, every element is of period p and therefore the order

of the group is of the form p" where n is some positive integer. The numbers

=}= 0 of the algebra thus form a group F, of order/)" — 1, under the operation of

multiplication. The self-conjugate elements of F, together with the zero ele-

ment, form a Galois field. For, if yx and y2 are self-conjugate elements of F

and x is any element,

(Vi + y2)x - !Jix + y-2x = xUi + xy2 = *(* + ¿/2)>

i. e., the self-conjugate elements are closed under addition, as well as under

multiplication, and hence with 0 form a Galois field. Since the identity is a

self-conjugate element of F this Galois field always exists. If the order of the

Galois field is p'", the order of the subgroup of F, composed of its self-conjugate

elements, is of order p'" — 1. The subgroup will be denoted by G and the

corresponding Galois field by GF\_pm~\.

Let xx be any element =j= 0 of the algebra ; then there are exactly pm distinct

•Presented to the Society (Chicago) April 22, 1905.    Received for publication April 5, 1905.

t Carnegie Research Scholar (Scotland).

JG. Feobenius, Crelle, Bd. 84 (1878), p. 59.
(jC. S. Peirce, American Journal of Mathematics, vol. 4 (1881), p. 225.

|| As developed, for instance, in Professor Dickson's Linear Groups, p. 9.
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numbers of the form £,#,, where ff, is a mark of GF[pm~\. If x2 is any ele-

ment not included in this set, there are p2m distinct numbers of the form

£1*1 + %2X2- Similarity if x3 is any number, which is not of the form

£iri + £2*2» t*iere are PZm numbers of the form £,», + %2x2 + %3x3, and so on.

We can evidently enumerate in this way all the numbers of the algebra and

hence we can find say s numbers xa(a= 1, 2, ■ ■ ■, s) such that any number x

can be expressed uniquely in the form

s

a=l

where |a(or=l, 2, •■•,») are marks of GF\_pm~\.    The order of F is then
pm' — 1.

§2-

Let xa be any number of the algebra which does not lie in G F [pm ]. Then,

if yx and y2 are any two numbers commutative with xa, yx + y2 and yxy2 are also

commutative with xa and hence the set of all numbers commutative with xa

forms a subalgebra. The group, formed by the numbers of this algebra under

multiplication, will be denoted by FZa. Since FXa contains G, we find as in

§ 1 that its order is of the form pm'<* — 1, where sa is some positive integer.

Hence on dividing the elements of F into conjugate classes we get

(1) . P"-l=P'"-l + ±kf^ï-

This shows that, if the leas* common multiple of the sa(a = 1, 2, ■ ■■, t) is s',

pm — 1 is divisible by (pn — l)/(p""' — 1).    Therefore

(pm — \)(pm'' — 1) = l(p" — 1).

Reducing this modulo pm we see that I nust have the form kpm — 1 (k > 0).

Since ms' = n, we have k = 1 and ms' = n = ms.

§3.

It follows from the theory of hypercomplex numbers, that there is an equa-

tion of lowest degree,

(2) f(x) = xr + axxr~l + a2xr~2 + ■■■ + (»„_, = 0,

with coefficients in GF[pm~\, which is satisfied identically by any given num-

ber x of the algebra, irrespective of any special relation between the coordinates

of £, except the condition that they lie in GF[p'"~\. Further, there is at least

one element of the algebra which satisfies no similar equation of lower degree.

Indeed, (2) states that xr~l, xr~2, ■ ■ ■, x° are linearly independent with respect to
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G F [pm], and the condition of independence can evidently be put in a form

which states that certain determinants, whose elements are rational integral

functions of the coordinates of a?, do not all vanish identically. Hence there

must be some set of values of the coordinates for which xr_l, xr~2, ■ ■ -, x" are

independent and hence the particular x so obtained can satisfy no equation of

lower degree than r. (2) is called the characteristic or identical equation, while

the equation of lowest degree satisfied by a given x is called its reduced *

equation.

f(x) is irreducible in GF[pm~\ ; for, were it reducible neither factor would

possess an inverse, contrary to our hypotheses. Similarily, the reduced equation

of a given number is irreducible.

For any given x all the roots of its characteristic equation/(x) = 0 are roots

of its reduced equation f <p(x) = 0, both being regarded as ordinary equations in

the GF\_pm~\, and therefore, since 4>(x) is irreducible, f(x) is a power of <¡>(x)

and the degree of the reduced equation is a divisor of r.

We now assume that FXa is abelian for every xa which does not lie in the

GF[pm]. It is shown below that the general case can be made to depend on

this simpler one. Under this assumption F is the multiplicative group of a

Galois field and is therefore cyclic.]: If xa is chosen as the generator of Fx and

if 8a is the degree of the reduced equation of xa) there are exactly ft"'« — 1

different rational functions of x with coefficients in GF[pm~\ ; hence the order

of FXa is »"'*« — 1. Now it was shown above that, for some x„, 8a = r and also

that each sa is a factor of r. Hence r is the least common multiple of «,, «2,

and therefore r = s. But ms = n. Hence FXa is identical with F, i. e., the

algebra is a Galois field.

Suppose now that F is not abelian. Then for some x, not contained in G,

Fx is not abelian. Similarly there must be some element of Fx, which is not

self-conjugate in Fx and is such that the group of those elements of Fx which are

commutative with it, is not abelian ; and so on. We could then deduce in

this way a series of groups of decreasing order, no member of the series being

abelian. This is however impossible since each group of necessity contains G

and the order of F is finite.    Hence F must be abelian.

§4-

The same result can be deduced as follows without the aid of the theory of

the characteristic equation.    It was shown in § 2 that, if F is not a field, its

elements can be arranged in subgroups the orders of whose multiplicative groups

* Frobbnius, loo. oit.

fCf- Frobenius, loc. cit. ; E. Weyb, Monatshefte für Mathematik und Physik,

vol. 1 (1890), p. 163.

i Ct. Dickson, loo. cit., p. 13.
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are of the form p""' — 1 . It follows then from Sylow's theorem, that every

prime divisor of p" — 1 is also a divisor of some /<""•> — 1 ( »'*„ < /')• This is

however only possible in the following two cases:* (i) p ='2 , it = t> ; (¡i)

,,.2*- I, „. = 2.
In case (i) we have m = 1 since the only divisors of a arc 2 and 3, wliicb

are relatively prime, hence from (1), §2,

._,,-, _  j 2„ _  ]
2"  -   1    =   1    +  ,•    -. _    ,   +   •<■; 03  _     ,

where ,r, and .»•., arc integers not both zero. This gives (¡2 = 9.r, + 2I.e.,, an

equation which cannot be satisfied by integers. Hence tin's case cannot occur.

Case (ii) is evidently inadmissable since n = 2 is a prime.

The following proof is perhaps more direct. If all the elements of the algebra

arc multiplied successively by any one element except zero it is easily seen from

the distributive law that they are permuted among themselves in such a way as

to leave their additive relations unchanged, i. c, each such operation gives an

isomorphism of the additive group with itself, f It follows that in the group

of isomorphisms of the additive group there are two subgroups simply iso-

morphic with the multiplicative group; namely, one obtained by left and the

other by right handed multiplication.

Each operation of one of these subgroups is commutative with every operation

of the other, and it is easily seen that their greatest common subgroup corresponds

to the set of the self-conjugate elements of F and is therefore of order p'" — 1 ,

These two subgroups then generate a subgroup of order (p" — 1 )2/(p'" — 1 ) of

the group of isomorphisms. Since the additive group is an abelian group of type

( 1 , 1, • ■ , 1 ), its group of isomorphisms is the general linear homogeneous

group GLII(u, j>) of order (p" — l)(p" — p) ■ • -(p" — p"~l), an expression

which is divisible by ( p" — l)2/(]>'" — 1 ) only in the two special cases men-

tioned above, unless m = a. Having excluded these two cases above, we must

have m = u .    Therefore F is abelian. $

The University of Chicago,

3Tareh 31, 1905.

* Birkhoff and Vandiver, On the Integral Divisors of a"—b", Annals of Mathematics,

vol. 5 (1904), p. 177; L E. Dickson, On the Cyt-lotomic Function, American Mathematical

Monthly, April, 1905.

11 am indebted to Professor E. H. Moore for calling my attention to this point of view.

i Professor Dickson has deducei the same result from the theory of canonical forms.


