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OF SINGULAR INTEGRAL EQUATIONS*
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Abstract. In this paper a pair of Gauss-Chebyshev integration formulas for singular

integrals are developed. Using these formulas a simple numerical method for solving a

system of singular integral equations is described. To demonstrate the effectiveness

of the method, a numerical example is given. In order to have a basis of comparison,

the example problem is solved also by using an alternate method.

1. Introduction. The solution of a large class of mixed boundary value problems in

physics and engineering can be reduced to that of a system of singular integral equations

of the following form:

- f 22 dt + f J2 ku(x, dt = g,(x),
7T Ji IX J— i i

-1 < 2 < 1, i = 1, ••• , M. (1.1)

In (1.1) <t>!, ■ • • , 4>m are the unknown functions, the constant matrix (a,,) is nonsingular,

the kernels k{j(x, t), (i, j = 1, ■ • • , M), are bounded in the closed domain — 1 < (x ,t) < 1,

and g, , • • • , gM are the known input functions. In physical problems the function 4>,

may be either a potential (e.g., temperature, displacement, velocity potential, electro-

static field) or a flux-type quantity (e.g., heat flux, stress, dislocation, velocity, charge

density). The end points Tl are points of geometric singularity. At these points 4>,

is bounded if it is a potential and has an integrable singularity if it is a flux-type quantity.

The singular behavior of the functions <£,(£) around t = =Fl may be obtained by

analyzing the dominant part of the integral equations (1.1) through the use of function-

theoretic methods [1]. By multiplying (1.1) by A~\ A = (a,;), and by following the

procedure of [1], it can easily be shown that the fundamental functions of (1.1) which

characterize the singular behavior of <t>i are given by

R,(t) = (1 + 2)(_i/2, + 0,(1 - 0(I/2>+^ (1.2)

where a, /S = 0, =Fl; — 1 < + a < 1, — 1 < | + jS < 1 and the index of the integral

equation is k = —(a + p) = =Fl. Thus, if <£,• is bounded at the singular points, a = 1,

0 = 0, and

RM = (1 - ty\ K = -1; (1.3)
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if 4>j has an integrable singularity, a = 0, /S = —1, and

R,(t) = (1 - t2y1/2, k = 1. (1.4)

For k = 1, the solution of (1.1) contains M arbitrary constants which are usually deter-

mined by using the following set of (physical) conditions:

/:
<t>i{t) dt = C, , j = 1, • • • , M, (1.5)

where Ci , ■ ■ ■ , CM are known constants.

The general theory of the system of singular integral equations (1.1) has been ex-

tensively studied (see, for example, [1] and [2]). The conventional method of solving

(1.1) is based on the regularization of the system through the application of another

singular operator (usually the adjoint of that of (1.1)). By expressing the unknown

functions as

= RMFM (1.6)

this method leads to a system of Fredholm integral equations in the new set of unknown

functions F,(<) which are bounded and continuous in the interval — 1 < t < 1. However,

from the viewpoint of numerical analysis, the method is rather cumbersome and very

laborious.

An effective approximate method preserving the correct nature of singularities of

the functions <£, is described in [3]. Here, noting that the fundamental functions iB,-(i)

given by (1.3) or (1.4) are the weights of Chebyshev polynomials Uk{t) or Tk(t), and

expressing the bounded functions F, defined by (1.6) as

F,(t) = Z AikUk{t) or (1.7)
0 0

the solution of (1.1) is reduced to that of an infinite system of linear algebraic equa-

tions in the unknown coefficients A;k or B,k (j = 1, ■ • • , M, k = 0, 1, 2, • • ■) (see the

example given in this paper).

In this paper we will describe a more direct numerical method of solving the system

of singular integral equations (1.1). The method is based on the notion that by selecting

the nodal points tk and xk in the interval (—1, 1) properly, the system (1.1) can be

treated as if it were a system of Fredholm equations and the unknown functions F,(t)

may be determined by using the conventional collocation technique.

2. Two auxiliary formulas. Before describing the numerical method we will prove

the validity of the following formulas:

V Tj;(tk) _ n n
S n(tk - xr)

= Uj-^Xr), 0 < j < n (2.1)

TJU) = 0, Un-AXr) = 0

and

± frVoR ° (»>A <M>
u„(tk) = 0, T„+1(xr) = 0
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where TJx) and UJx) are Chebyshev polynomials defined by

Tn(x) = cos nd, UJx) = S'n cos d — x. (2.3)
sm 6

To prove (2.1) consider the following simple fraction expansion:

where

ak = -(^.-,-i«t))/(r:a*)) = -(tf.-/-i(0)/(»tf.-.(fc)). (2.5)

Using the recursion formula [4]

= T&W^ix) - Tn(x)U,-i(x) (2.6)

and noting that T„(4) = 0, from (2.4) and (2.5) we obtain

Tj(tk) _ Un-i-i(x)

h n(tk - x) T„(x) '

For x = xr and U„-i(xr) = 0, ; = 0 part of (2.1) follows from (2.7). For j > 0 from

(2.6) and (2.7) we obtain

A T,{tk) _ TT . , TjjxW^x) . .
&»&-*)" ^"l(af)~ Tn(x) (2-8)

which reduces to (2.1) for x = xr , Un-i(xr) = 0.

To prove (2.2) consider the following expansion:

Un-j-l(x) __ \ 1 bk /<-) q\
^ ;

where, noting that UJth) = 0 and [4]

(1 - t2)U'n{t) = (n + 1)Zy„_!(«) - ntU„(t), (2.10)

the constants bk are given by

L     ^ n-; - i(^fc)    (1 th)Un-j-l(tk)

C£(fc) ~ (« + 1)un^(tk) ' {ZAl)

Using (2.6), the recursion formulas [4]

TJt) = Un(t) - tU.-At), US) = I\-(0 + tUj-i(t) (2.12)

and again noting that U„ (tk) — 0, from (2.9) and (2.11) we obtain

(1 — tl)Uj(tk) Un-j-i(x) ,9

£i(n + 1 )(tk - x) Un(x)

Using (2.6) now for j —> j + 1 and n —* n + 1, (2.13) becomes

v- (1 - tl)Ui(tL) r , s Uj(x)Tn+i(x) (n .

h (n + 1)0, - x) - " + UM (2'14)
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which reduces to (2.2) for x = xT , T„+1(xr) = 0.

3. Gauss-Chebyshev integration formulas for singular integrals. Consider now the

following singular integral:

1 f1 4>(t) dt
ow = -

where

S(-x) = 1 f ' —1 < x < 1, (3.1)
IT J-i t — X

4>(t) = R(t)F(t), R(t) = (1 - eyU2 (3.2)

and F(t) is bounded in — 1 < t < 1.

(a) The case of k = 1. In this case R(t) = (1 — t2)~1/2 is the weight of 7\(0- Let

us assume that in —1 < t < 1 the function F(t) can be approximated to a sufficient

degree of accuracy by the following truncated series:

F(t) ~ i: B,T,(t). (3.3)
0

Thus (3.1) may be expressed as

«*>^IB<;/',(.-Ix'i-iv"- %B'a'-'{x) (3'4)
where the following relation is used [4]:

- f 77 _ Im-ev" = °> i = 0
' 0 - -,(*), ,->0> (-!<'<«• <33>

For x = xr it follows from (3.4), (3.3), and (2.1) that

r./ N If1 F(t) dt _ V"1 r, TT / \
S(Xr) - X L, t - XT (1 - f)1/2~ - £ ' ''"lW

_ F(tk)

fa fa n(4 - xr) fa n(tk - xr)

where

Tn(fc) = 0, 4 = cos ((x/2n)(2/c — 1)), (fc = 1, ••• , n)

£/n_a(xr) = 0, xr = cos (irr/n), (r = 1, • • • , n — 1).

If one considers the Gauss-Chebyshev integration formula [5]

1 [1 77^ Tn(tk) = 0, (3.8)
x J-! (.1 — i j i n

it is seen that (3.6) formally represents the Gauss-Chebyshev integration formula

for the singular integrals which is valid only at the discrete set of points x — xr (r =

1, • • • , n — 1), Un-i(xr) = 0.

(b) The case of k = —1. For this case R(t) = (1 — t2)1'2 is the weight of U,(t)

and we will again assume that the following truncated series represents F(t) with suf-

ficient accuracv:

(3.6)

(3.7)
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F(t) ~ E A,UM- (3.9)

From the relation [4]

r1 £/,«)(i - iyr-

7T J-i
dt = -Ti+1(x), (-1 < x < 1) (3.10)

t — x

and (3.1), (3.2) and (3.9), it follows that

S(x) ~ £ A,. - f fy/~ dt= - £ A,rm(aO.
j ■» 0 7TJ_i 6 X j«»0

For x = xr . using (2.2) and (3.9), (3.11) may be expressed as

S(xr) = - f' (1 - <2)1/2 dtzz-Z A,-Ti+I(xr)
7T «/ — i t 0

y- y-> (1 ~ flp AjUjCtk) _ (1 ~ t\)F(tk)
~ fa (n + 1)(4 - xr) ~~ Hi (?i + l)(f* - xr)

where

{/„(<*) = 0. tk = cos (far/(w +1)), (k = I, ■■■ ,ri)

Tn+l(xr) = 0, zr = cos (t(2t — l)/2(n + 1)), (r = 1, • • • , n + 1).

Again, if we consider the related Gauss-Chebyshev integration formula [5]

- f ma - ty/2 dt^f:(1 "ff0, um = o,
7T «/ —i 1 Tt ~p* X

(3.11)

(3.12)

(3.13)

(3.14)

it is seen that formally (3.12) may be considered as the Gauss-Chebyshev integration

formula for singular integrals which is valid only at the discrete set of points x = xr

(r = l, +1), T„+j(xr) = 0.

Note 1: The only error in the formulas (3.6) and (3.12) comes from the truncated

series representation of the function Fit) by (3.3) and (3.9), indicating that, if F is

bounded and continuous, arbitrarily high accuracy can be obtained by choosing n

sufficiently large.

Note 2: Even though the number p shown in (3.3) and (3.9) does not appear in

the final equations (3.6) and (3.12), in deriving them it is assumed that n > p.

4. Solution of singular integral equation. Let us now consider the following

singular integral equation:

- f dt + f k(x, t)<j>(iI) dt = g(x), — 1 < x < 1
7T J _ i t — X J _ i

(4.1)

(a) The case of k = 1. For this case the unknown function <f> may be expressed as

0(0 = F(t)/(1 - tY2 (4.2)

where the bounded function F is the new unknown. Substituting from (4.2) into (4.1),

we obtain

I f  EML dt i_ f £/ t\ F(t) dt , . , ..
7T J., (t - x)(l ~ i2)U2 + J.j k{X' l' (1 - f)W2 ~ ^• (4'3)
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F(t) has to be obtained from (4.3) subject to the condition that (see (1.5))

/_, (i -%w2 dt = c (4-4)

where C is a known constant. Note that since F(t) and k(x, t) are bounded, the second

integral in (4.3) and the integral in (4.4) can be evaluated by using the Gauss-Chebyshev

integration formula (3.8). Thus, from (3.6), (3.8), (4.3) and (4.4) we obtain

±lF(J-^- + ,k(xr , 4) = g(xr) (r = 1, • • • , n — 1),

E I F(tt) = C, u = cos ̂  (2k - 1), xr = cos J. (4.5)

(4.5) provides a system of n linear algebraic equations to determine F(ti), • • • , F(tn).

(b) The case of k = — 1. In this case <f> is of the form

4>d) = F(txi - ey2. (4.6)

Following a procedure similar to that for case (a), we obtain from (3.12), (3.14), (4.1)

and (4.6)

tk — cos (kir/(n + 1)), xr = cos (ir(2r — l)/2(ri + 1)). (4.7)

(4.7) is valid for r = 1, • • • , n + 1; that is, there are (n + 1) possible collocation points

to determine the n unknowns F(ti), • • • , F(tn). Thus it is sufficient to choose only n of

these points to determine F(tk). (In practice n may be selected as an even integer and

the point corresponding to r = n/2 + 1 may be ignored.)

Note that the extension of the formulas (4.5) and (4.7), which are given for a single

integral equation, to the system of singular integral equations such as (1.1) is straight-

forward.

5. Example. As an example consider the following integral equation:

- f -^-dt - X [ <t>(t) dt = P0 , -1 < x < 1 (5.1)
IT J-i t — X

subject to

J <f>(t) dt = 0. (5.2)

Equation (5.1) represents the formulation of the plane elasticity problem for a cover

plate bonded to an elastic half-space y < 0, — <» < x < <» along y = 0, — 1 < x < 1.

The elastic constants of the plate and the half-space are hi , and /x2 , <c2 respectively.

<t>(t) (—1 < t < 1) is the shear stress acting on the interface. The thickness h of the plate

is sufficiently small to justify the assumption that <jv ~ 0 throughout the plate. The

constant X is given by

X - ((1 + *0/(1 + <c2))((m2)/(2M))- (5.3)

The constant P0 represents the external load; in this case, P0 = —a0/2, where a0 = <r2"
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is the uniform stress acting on the half-space away from and parallel to the cover plate.

In this problem the shear stress <f>(t) has integrable singularities at t = =Fl. Thus

<t> may be expressed as

m = F(t)/{i - ey/2 (5.4)

where F(t) is a bounded function in the closed interval — 1 < t < 1. From a practical

viewpoint an important quantity to evaluate is the strength of the stress singularity

at the end points t = =Fl which may be obtained from (5.4) as

A = lim (1 — = F( 1). (5.5)
t—1

The function F is obtained from (4.5). Here we will only give the results for the strength

of the stress singularity A. For X = 0 (i.e., the inextensible cover plate), it is seen from

(3.5) that the exact solution is F(t) = PbTi(t) = P0t and A = P0 . For PQ = 1, X = ^

and X = 3, and for n = 20, 40, 60 the calculated results are shown in Table I. The values

of A given in Table I are obtained from a quadratic extrapolation of F(tk) based on the

last three points. The last column in the table is obtained from the solution of the problem

by using the method given in [3]. This solution will now be described briefly.

Noting that F(t) is an odd function, we let

F(t) = Z hT2i^(t) (5.6)
1

and substitute into (5.1). Using (3.5) and performing the integrals, we find

2 bi{u2i-2(x) + 2f~[ sin t(2i ~ !) cos_1 z]j = P0 , -1 < x < 1. (5.7)

An appropriate method of determining £>,• would be the reduction of (5.7) to an infinite

algebraic system through a weighted residual technique with weight functions U2k(x)

(1 — a:2)1/2 (k = 0, 1, 2, • • •)• Using the orthogonality relations

- f U,(x)Uk(x)( 1 - x2)U2 dx = 0, j ^ k
TT J-i

(5.8)— 2) ] —

we may then express (5.7) as
00

bk = 12 ckjbi + Dk-j (k = 1,2, ■■ ■),
7-1

2X / 1 1 \
Cki 7r V(2 k - 2)2 - (2 j - l)2 (2k)2 - (2 j - If J '

Do — Po J Dk-1 = 0, k > 1.

TABLE I

The strength of stress singularity, F{ 1)

n 20 40 60 4(30)

10/3 0.4061 0.4104 0.4115 0.4115
1/3 0.8323 0.8331 0.8340 0.8334
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2\ f 8(2k - 1) , „ ( 1 1
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The infinite system (5.9) can be solved by using the method of reduction if it is

regular or quasi-regular [6]. For regularity the coefficients must satisfy the following

relation [6]:

i M < 1 (*=1,2,...). (5.10)
7-1

• pe]

2X f 8(2 k - 1) ^2 | <x
x L(4* - 3)(4fc - 1) + Z U \(2k - 2)2 - (2j - l)2 (2k)2 - (2j - 1)7 J <

(5.11)

In (5.11) the quantity in brackets takes its greatest value for k = 1. Hence the range

of X for which the system is regular is found to be

X < 3x/16. (5.12)

For values of X greater than 3ir/16, (5.9) is quasi-regular in the sense that there exists a

k for which the infinite system beginning with the k + ls< equation is regular. The

integral equation (5.1) has also been reduced to an infinite system in [7]. However,

the procedure followed in [7] is extremely complicated and no examples are given.

From (5.5) and (5.6) the strength of the stress singularity may be expressed as

A = A(eo) = F( 1) = E bk , A(N) = it bk . (5.13)
1 1

(5.9) is solved by the method of reduction; that is, by considering only the first N equa-

tions and N unknowns. The calculated values of A (N) are shown in Table II for N =

5, 10, • • ■ , 30 and X = ^ and X = §. Note that

10>x =3xl
3 16 3 '

which is reflected in the convergence of A(N) for the two cases. Nevertheless, the table

shows that the convergence is very good for both cases.

In order to compare the results obtained by the two methods, the values of F(x)

calculated at a selected set of points x are shown in Table III. The agreement between

two sets of results seems to be quite satisfactory.

Regarding the convergence of the calculated results in the numerical work where

it is conjectured that "exact" results would be obtained if one lets "N —* =°", one may

TABLE II

The values of A(N)

X = 10/3 X = >

A(5) = 0.40245222 0.83161663
A(10) = 0.40955555 0.83297383
A(15) = 0.41081248 0.83322133

A(20) = 0.41124571 0.83330764
A(25) = 0.41144482 0.83334753
AC30) = 0.41155222 0.83336917
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TABLE III

Comparison of F(x), \ i

F(x) F(x)

x Eq. (4.5), n = 40 Eq. (5.6), N = 20

.11753740 .08015834 .08016911

.27144045 .18664307 .18666094

.41865974 .29205415 .29207916

.55557023 .39540625 .39543827

.67880075 .49522078 .49525949

.78531693 .58935251 .58939725

.87249601 .67482044 .67487044

.93819134 .74762613 .74768109

.98078528 .80246307 .80252529

.99922904 .83171805 .83177491

try to estimate the limiting values of the calculated results by suitably expressing

them as functions of 1/N and letting N —* co . For example, in the problem under con-

sideration it may be assumed that for "large" values of N the strength of the stress

singularity A(iV), which is given in Table II, can be expressed as

A(N) = A(«>) + B/N" (5.14)

where A{<x>), B, and a are unknown constants and A(<&) is the desired quantity. These

unknowns can be determined by writing (5.14) for N — N{ , i = 1, 2, 3. As an example,

the results obtained from Table II (which contain only a part of A(iV)) for X = ^ are

given in Table IV. The table shows the estimated value of A(») for various sets of N,

(i = 1, 2, 3). Comparison of these values with each other and with those given in Table I

needs no further elaboration.

From examination of (5.14) it may be seen that for stability of the calculated results,

at N = co dA/d(l/N") should be zero; that is, a should be greater than one. Generally

speaking, the greater the exponent a, the higher the stability. If a < 1 the extrapolation

may give very erroneous results. Also, if the behavior of A (Ar.) is oscillating in nature,

the model given by (5.14) requires modification.

Conclusion. Based on the results given in this paper, and particularly those ob-

tained for much more complicated problems which were worked out recently, the tech-

nique described in this paper seems to be an extremely simple and a very effective method

for solving a system of singular integral equations of the first kind.

TABLE IV

Values of A(a>), B, a (Eq. (5.14), X = 10/3)

iVj A(t°) B a

6, 8, 10 0.41181 -0.25477 2.0544
8, 12, 16 0.41180 -0.24433 2.0358
10,11,12 0.41187 -0.21117 1.9588
10,20,30 0.41179 - 0.23717 2.0246
28,29,30 0.41179 -0.22060 2.0018
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