
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLV, NUMBER 1

APRIL 1987, PAGES 105-122

ON THE SOLUTION OF INTEGRAL EQUATIONS

WITH STRONGLY SINGULAR KERNELS*

By

A. C. KAYA and F. ERDOGAN

Lehigh University

Abstract. In this paper some useful formulas are developed to evaluate integrals having

a singularity of the form (t — x)~m, m > 1. Interpreting the integrals with strong

singularities in the Hadamard sense, the results are used to obtain approximate solutions

of singular integral equations. A mixed boundary value problem from the theory of

elasticity is considered as an example. Particularly for integral equations where the kernel

contains, in addition to the dominant term (t — x)~m, terms which become unbounded at

the end points, the present technique appears to be extremely effective to obtain rapidly

converging numerical results.

1. Introduction. The mixed boundary value problems in physics and engineering may

generally be expressed in terms of a "singular" integral equation of the form

( /c(t,x)/(t)</t = g(x), x e D (1)
JD

where g is a known bounded function and the kernel k is usually singular. The nature of

the singularity of k is dependent on the choice of the density function / in formulating

the problem. For example, in one-dimensional integral equations arising from potential

theory, if f(t) is selected to be a "flux," then k has an ordinary Cauchy singularity

(t - x)'1. On the other hand, if / is a potential, then k has a strong singularity of the

form (t - x)~2. Particularly in two-dimensional integral equations, formulating the prob-

lem in terms of a potential rather than a flux-type quantity has certain advantages.

Because of this it is worthwhile to develop effective techniques for evaluating singular

integrals with strong singularities. In actual physical problems the density function / is

either bounded or may have integrable singularities on the boundary of D. Thus, in

one-dimensional integral equations the integral on the left-hand side of Eq. (1) may be

interpreted in Cauchy principal value sense for a Cauchy kernel, whereas it would be
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106 A. C KAYA AND F. ERDOGAN

unbounded in the case of a strong singularity (t - x)~2. Despite this, in the latter case the

physical problem can still be solved provided the integral is interpreted in the Hadamard

sense by retaining the finite part only.

The concept of finite-part integrals was first introduced by Hadamard [1] in connection

with divergent integrals of the form

f /(0 +, dt, (2)
J" (x-t)p+l

where / is bounded and p is an integer. In spite of this relatively early beginning, the

adoption of the concept in applications has been rather slow [2,3]. It is mainly due to

Kutt's work [4-6] that the idea is finding relatively wide applications. To demonstrate

Hadamard's basic idea we consider the integral

A
(t - x)

from which, differentiating both sides separately, it follows that

1 rb dt 1 1

S0U) = fb   t-~r^ = 2(b - x)1/2 (x<b), (3)
J V / t   V 1 '

-s,>oU) = 2 /
°V y (t-x)3/2 {t-x)l/1 (b - x) 1/2

(x < b). (4)

In (4) it is seen that the derivative of S0 (which is bounded) is the difference between a

divergent integral and an unbounded integrated term. Noting that the integrated term is

independent of b, we may now consider the derivative of S0 as being the " finite part" of

the divergent integral and define

l"
dt

(t-x)3/2 (c-x)1/2 {b - x) 1/2
(x < c < b).

(5)

Following are some other examples (see also [5]):

fb — —r= lim r
JX (t-x)a+l c-*x jc

dt

(t-x)a + l «(c-x)Q
= - — (b — x) " (a > 0),

a

——— = lim f + log(c - x)
Jx t-x c-+x[Jc t-x 5V '

rb dt rx dt fb dt

(6)

= log(b - x) (x<b), (7)

lh—L- = f -J— + fh = iog(fc _ x) - log(x - a) (a < x < b),
J a t — X J a I X J x t X

(8)

fb dt = rx  di + fb —dt_— = _ 1 1_ {a<x<h)t

T« (t-x)2 J° (t-x)2 JX (t-x)2 b~x X~a

(9)
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^/6/(r)logU - x\dt = J~^dt (a < x < b), (10)

7^* <«<*<*>' (11)ax a t X Ja (t - xy

A £b fill dt = £h A
dxJa (t-x)a+1 K dx

1

(t - x)
a + 1

f(t)dt (a<x<b,a> 0). (12)

In this paper some useful formulas for the evaluation of certain singular integrals are

developed. The results are then used to obtain effective numerical solutions to integral

equations having kernels with strong singularities and some examples are given.

2. Evaluation of finite-part integrals. With an eye on applications to one-dimensional

mixed boundary value problems, in this section we will describe some simple techniques

for evaluating the finite-part integrals having (t - x)~2 as the kernel. Let F(t) be a

bounded function with continuous first and second derivatives and let the interval be

normalized such that -1 < x, t < 1. The singular integral may then be expressed as

f1 dt = jl [F(t) - F(x) -(t - x)F\x)]-~^—dt
J-1 (t-xY J-1 (t-x)2

t^i \ I1 w(t)dt , n w(t) dt , „

-i (t - x) -i ' ~ x

(13)

where w(t) is the fundamental function of the corresponding mixed boundary value

problem and may be determined by using a suitable function-theoretic method [7], For

simple physical problems w is given by one of

w(t) = l, (l-t2)*1/2, (1 - t)T1/2. (14)

One may now note that the first integral on the right-hand side of Eq. (13) is bounded (the

integrand approaches \F"(x)w(x) as t -» x) and the remaining integrals may be evaluated

by using the following expressions:

4-1

/; - *

i

i+* • <i5>

frS-rb-rb <«»-i (t-x) 1 * 1 + x

/  2

/ — — dt = -ttx (-1 < x < 1), (17)
J _l t — X

f~ 2

/  —T dt = -7T (-1 < X < 1), (18)
'-i (t-x)2(t - x)
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p   ~7=f = 0 (~l<x<l), (19)
-i (t - x)Vl - t2

f 7 r - 0 (-1 < x < l), (20)
-i (/ - x) n -12

f1   -dt = A-x log | B | - 2/2 (*<1), (21)
J t X

f (22)•'-i (t-xf 21 + *

f 7 = (,<1), (23)-1 (/ — jc)V1 — t yj\ — x

f- 4—- ^ J£!!L - j£- (,<!), (24)
-i (r - x) yj\ - t 1 x\2n-x i + x J

vT^T ^ 2/2 (-1)"'

(* — *) (m — 1)(1 — x)(l + jc)"1 1

2m — 5 ri \/l — t , , ,,
+ T7 7T7- rf    dt (x < 1), (25)

2(m - 1)(1 - x) (, _ x)"1"1

dt =   y2(-l)"' 

-1 (/ — x) i/l — ? [m — 1)(1 — x)(l + x)"' 1

2m — 3 /1 dt

f-W,  
— (-1 < 1),

(26)

2(m - 1)(1 - x) -i (/ _ jc)"1 1v/nr7

where w is an integer (m ^ 2) and

Mi+Vz M1-/1?)- (27)
The expressions involving the weight functions (1 - f2) + 1/2 are standard and may be

found in handbooks or derived directly by using the complex function theory [7],

Formulas (21) and (23) are obtained by using certain properties of Jacobi polynomials (see

Appendix A); the remaining formulas given above may then be obtained from (21) and

(23) by differentiation (see (11) and (12)).

In solving integral equations it is often convenient to express the unknown function

F(t) in terms of a polynomial with undetermined coefficients. In such problems the

following expressions may be quite useful:

/1 T^dt = -2Qn(x), (28)
I X

f 7^% dt = -^^-[xQn(x)-Qn+l(x)\, (29)
-1 (t - x) 1 ~ *
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p Z±_ dt _ _„Tn + 1(x) (« > 0), (30)
•'-I i — x

p U„(t)}/ -t dt =-m(n + \)Un(x) {n > 0), (31)
-1 ('"*)

Tn(t) (0 (n = 0)p  in(t) dt = u; (32)

•'-i (? - x)^! - t2 XtVh-M (n > !).

r-(,) 4

-1 (/ - x)Vl - t2

(0 (« = 0,1)
77

1 - X2
^ £/„(*)+ ^£/„_2(*) (« > 2)

(33)

where Tn and Un are Chebyshev polynomials of the first and second kind, respectively, Pn

is the Legendre polynomial, and Qn is the Legendre function of the second kind. Also,

referring to Appendix B it can be shown that

U*) = ~p —7 Z~ dt = E M* (n>0), (34)
77 -t <~x k-o

* f r dt=2_(.
(t - x) k =0

1 /n /"i/l — t2 "

Cn(X)=-f — rdt= E C*** («>0), (35)
77 ■'-1 r/-jcr t = n

fo (« = 0)
D . (*) = I/1  r df = { "-1 (36)

"v ' 77J_1(t_x\jr—? \Vdkxk (n> 1,
A = 0

(o (/I = 0,1)

(.>2). (37)
a =o

ri ' / n \ _ /"i vT^~
^(x)= f1 f

"l ' ^{t-xy t (/-,)'
■ <&

+ E (x<l,n>0), (38)
A = 0

Sj(x) =
/•V/

1 (f - x)Vl - t

= E 77 ^= + YBJkx"-J-k (x<l,n>0),
m = l 1 -1 (' - *) vl - ? /t = 0

(39)
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where the coefficients bk, ck, dk, ek, AJk, and B{ are given in Appendix B and (?) is the

binomial coefficient. Appendix B also shows the derivation of RJn(x). A similar technique

was used to obtain the functions Bn, Cn, Dn, En, and S/r The appendix also gives some

useful recursion formulas involving the functions defined by (34-39).

Even though there are also Gaussian-type integration formulas developed by Kutt [5]

for the evaluation of the singular integral

rfc f(')r . dt, \>1, (40)
(,-*)A

they are not very convenient for solving integral equations by using the standard

quadrature method which requires the use of fixed stations tr since in Kutt's formulas the

tt vary as x is changed (see also [8]).

3. Solution of integral equations. Let us now assume that the mixed boundary value

problem is reduced to the following one-dimensional integral equation:

fb [ks(t,x) + k(t,x)\f(t) dt = g(x) (a < x < b), (41)
J a

where the kernel k is square integrable in [a,b] and g is a known bounded function. If

the unknown function / is a "potential" quantity, then the singular kernel ks has a strong

singularity (i.e., it contains terms of the order (/ — x)~", n > 1). The fundamental (or the

weight) function w(f) of the problem may be determined from ks, and / may be

expressed as

f(t) = F(t)w(t), a < t < b, (42)

where F is an unknown bounded function. In solving the integral equations with strong

singularities, the application of standard quadrature formulas does not seem to be very

practical. In these problems the simplest and the most effective technique appears to be to

approximate the unknown function F by a truncated series as

F(t)= X a„4>n(t) (43)
n = 0

and to determine the coefficients an by a weighted residual method. Here {<pn} may be

any convenient complete system of functions. Substituting from (42) and (43) into (41) we

obtain
N

E anGn(x) = g(x) (a < x < b), (44)
n = 0

where

Gn(x) = {h ks(t,x)cj>n(t)w(t)dt + (h k(t,x)<t>n(t)w(t) dt. (45)
Ja (l

The coefficients an may then be determined from the following system of algebraic

equations:

£ ajh Gn(x)xPj(x)wJ(x)dx = fb g(x)xPj(x)wj(x)dx (j = 0,1 N),
n = 0 a a

(46)
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where is a coordinate function in a complete system (e.g., a set of orthonormal

polynomials) and vvy is the corresponding weight. The functions and xpj(x) are

usually selected in such a way that their orthogonality properties may be utilized. In

practice one may use trigonometric functions, Legendre polynomials, Chebyshev poly-

nomials, delta functions, or any linearly independent set of polynomials such as t" and xJ.

Quite clearly the numerical work in (46) may be reduced considerably if we select

w,(jc) = 1, ipj(x) = 8(x - Xj) (J = 0,1,..., N). (47)

By doing so we can use a simple collocation method to reduce (44) to the following

algebraic system:

N

Yj a„G„(Xj) = g(xj) (j = 0,1,..., N). (48)
«=o

Although the collocation points Xj can be selected arbitrarily, in general they are chosen

as the roots of Legendre or Chebyshev polynomials. Even though there is no restriction on

the choice of xJy our experience shows that a symmetric distribution with respect to the

origin with more points concentrated near the ends seems to help (see also [9]). One may

also note that in the case of a resulting ill-conditioned system, one could select (M + 1)

coordinate functions ^ with M > N in (46) or (47) and determine (N + 1) unknowns an

from a set of (M + 1) equations by using the method of least squares.

Needless to say, if the integral equation (41) contains only a dominant kernel (t - .x)"1

or (f - x)~2, one may always obtain the closed form solution by expanding the functions

g(x) and F(t) into appropriate series and by using the results given in the previous

section and Appendix B.

4. Applications: A crack in an infinite strip. In fracture mechanics the problem of an

infinite strip containing a crack perpendicular to its boundaries has been of wide interest,

since this geometry can be used as an approximation to a number of structural compo-

nents and laboratory specimens. The related boundary value problem will be discussed

below and the numerical treatment of the resulting singular integral equation will be given

to demonstrate the solution technique that was outlined in the previous section.

As shown in Fig. 1, the crack lies perpendicular to the stress-free boundaries and is

under prescribed surface tractions p(x). In terms of the crack opening displacement

defined by

V(x) = uy(x, +0) - mv(x,-0) (a < x < b), (49)

the problem may be reduced to the following integral equation (see [10] and Appendix C).

jb K(*) dt + f* V(t)K(t,x) dt = a < x < b, (50)
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where the kernel K(t,x) is given by

K(t,x) = A^(/, x) + Kx(h - t,h - x) + K2(t,x) + K2(h - t,h - x), (51)

\ 1 12x 12x2 , ,
Ki(t,x) = — - + - --- - (52)

(t + x) (t + x) (t + x)

K2(t,x) = f x, a)e~al-' + x) + f2(t, x, a)e~a{lh + x~')\ da, (53)
Jo

fi(t, x, a) = ^e~2ah{%a4h2tx — 12a3h2(t + x) + 2a2 [9/72 + h(t + x) + tx\

-3a[2h + t + x] + 5 + e~2ah\~2ortx + 3a(t + x) - 5] j, (54a)

f2(t,x,a) = {~4ai[hx{h — / )] + 6a2[h2 + h(x — ?)]

4- a [-10/2 + t — x] + 3 + e~2ah[a(x — t) — 3]}, (54b)

D = 1 —(4 a2h2 + 2)e~2ah + e~4ah. (54c)

Note that for h -* 00, Kx(h — t, h — x) and K2 vanish and the integral equation for the

half-plane is recovered.

Fig. 1. A Crack in an Infinite Strip
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Normalizing the interval (a, b) by defining

b — a\ I b + a\ / b — a\ ( b + a
r+\—=— , x = \—-— 5 +

2-)' — (55)

V«) - (^(r), (56)

the integral equation (50) becomes

jb dr + f1 f(r)k(r,s)dr = g(x), -1 < j < 1, (57)
Ja {r - s) y-i

where

k(r,s) = K(l>x), g(x) = (58)

The cases a > 0 and a - 0 represent the internal and the edge crack, respectively, and

these two problems will be treated separately. In each case the solution will be assumed to

be of the form

f(r) = F(r)w(r), (59)

where the fundamental solution w(r) can be determined from the dominant behavior of

the singular kernels in the integral equation and is found to be

wir) ~ V'l ~ r2, internal crack, (60)

w(r) = v/l - r , edge crack. (61)

Internal crack: a > 0. Following the procedure described in the previous section, F(r)

is now approximated in terms of a truncated series of Chebyshev polynomials,

F(r) = £ anUn(r). (62)
n = 0

By substituting from (59), (60), and (62) into (57) and by using (31), we obtain
N

Y, an[-ir(n + l)t/„(i) + hn{s)] = g(s), -1 < s < 1, (63)
«=o

where

hn(s) = f1 u„(r)k(r,s)]/1 - r1 dr. (64)

The unknown coefficients an are then determined from Eq. (63) by selecting a convenient

set of collocation points such as the zeros of TN+1,

Sj = cos (¥tt!) °-°a ">• (65)

Once the solution is obtained, the stress intensity factors, which are the main parameters

of interest in fracture problems, can be calculated from

k^a) = lim /2(a - x) avy(x,0), (x < a)

f' (,><,> wK + 1 I t^a y;2(/ ~a)

K + 1
2e_UJLz£f(_i,,
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k1(b)= lim \j2(x - b) a (x,0), (x > b)
x-*b

^ \, v(t)
lim —= , (t < b) (f-nx

J2(b - t) (61 >K + 1

Equations (66) and (67) are obtained from (50) by observing that the left-hand side in (50)

gives the stress component ayv(x, 0) outside as well as inside the cut (a, b) [10],

Table 1 shows the stress intensity factors for an internal crack in a half-plane under

uniform loading p(x) = p0 as an example.

Edge crack: a = 0. The solution of the integral equation (50) for a = 0 needs more care.

This is due to the fact that the kernel K(t,x) becomes singular as t and x approach 0

simultaneously. (Similarly, in (57) k(r,s) becomes unbounded as r and s approach -1.)

For a weight function -/\ — r, certain relations involving singular integrals of power

series have been presented in Sec. 2. Therefore, if we express the unknown function F(r)

as
N

F{r)= Ev". (68)
n = 0

the singular integrals may be evaluated from Eq. (38) by letting j = 2. The integral

equation (57) now becomes

N

L a„Gn(s) = g(s), -l<s<l, (69)

where
«=o

>n(*)= f dr + J' r"]/T^-~rk(r,s) dr, (70)
-1 (r - s) i

Table 1. Normalized stress intensity factors for an internal

crack in a half-plane. (N + 1) terms are used in

approximating the unknown function.

<^>

1.01

1.05
1.1

1.2
1.3
1.4

1.5

2.0
3.0
4.0

5.0

10.0
20.0

M")
Po]/(b ~ a)/2

3.6387

2.1547
1.7587

1.4637

1.3316

1.2544
1.2035

1.0913
1.0345

1.0182

1.0112

1.0026
1.0006

ki(b)

p0\J{b - a)/2

1.3298

1.2536
1.2108

1.1626

1.1331

1.1123
1.0967

1.0539
1.0246

1.0141

1.0092

1.0024
1.0006

N + 1

15
10

10

6
6

6
4

4
4

4

4

4
4
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or using the notation of Eq. (38),

G„(s) = R2„(s) + f1 rn\[i - rk(r,s) dr. (71)
•'-l

The integral in Eq. (71) can be evaluated numerically; however, as s -* -1, the value of

the integral becomes unbounded. It may be observed that for s = -1, R2n(s) is also

unbounded, resulting in a bounded value for Gn(-1). To determine the coefficients an, the

collocation points may be selected as in Eq. (65).

For h —> oo the kernel k(r,s) simply becomes

 i Mi±^L (72)
(r + ^ + 2) (r + s + 2) (r + s + 2)

and from (71), (72), and (38) it can be shown that

G„(s) = R2„(s) - R2n(-s -2) + 12(5 + 1 )Rl(-s - 2) - 12(s + 1 )2R4n(-s - 2).

(73)*

In the limiting case we find

G„(-l) = -/2(4n + l)(-l)". (74)

The stress inequality factor is given by

kx(b) = lim \j2(x — b) a (x,0) (x > b)
>b

V(t) ,
{,<b)

(75)K + 11 2

As a first example we again consider a semi-infinite plane with an edge crack. In this

case the kernel of the integral equation is given in closed form (see (57) and (72)) and the

numerical analysis can be carried out quite accurately. For a uniform crack surface

pressure p(x) = p0 and for various values of N, the calculated stress intensity factor

k^b) and the relative crack opening displacement K(0) are given in Table 2. The table

also shows the correct value of k^b), which was calculated from the infinite integral given

in [11] (see Appendix D). It is seen that the convergence of the method is extremely good.

The second example is concerned with a long strip of finite width h which contains an

edge crack of length b and is subjected to a uniform tension p0(p(x) = p(j) or pure

bending M{ p(x) = (6M/h2)[l - 2x/h]} away from the crack region. In the numerical

analysis the number of terms in the series was increased until the accuracy of the last

significant digits given in Table 3 was verified. In no case were more than 20 terms

needed.

(*) Although (73) is valid for all s < 1, due to high powers of (-s - 2) needed for large n, it should only be

used near s = -1 to maintain good accuracy.
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Table 2. Normalized stress intensity factor and crack open-

ing displacement for an edge crack in a half-plane.

N + 1

1
2
3
4

5
6
7
8
9

10

15
20

*.(*)

Pofi>

1.062652

1.126950
1.124283

1.121818

1.121442

1.121451

1.121483

1.121504

1.121514
1.121518

1.121522

1.121522

1.12152226*

_2fi_ "01
1 + k p0b

1.502816

1.423476

1.457747

1.455918

1.454520

1.454224

1.454211

1.454241

1.454264
1.454278

1.454298
1.454298

*The correct value of stress intensity factor (calculated

from the infinite integral given by Koiter [11]).

Table 3. Normalized stress intensity factor and the relative crack open-

ing displacement for an edge crack in a long strip under uniform

tension p0 or pure bending M away from the crack region;

= 6M/h2

b/h

— 0

0.00001

0.001

0.1

0.2

0.3
0.4

0.5

0.6
0.7
0.8
0.85

0.9
0.95

Tension

ki(b)

Pdb

1.12152226

1.121522

1.121531

1.1892

1.3673

1.6599

2.1114

2.8246

4.0332

6.3549
11.955
18.628

34.633
99.14

1 + k p0h

0.14543 X 10"4

0.14543 X 10"2

0.15490

0.36543

0.70358
1.3048

2.4702

4.9746

11.246

31.840
63.288

158.94

708.8

Bending

ki(h)

1.12152226

1.1215

1.1202

1.0472

1.0553

1.1241

1.2606

1.4972

1.9140

2.7252
4.6764

6.9817
12.462
34.31

_2m_ z(g}
1 + k a„,h

0.14543 X 10"

0.14535 X 10"

0.14529

0.31822

0.56141

0.94130

1.5924

2.8387

5.6432

13.989

25.990
60.965

253.7

Aside from providing accurate answers to some very practical questions, the results

given in Table 3 are important in that they follow routinely from the technique presented

in this paper, are not available in the literature for very deep cracks (b > 0.8h), and are

extremely difficult to obtain by using other methods. For example, the solution of the

corresponding singular integral equation having a Cauchy-type dominant kernel by using
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a Gaussian integration formula requires a much greater computational effort than the

technique presented here for the same accuracy and, for h > 0.8h, has an extremely slow

convergence.

It may be observed that, as in more conventional formulation of mixed boundary value

problems, if the unknown function in (41) is a "flux"-type quantity, then the dominant

kernel ks would have a Cauchy-type singularity. In this case too, after properly identify-

ing the fundamental function w(t) (see (42)) of the integral equation that contains the

singular behavior of the solution, the problem may again be solved by using the results

developed in this paper for Cauchy kernels and by following a procedure similar to that

outlined in Sec. 3.

Appendix A: Derivation of formulas (21) and (23). Referring to, for example, [12] the

singular integral involving the Jacobi polynomial P^a ^ and its weight may be expressed

as

/i — (1?t dt = Wcota7r(l - x)a(l + xYP^\x)

2a+"r(a)r(« + p + i) i i-x
 ■ jt I « + 1, —n — (x — p; 1 ~~ a;

T{n + a + P+l) \ ' '2

(a > -1,0 > -I,a # 0,1,2,...), (Al)

where F(a, b; c; z) is the hypergeometric and T(a) is the gamma function. Letting n = 0,

a = j, P = 0, and using the properties of hypergeometric functions [13], it can be shown

that

/; -"-"2~) = ]/l~x losl ̂  I " (x < l),

(A2)

where

Following a similar procedure we obtain

/ I- l/VM- (A3)

Appendix B: Derivation of formulas (34)-(39). Equations (34)-(39) are obtained by

using the expansion

'"= (bi)
/ = 0
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and by referring to the relevant formulas given in Sec. 2 of the paper. For example, from

(Bl) and (38) it may be shown that

*i(x) = f
i tn4i - t

-i (t-xy

Ef/U""'/1 7 dt + E ({ - x)'~JVr^J dt (B2)
,=oV' ' -i (/ - ,=/ '' i

If we make use of the expression [14]

(, - ,)-^7« - 4/2 I (I „ _l/;+ 3 . (B3)
Ar = 0 p = 0

from (B2) it follows that

J / _ \
*'»(*) = E , "Jxn-J+mf1 r Udl + ^ Aix"~J~k (x<l,n> 0), (B4)

m = 1 \ J m I J-l {t - x) i- = nm = l V ~~ -V A=0

4 = (B5)
'=y

A similar procedure may be used to derive the formulas given by (34)-(37) and (39),

and the related coefficients may be obtained as follows:

bk = {

0 for n — k = even

r, n - k

2^ r( " ~ + 3

0, for n — k = odd

r, n - k - 1
c. = I (k + \) \ 2 / f , (n>0, A:</i), (B7)

\ -——— — : —f-, for n - k = evenv ' 7' v ;
1 2v^ r.ln-k + 2"

dk={

0, for « — & = even

p. « ~ k

l- ^ torn-k = odd (B8)
4m r(n~k + 1'
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0, for n - k = odd

r[n~k~ M
(A: + 1) V 2 ) f , (» > 2,Jfc < n - 2), (B9)
    —- , ; , for n — k = evenv ' '' v '

n — k~2~

B{ = 2^n .k_x 1])Z (_!)'(*) <n>0)' (B10)

where for the gamma function we have T(- 2) = -2r(|) = -2{m .

Some examples of the polynomials Bn, C„, Dn, and En and some useful recursion

formulas are given below.

Bq = —x, Cq = —1,

Bx = -x2 + y Cx = -2x,

B2 = -x3 + y C2= -3x2 + y

^ 1
>

x3 X „ , d 3 -> 1

B 3 = -x4 + y + -5-, C3 = -4.x3 + x,

£4 = -X5 + y + |, C4 = -5x4 + 2*2 + I".

*5=-X6+ y + y + C5= -6x5 + 2x3+ J, (Bll-14)

D0 = 0, E0 = 0,

Z>! = 1, = 0,
D2 = x, E2 = 1,

D3 = X2 + y £3 = 2x,

I>4 = X3 + y E4 = 3x2 + y

v2 3
A = X4 + -z- + -5-, E5 = 4x3 + X,

2

Cn+i(x) - xCn(x

En + i(x) - xEn(x

D„(x)-Dn+2(x

En(x) - En + 1{x

R{X\(x) - xR{+\x

S„J+i(x) - xSj+1(x

= B„(x), (B15)

= Djx), (B16)

= B„(x), (B17)

= C„(x), (B18)

= R{(x), (B19)

= Sj(x), (B20)
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= (B21)

^Ri(x)=jRi+l(x), (B22)

^S'(x) = jSrJt( x). (B23)

Appendix C: The elasticity problem considered as an example. The two-dimensional

elasticity problem considered in Sec. 4 and described in Fig. 1 requires the solution of

differential equations

V2u,+ ^—[uk,ki■ = 0 (/', k = x, y), (CI)

subject to

^(O^) = oxy(0,y) = oxx(h,y) = oxy(h,y) = 0 (-oocjxoo), (C2)

a^(x,0) = 0 (0 < x < h), (C3)

ayy{x,0) =-p(x) (a < x < b),

uv(x, 0) = 0 (0 < x < a,b < x < h),

where ux, uv are the x, y components of the displacement vector, a, is the stress tensor

(i, j = x, y), and k is an elastic constant (k = 3 — 4i> for plane strain and k = (3 —

e)/(l + i>) for plane stress, v being the Poisson's ratio). The stress and displacement

components are related through

(C4)

CTVX = + K)"*,x +(3 - *)",,,]> (C5a)

°yy = + K)Uy,y+0 - K ) Mx,.v] > (C5b)

°xy = ^(Ux,y + Uy,x)' (C5c)

The solution of (CI) satisfying the symmetry condition (C3) may be expressed as [10]

m,(x, j>) = uf + u) + uf, (i = x,y), (C6)

<(x,y)= , Jh v(t)
277(1 + K) Ja

Mv(-X' y) = , x r
277(1 + K) Ja

r r
dt, (C7)

r r
dt, (C8)

r2 = (x-tY+y2, (C9)

u\{x,y)=^j + jcj/4z e'ax cosay da, (C10)
■'O

2 rx/ rOO

u\(x, y) = — I {At + A2x)e~ax sinay da, (Cll)
77 y0



INTEGRAL EQUATIONS WITH STRONGLY SINGULAR KERNELS 121

u2(x,y) = -~J Bx+[^+h-x^B2 e~l)l'h~x) cos/Sy d/3, (C12)

2 /*°°
uv(x>y)=~ [Bx + B2(h - x)\e~P(h ~x)sin(ivdfi, (C13)

77 /0

where V is the auxiliary function defined by

V(x) = ur(x, +0) — uy(x,~0) (a < x < b). (C14)

In this solution uf, u}, and u] are respectively associated with an infinite plane having a

crack and the half-planes x > 0 and x < h. The corresponding expressions for the stress

components are given as follows:

(c,5)2
2n"xx ff(l

1 c 1 J1 4?2
2 vayy ir(l+K)l <'>{,» r4 +

1 4y2 8(jc - t)-y
21u"yy  /-i i ..w ' v'1 7 4 1 ^ (C16)

(C17)

e'ax cosay da, (C18)5c'-"4r [«<-<.+-4^)+(iri-)'4

1 2 r00 r
2Va*'=-*J0 [a(Ai+A2*) +

K - 1
yl2

K + 1

e ttX cos ay da, (C19)

e'ax sinayda, (C20)

e'^-x)cosj3ydj3, (C21)

e-fi<h-"cos fiydp, (C22)

+B2{h - x))+[^—^^B2 e-^n-^smfiydfi. (C23)

Using the homogeneous boundary conditions (C2), the unknown functions Ax(a), A2(a),

Bx(fi), and B2(/3) can be expressed in terms of V(x) and the mixed boundary conditions

(C4) may then be shown to reduce to the integral Eq. (50) given in Sec. 4.

Appendix D: Stress intensity factor for the edge crack calculated from Koiter's results.

The edge crack problem in a semi-infinite plane has been considered in the literature

many times and mostly for comparison. The stress intensity factor 1.1215 has become a

standard when comparing numerical techniques for the solution of singular integral

equations. For uniform pressure p0 applied on the crack surface, a closed-form expression

for the stress intensity factor in terms of an infinite integral is given by Koiter [11]:

= ^(B+ 1)
p0]fb \fn A
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where A is calculated from

•n

1 r™ 1 j asinhwa . ,
log A — — I    log —p== \da

~ •'o 1 + a \ B2 + a2 [cosh77a — 2a1 — 1]

and B is an arbitrary constant greater than 1.

The result is independent of the choice for B and numerical calculations show that

k,—l— = 1.12152226,

pjb

where there may be an error only in the last digit.
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