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A SINGULAR PERTURBATION METHOD. PART II*

BY
N. D. FOWKES

Harvard University

Abstract. This paper extends the work of Part I to the partial differential equation
eV — g@y =0

where e is a small positive parameter and ¢g(x) is a bounded function of x which vanishes
along simple closed surfaces in the solution domain. In particular, the eigenproblem
corresponding to the case in which g(x) is positive at infinity and in which the boundary
condition ¢ — 0 as |[x| — o« is imposed, is considered. One class of eigensolutions is
extracted.

1. Introduction. The ideas which have been developed by consideration of linear
ordinary differential equations in Part I are now applied to an eigenvalue problem as-
sociated with the partial differential equation,

€V — g®y =0, (L.1)

where x is a vector in m-dimensional Euclidean space, and ¢ is a small positive parameter.
The case will be considered where g(x) is analytic,' positive at infinity, and negative only
in a simply connected domain, D, bounded by a closed surface I'. Hereafter, the surface
T will be referred to as the transition surface, to correspond with the terminology, trans:-
tion point, in the one-dimensional case. The boundary condition, ¢ — 0 as |x| — o,
is imposed, and it is required to find those values of e for which a nontrivial solution
to this problem exists. This problem is closely related to the problem of finding the highly
excited bound states of the Schrodinger wave equation potential well problem.

There is no need to stipulate that there is a single closed transition surface for, if
there are several, the solution can be considered as in the case of ordinary differential
equations, as the union of solutions in separate regions matched across suitably deter-
mined boundaries. It will become apparent to the reader when the form of the present
solution is obtained that the other restrictions imposed place no essential limitation on
the method. Thus, for example, if ¢ is negative at infinity and suitable boundary con-
ditions are imposed on the solution, the same method can be employed to solve the
equation.

If (—g(x))"* is thought of as the variable refractive index of a medium, and (¢*/%)
as the propagation constant which is proportional to the angular frequency of the field,
then the solution, ¥(x), of Eq. (1.1), represents the standing wave pattern set up in a
medium bounded by the reflexion surface I'. The propagation constant (¢"*/%) is large,
80 the problem is a high frequency propagation problem, and therefore, it may be expected
that many of the results to be obtained will be closely linked with the results of geometric
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1This condition may be relaxed considerably.



72 N. D. FOWKES [Vol. XXVI, No. 1

optics. Indeed, it will be seen that the rays and wavefronts of geometric optics play an
important role in the analysis to follow.

Although the story is quite complicated, the eventual solution technique is straight-
forward and is summarized in the conclusion.

2. Procedural motivation. The same approach is employed here as was employed
in the simpler one-dimensional case, described in Part I. It will be scen that there is a very
close analogy to be drawn between these two cases, and for this reason, only a brief
description will be included here of the ideas motivating the formal procedure as de-
scribed in the next section.

As in the one-dimensional case, a description of the solution behaviour close to the
transition surface if first sought. In order to do this the equation is described in terms
of a co-ordinate system centered on the transition surface. Any co-ordinate system (r, s),
where 7 determines distance from the transition surface and s specifies, uniquely, position
around the transition surface in its neighbourhood, may be employed for this purpose,
because this system is introduced only in order to develop a suitable mathematical form
for a uniformly valid solution. If the transition surface is suitably regular, the equation
for ¢ in terms of this new co-ordinate system will be of the form

EWrr + Vi,ra+ V-Vy 4+ Vb 4+ ¢o) — ¢ Z ()™ =0, (2.1

where a, b and ¢ are analytic in s and 7 close to T', and the symbol ¥V denotes the gradient
with respect to s, 7 remaining constant.

If nontrivial solutions to this equation exist, they must vary rapidly in some or all
of the (7, s) directions. It seems reasonable to commence by looking for solutions slowly
varying around the transition surface, I'. In this case, the dominating terms of the above
Eq. (2.1) will be €%,, , and go(s)7y, and a balance will be achieved between these two
terms if ¢ varies by unit order in a range 7 of order e. This suggests the introduction of
the stretched co-ordinate n = 7/¢, in terms of which Eq. (2.1) for ¢ becomes

Yor — go(S)n¥ = terms in ¢, €, (2.2)

which is analogous to the equation obtained in the one-dimensional case of Part 1. Again,
as in the one-dimensional case, a normal perturbation determination for ¢ of the form,
¥ = Yo(n) + e&(n) + --- , runs into difficulty because the terms on the right hand
side of Eq. (2.2) for ¢ throw up terms in ¢, which do not fit into the asymptotic scheme
for large n. To overcome this, heuristic ideas analogous to those employed in the
simpler case, suggest that an asymptotic solution of the form ¢ = y(¢, s, 7, ¢), or, in
terms of x, ¥ = ¥(¢, X, €), where { = ¢ 'u(x), be sought.

It should be noted that this solution form suggests itself, only when solutions varying
slowly around the transition surface T, are being considered. By seeking solutions varying
rapidly in certain tangential directions around T, it may be possible to extend the class
of solutions considered. This, however, will not be done here.

3. The formal solution. In this section a formal substitution of the solution form
¥ = ¢({, X, €, suggested by the work of the previous section, is carried out. In terms of
the (¢, x) co-ordinate system,

Vix, o = € '%(x, §, o Vu® + VIE, ¢ e

and,
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VU(x, @ = ¢ {Yu, ¢, 9[Vu@]’)
+ 2V, ¢, - Vu® + %, ¢, 9Vu®} + (ViR ¢, 9},

where VY (x, ¢, ¢) denotes the gradient of ¢ with respect to x, { remaining constant. A
substitution of this expression in Eq. (1.1) results in the equation for ¢ in the form

Ve — @/ (VW DY = —1/ (V) {e@V ¢, Vu + :Vu) + €V}, (3.1)

where, as in the one-dimensional case, ¢ ' is replaced by ¢ /u.

This result is rather surprising because it suggests that the partial differential equa-
tion (1.1) for ¥ can be dominated by the ordinary differential equation (3.1). It should
be remembered, however, that the previous heuristic development applies only to those
solutions which vary slowly around the transition surface.

This equation is formally equivalent (with the derivative, d/dz, which occurs on
the ordinary differential equation case, being replaced by the vector operator V) to
that obtained in the simpler case of Part I. One can proceed formally as in the one-
dimensional case, or simply recognize that the two cases are formally equivalent and
look for solutions of the form

¥ = A(x, 94i(}) + ¢B(x, §4d'(5) 3.2)

2

where the “boundary layer co-ordinate”” u(x) satisfies

w(Vu)® = g(x) (3.3)

with u = 0 along T'. Direct substitution leads to the following equations for A(x, ¢) and
B(x, ¢),

2(VA-Vu) + Vud = —€V°B (3.4)

and
2u(VB-Vu) + uBVu + (Vu)’B = —V°A4A, 3.5

which are again formally equivalent to the equations obtained by direct substitution
in the one-dimensional case of Part 1.

It is clear from the earlier work that it is the real solution of the nonlinear hyperbolic
boundary layer Eq. (3.3) that is required here. The useful property that the characteristics
of this equation are the orthogonal trajectories of the level curves u = const follows directly
from the characteristic form of Eq. (3.3). Although the characteristic equations for u
cannot be explicitly integrated, they can be integrated numerically in any particular
case. The question of whether or not Eq. (3.3) has a well-behaved solution does however
arise, and this question will be discussed later in Sec. 5 when more is known of the signif-
icance of the “‘boundary layer” function.

In the hope that the form suggested by the heuristic arguments of Sec. (2) might
lead to an evaluation, or at least a simplification, of Eq. (1.1) for ¢, certain formal
manipulations, resulting in the relationships (3.2), (3.3), (3.4), and (3.5), have been
performed. The question therefore to be asked now is—‘‘Does the form (3.2) suggested
by the heuristic arguments lead to a straightforward perturbation problem, (as defined
by Egs. (3.3), (3.4), and (3.5)) or have the transformations so far performed merely
led to equations whose solutions are at least equally singular in their dependence on

2This corresponds to the terminology used in the one-dimensional case.
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€?” In order to answer this question, a close investigation of the equations for A and
B has to be undertaken.

For the sake of simplicity and ease in diagrammatic representation in the work to
follow, the two-dimensional case will be considered. It will be obvious to the reader that
the underlying ideas in the following are by no means restricted to this case; and that
an extension of the method to higher dimensional spaces involves nothing essentially
different. In the two-dimensional case the transition surface T' degenerates to a line,
which will be referred to as the ‘“‘transition line”.

4. An iterative procedure for determining A and B. The form of Egs. ((3.4) and
(3.5)) determining A and B, suggests that asymptotic expansions of the form

©

A=Y 4@, ad B=Y &BX), 4.1)
0 0

be sought. A formal substitution of these expressions for 4 and B in Egs. (3.4) and (3.5),
yields

2(VA,-Vu) + Vud, = —V’°B,_, (4.2)
and
2u(VB:-Vu) + uB,V’u + (Vu)’B, = —V*4,, (4.3)

for all £ > 0, where it is understood that B_, = 0. An iterative procedure can now be
employed to determine A4, and B, for successive values of k. The equations determining
A, and B, are all first order, linear, hyperbolic differential equations, the characteristics
of which coincide with the characteristics of the equation for u. These characteristics
therefore form the “‘rays” of propagation (using the terminology of geometric optics) of the
solution ¢(x). Also, the orthogonal trajectories of the level u curves on the (x, y) plane are
perpendicular to the shared characteristics, and therefore mark off on the (z, y) plane the
“wavefronts” of the solution ¥(x). In order to obtain a clear picture of the solution prop-
erties, it is necessary to change to a new (characteristic) co-ordinate system based on
these rays and wavefronts. This new co-ordinate net is defined by

(i) a = —uand,

(ii) B is constant along any characteristic, and the value of 8 uniquely determines
this characteristic.

Thus, for the moment, the particular choice of 8 is kept open and disposable at
convenience. Equations (4.2) and (4.3) when referred to this co-ordinate net reduce to
their simplest forms,

(4,87 = +1/28*)y(Bi), (4.4
and
(Bu(@S)"") e = —1/(2(8)"*)v(44), (4.5)
where v is a partial differential operator defined by
3 (o) , 9 (10w _
YW = o~ (S 5&) + 9% (g %), (4.6

and
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S(O(, ﬂ) = hZ/hl 1) (4°7)
where h, and h, are scaling factors, corresponding to the new co-ordinate net, defined by
ds® = hi do® + R dp°. (4.8)

In an iterative determination of 4, and B, Egs. (4.4) and (4.5) become, effectively,
ordinary linear differential equations in «, which can be integrated to give as general
solutions,

Fk Bk 1
4= g2+ [ 53R a

and

- G(B)
B, = (as)l/2f 2( S)I/Z "Y(Ak) do + ( S)l/2 )

where F.(8) and G.(8) are, at present, arbitrary functions of 8. Clearly, to ensure the
continuity of B, and A, close to the transition line I' (where & vanishes (see Eq. (3.3)),
it is necessary to put G,(8) = 0, as in the ordinary differential equation case of Part I.?
The boundedness conditions on the derivatives of B, and A, with respect to « near
a = 0 are also ensured by this condition, as can be seen by comparison with the discus-
sion in the ordinary differential equation case. The solutions for 4, and B, now become

F"(B) (Bi-1)
k Sl/2 + f ’YQ(S)llz da (4.9)
and
1 |
B, = _(aS)l/z /; 2(0(8)1/2 ’Y(Ah) do, (4.10)

for all £ > 0, where B_, is interpreted to be zero, and where the F;(B), for all k£ > 0,
are still arbitrary functions of 8. In particular,

4o = Fo(p)/8"". (4.11)

The formal equivalence of the results obtained here and the results obtained in Part
I suggests that the expansion,

V= AiQ) 3 A ) + C4TQ) Z B, (@, ) 4.12)

(which follows from (3.2) and (4.1)) is indeed an asymptotic representation of the desired
solution except possibly in isolated regions of the solution domain where S vanishes or is
singular. It will be seen (in Sec. 6) that 4t 7s the isolated points of misbehaviour of S in the
solution domain which determine the arbitrary functions of 8 still present in the solution
expansion.

Nore. It is particularly significant that the approach presented above leads one
quite straightforwardly into the ‘‘natural’”’ co-ordinate net of this problem—the net
based on the rays and wavefronts.

5. Mapping singularities. It has been established that any iterative solution of
Egs. (3.4) and (3.5) for A and B is closely associated with the properties of the level

3y (A) and v(Bk-1) are regular at « = 0 once this condition is imposed.
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curves (the wave fronts) of u and their orthogonal trajectories (the rays). A satisfactory
determination of A and B over the whole field by this method is thus dependent on the
existence of a satisfactory solution for u at every point in the field. In particular, a single-
valued determination of u at each point in the field is required.

At a particular point x, the boundary layer function u(x) is evaluated solely in terms
of the characteristic (i.e. “‘ray’’) passing through this point so that a multiple u coverage
of the (z, ¥) plane can only be realized in regions of overlap of these characteristics in
the (z, y) plane. The transition line T is closed, and therefore, at least within T, it is
inevitable that characteristics will overlap and a multiple coverage of the (z, y) plane
will result.* There may also be regions in the (z, y) plane not crossed by characteristics
within which, therefore, no u coverage has yet been achieved. Since the characteristics
form the ‘‘rays” of propagation, these regions by their very nature are simply ‘‘shadow’
regions so that this situation need not be of concern. A closer examination of the implica-
tions of Egs. (3.3) and (4.7) confirms that the solution y(x), as given by (8.2) indeed
drops to zero on passing into such a shadow region.®

Some typical overlap situations are now envisaged. The first that springs to mind is
the focusing situation in which a band of characteristics converges on and passes through
a single point—the focus. e.g. in the centrally symmetric case g(x) = g(r) characteristics
focus on r = 0. The characteristics may overlap to form caustics, a situation which is
illustrated in Fig. 1. Variants of this situation which require no special attention do
arise. One such variant is illustrated in Fig. 2.

The fact that characteristics overlap so that the (z, y) plane is multiply covered
does not prevent use of the («, 8) co-ordinate net in the present problem, however, if
the solution (3.2) is to have any meaning, a single sheet coverage must be defined. In the
single focus case, the obvious way to produce a single sheet coverage of the (z, y) plane

M

FIG. 2

FIG.1 CAUSTICS
FIGURE 1 Frcure 2
41t is clear also from the fact that the equation determining u is hyperbolic and the boundary condi-

tion u = 0 is to be satisfied along a closed curve T that a unique solution will not result.
5See [2] for a more detailed discussion.
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is to stop all characteristics once they have reached the focus. Even so the mapping
remains singular at the focus. It will be seen later (in Sec. 7) that it is this singularity
in the mapping at the focus that restricts the solution behaviour in such a way that the
unknown F,(8) in the expansion for ¢(x) (see (4.11)) can be determined. In Figs. 1 and 2
above, clearly, to produce a single sheet coverage of the (z, y) plane it is necessary to
cut from one solution sheet to another, somewhere between LM and LN. There are, of
course, many ways of cutting from one sheet to another to produce a single-valued cover-
age of the (z, y) plane. It is important, however, to notice that, although this cutting
procedure can be defined in many different ways, the end-point L, of the cut is fixed
in the (z, ) plane.

Aside. It may seem strange that a certain amount of arbitrariness is associated
with the positioning of this cut in the (x, ) plane. It should be remembered, however, that
in the one-dimensional case of Part I, a similar situation arose. There it was found that
the matching point (corresponding to the cut, in the more general case under considera-
tion here) could be placed anywhere between the two transition points excluding a
small neighbourhood of these points. As in the one-dimensional case, therefore, it might
be expected that different procedures for introducing the cut produce simply different
asymptotic representations of the same solution. This point is taken up again in Sec. 8.

It is clear from the above, that by introducing suitable “cuts’” in the solution domain
a single valued coverage can be achieved (except along “‘cuts’” and at foci) for any g(x)
and that many different cutting arrangements can by employed to do just this. It is
also clear from the above that, having adopted one of these ‘“‘cut configurations’”, one
at most has to cope with a number of ‘‘cuts” and ‘“‘foct” in the solution domain. In order
to be explicit a procedure which leads to a particular cut configuration will now be de-
scribed, and this configuration will then be adopted for the analysis of the next two
sections where the solution behaviour along characteristics emanating from cuts (Sec.
6) and foci (Sec. 7) will be examined. The question of the equivalence of the various cut
configurations will be discussed in section 8.

Along the transition line, T, u is required to vanish. The characteristics are orthogonal
to the level u curves so they are “initially” orthogonal to I'. There will be a smallest
value of |u| at which at least two characteristics intersect (e.g. |u(L)| in Figs. 1 and 2).
For values of |u| less than this value the characteristic equations for u lead to u(z, ¥)
as a single-valued function of position. For larger values there is no unique determination
and one has to decide on which characteristics to base further evaluations (e.g. beyond
L in Figs. 1 and 2 characteristics cross and there is no unique determination). The decision
is made to make further determinations on the basis of characteristics other than those
that have so far intersected (e.g. other than the characteristics intersecting at L) and
furthermore, as one integrates forward in |u| to ignore characteristics for further evalua-
tions once they have intersected. The cut is, of course, the locus of the intersection
points. The area of the solution domain left uncovered is continuously reduced as one
integrates forward in |u| so that eventually this process leads to a complete coverage.
Notice that this particular cutting procedure leads to a co-ordinate net in which u is
continuous across cuts.

Some simple illustrative examples are now discussed. In the case in which g(x, ) =
a’2® + b’y® + ¢ symmetry arguments indicate that the level u curves are concentric
ellipses so that all characteristics focus on £ = y = 0. A more interesting situation arises
when there are two or more foci within I'—e.g. in the case in which
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_ b _ 1 _ 1
9(z,y) = a+ yz [z — 1)2 + y2]1/2 [z + 1)2 ¥ y2]1/2 ) (6.1)

which is closely related to the helium molecule ion problem, there are two foci correspond-
ing to the two neuclei at z = 41y = 0. An application of the above prescribed procedure
leads to the “‘cut configuration” indicated in Fig. 3.

y

1 ]
1 1 X

——u = const. curves —— characteristics ==cut

FiGUre 3

6. Cut analysis. The scaling factors h, and h,, are well-behaved in a neighbourhood
of the cut, except possibly at foci which are considered in the next section. The problem
associated with the cut is therefore simply the problem of patching solutions across
the cut and is akin to the ‘“patching” problem encountered in the one-dimensional case
of Part I. In Fig. 4, the two characteristics, C and D, meet the cut E, at F. Suppose the
solution along C is

¥ = A4i(5) + €BAV(5),

and the solution along D is
¥, = AAi(r) + EBAV(S).

From the construction of the co-ordinate system, ¢, = ¢, = { (say) at F. Now y(x), being
the solution of an elliptic partial differential equation, is required to have continuous
derivatives of all order throughout the solution domain, and in particular along the
cut. A necessary condition for this to be true is that ¢, and its first order derivatives, be
continuous at every point F, of the cut E. If # and § are unit vectors perpendicular to,

D T/\
n

\E:

c

FiGURe 4
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and tangential to the cut respectively, then these continuity conditions at F require;

IPI(F) = '[’2(F):

when

Vi (F) = ¥, (F), (6.1)

and

¥iu(F) = ¥ou(F);

1.e. to first order in e,
AAi§) = A4i(D),
AAV(§) cos (ng,) = AAJ(E) cos (ngy), (6.2)
AAT(§) cos (s§r) = AAT(E) cos (s8s),

where (n{,) denotes the angle between 74 and the direction of increasing ¢, ete. (Use is
made here of the fact that Vu is continuous across the cut which follows from Eq. (3.3)
and the fact that u is continuous across the cut.)

These relationships are to be valid for all points F of E. This requires either:

@ A=4=0(@
or

(IT) the cut, E, is perpendicular to both families of characteristics—Eqs. (6.2)
are then consistent provided the 4, A coefficient determinant, 244(f) A7'(f), vanishes
or

(III) E is a limit line of the characteristics above and below E. No further con-
sistency conditions are required in this case. A cut of this type has not been encountered
in the examples considered, and it appears unlikely that such a double limit line will
arise in practice. This case will not, therefore, be pursued further.

Case 1. Because S is finite at the cut, A and 4 can only vanish to order e at the cut,
as a result of F(8) and F(B) vanishing to order e. (This follows from (4.9) and (4.10).)
This implies that A = A = O(e) along the characteristics emanating from the cut, which
in turn implies that A = 4 = B = B = 0, to terms of order ¢" for all n. Thus the solu-
tion ¥(x), along characteristics emanating from a cut of this type, is zero to terms of
order ¢" (a solution which is exponentially small in e may exist in this ‘“‘cut region’’). Thus,
under no circumstances can a standing wave pattern be set up in the “cut region” which
forms, therefore, a region of complete interference in the solution domain. The situation
envisaged is this. If the initial value problem was to be considered and disturbances were
initially set up in the solution domain, then these disturbances would propagate back
and forth along the characteristics, interfering with one another, finally leading to a
steady state—the state being sought here. In the present case, the transition surface,
which acts as a reflexion surface for the propagating waves, is such that no standing
wave pattern can be set up in the “‘cut region”, and the steady state solution vanishes
due to annulment.

Case II. A nonzero solution exists in this case, provided one of the eigenconditions
given to first order by A¢({) = O(e), or 47'(§) = O(e), is satisfied.

Of all the wave patterns that may be set up initially in this “cut region” (which will
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be referred to as a reflexion region in the work to follow) only those which suffer in-phase
reflexion at the transition surface will survive and will be present in the steady state.
All others will interfere and annul one another. The eigenconditions above may be
interpreted as being simply phase conditions for these steady states. If these conditions
are satisfied, then the matching relations (6.1) are consistent, and may be solved. As
in the one-dimensional case, these relations ensure the continuity of all higher order
derivatives along the characteristics (i.e. in the direction of Vu). The solution, y(x),
is also required to have continuous derivatives of all order in the 8 direction (i.e. in the
u = constant direction).® To ensure this, the F,(8) for all & > 0, which occur in the
coefficient terms of A¢(¢) in the solution expansion (see Eq. (4.9)), must be of class ¢C~."
At this stage it might be noted that a focus may be thought of as a degenerate case of
this type of cut—the case in which the cut degenerates to a point. It might be expected
therefore, that the focus will lead to eigenstates in much the same way.

7. Focus analysis. An infinite band of characteristics intersect at a focus which
therefore maps onto a line (parallel to the 8 axis) on the («, 8) plane. Thus at a focus the
scaling factor S has a first order zero and A,(a, 8)(=F,(8)/S"?) is singular. Higher
order terms in the expansions for A and B (see (4.9), (4.10)) are still more singular there.
The solution ¥(x) is required to be well behaved at the focus so the expansion (4.12)
does not truly represent the solution behaviour close to this point. An investigation of
the solution behaviour close to such a mapping singularity is now undertaken.

Close to the focus, ap say, the scaling factor S may be usefully represented by a
series expansion of the form

S =sB)E+sBF + ) (7.1)

where

£ = (a — a), (7‘2)

and (because the scaling factor is, by definition, always >0)s,(8) > 0. [In the centrally
symmetric case (g(x) = g(r))s,(8) reduces to a constant]. Similarly since a is well behaved
in the neighbourhood of the focus a power series expansion of the form

a=a +wu@E+ -, (7.3

is assumed. The value of « at the focus is determined by the scale of g(x), and a change in
the scale of g can be effected by simply altering the value of e. Thus there is no loss in
generality in assuming that the value of o at the focus is unity (i.e. o = 1).°

The expansion (4.12) for ¢(x) is invalid close to the focus only because the coefficient
expansions (4.1) are singular there. One way of dealing with this difficulty would be
simply to modify the expansions (4.1) for 4 and B in such a way that they coped with
the situation close to the focus. This could be done, for example, by seeking expressions
for A and B of the form A = A(x, w, ¢) and B = B(x, w, €), where v is a suitable chosen
locally stretched co-ordinate, introduced to cope with the singular character of the
Eqgs. (3.4) and (3.5) for A and B close to the focus, a, . If a uniformly valid asymptotic
expansion is to be sought, this is clearly an obvious way to go about it, because it is

¢For the equation which y(x) satisfies is elliptic.

"Later (see Sec. 8) the further restrictions that need to be imposed on Fi(8) will become evident.

8A reduction in the amount of algebra is achieved by doing this for the present general discussion,
but may not be desirable in a particular problem.
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essential to retain the A7({) dependence in Y/(x) in order to cope with the situation close to
T. However, it will be remembered that in the two turning points ordinary differential
equation problem of Part I a similar situation arose. There, in order to obtain a simpler
description of the solution behaviour, the requirement that the solution be described
in terms of a single expansion was relaxed, and two expansions were used to describe the
solution behaviour. In this case the Eqs. (3.4) and (3.5) determining 4 and B, are quite
complex, and in order to obtain equations which are at all tractable it is highly desirable,
if not necessary, to relax the single representation requirement, and to seek a separate
description (the “‘inner expansion’’) of the solution ¥(x), valid close to the focus.

The Inner Expansion. Equation (1.1), when referred to the (e, 8) co-ordinate system,

reduces to
112 (s29) ilﬂ)]_ _
°s [aa (*5 o) T a8 (s )|~ =0 (7.4)

(The relationship A, = u/g which follows from the scaling factor definition (4.8) and
the definition (3.3) for u, is used here.)

Consider a 6§ neighbourhood of the focus o, . Within this neighbourhood, S is of order
8, and u is of unit order. Thus a balance is achieved between the various terms of Eq.
(7.4) if 6 is of order ¢’°. This suggests that Eq. (7.4) might be better described close to
a, in terms of the stretched co-ordinate r = (ay — a)/8, where § = ¢’*. In terms of this
stretched co-ordinate the equation reduces to

! [% (%) + 5 2 %—‘g)] ~uyp =0, (7.5)
where
§=28/¢8 (7.6)
and the expansions (7.3) and (7.1), for « and S, become
a=1+4+ u@®r+ -, 7.7
and
§ = 78[l + ds;7 + ---]. (7.8)

On substituting the expansions (7.7) and (7.8) into (7.5), and neglecting terms of order
8, the following approximate equation for ¢ is obtained;

18 éi) Lli(lé'_l/) _
T&T(T ar +‘r23066 Sy 968 T ¢ =0. (7.9)

It will be remembered (see Sec. (4)) that the choice of 8 was left open. Equation (7.9)
indicates that a most convenient choice of 8 is that defined in such a way that s,(8) = 1
at the focus. A 8 so defined, simply measures the angular displacement of characteristics
at the focus. This particular choice will be employed in the work to follow. Equation
(7.9) is separable, and the solutions which are bounded at » = 0 are of the form

¥: = K(8, 9f(vB)J () (7.10)
where f(y8) denotes

csin (v8 + d) (7.11)
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where ¢ and d are arbitrary constants of integration, and v is the separating constant
whose values are thrown up later when appropriate boundary conditions are imposed
on the solution Y(x). It will be seen that the outer solution (represented by (4.12)) on
reaching the focus is not of unit order in ¢, so that it is necessary to include the scaling
factor K (5, ¢) in the above expression for ¢, .

Matching. The required solution, ¥(x), is represented by the ‘“‘inner expansion’”
whose first term is ¢; (given by (7.10)) in the neighbourhood of the focus a, , and by
the outer expansion (4.12), away from this point. The Lagerstrom, Kaplun matching
by rearrangement technique is now employed to connect up these two expansions, and
so evaluate the unknown quantities at present associated with each.

For large +ver,

¥ ~ (2/m)°K(3, of(B)/7"* cos (1 — (yn/2) — (x/4)), (7.12)

where use has been made of the asymptotic formulae for the Bessel functions.
Because { is of order ¢*** at a, , A7({) can be approximated by its asymptotic form

i.e.
. 1 1 2
AiQ) ~ i o7 {COS (g & - %)}
with the result that the outer expansion (4.12) close to e, may be approximated by
1 F ﬁ 1/4 2 3/2
v~ _:T(ﬁl (gx/—z cos |7 + Z -3 %3—/5 . (7.13)
where use is made of the stretched co-ordinate relation

= (0o — a)/8.

Assuming that there is a nonzero domain in which both (7.12) and (7.13) are valid
representations of the solutions ¢(x), the following matching relations are obtained:

K(s,¢ = (7 577,  F.(B) = f(x8)/2"", (7.14)
and
21 yr oow T
3072 = :iz(? - 1) + 1 + nr, (7.15)

where 7 is any large positive integer. Thus, the solution along characteristics leading into
a focus (except for a small neighbourhood of that point) to first order is given by

v = @’%@— Ai(D), (7.16)

and the standing wave patterns represented by this expression can only be set up if the
radial ‘‘phase” eigencondition (7.15) (which determines eigenvalues for ¢) is satisfied
to order e. It is more convenient to write this eigencondition in the form;

$la) = ¢, = yw/2,
where ¢, is determined from either
Ai(t.) = 0, (7.17)

or
A7'(s,) = 0.
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The azimuthal eigencondition is determined when appropriate azimuthal boundary
conditions are imposed or y(x). If the focus is isolated the solution y(x) is single-valued
only if y takes on zero or positive integer values. Thus along the characteristics emanating
from an ¢solated focus the solution is given by

¢ sin .
v =208t 4ion + 0@
where
7 = 0, 1’ 2’ A (7.18)
and
$la) = ¢, £ ym/2

where either A7’({.) = 0 or A4(¢,) = 0. If the focus is not isolated (i.e. it lies on a cut®)
then the boundary conditions are obtained from the solution differentiability require-
ments across the characteristics separating the focus domain and the “reflection” or
“interference’’ (see Sec. 6) cut domains. In order to realize these requirements, it is
necessary to postulate the existence of two sided beundary layers (see Fig. 5) in the
neighbourhood of the “‘separating characteristics”, the presence of which can be inferred
from the equations for 4 and B.

The boundary layer equations can be readily integrated and it can be shown that
the required differentiability conditions can then be satisfied if,

(o) = 0 + O()

a detailed derivation of this result is given in [2].

This boundary layer behaviour of the solution in the neighbourhood of the separating
characteristics may be thought of as a dispersion phenomenon. Thus to first order the
solution in the focus domain bounded by the separating characteristics 8, and g, is given
by,

const sin [y(8 —

y = comstsin b = B gy + 0]

when
v =2m/B, — B) for n=1,2, etec. (7.19)

and as before e satisfies,
fla) = &0 = vm/2

Yiag.P A
Focus e INTERFERENCE
DOMAIN - DOMAIN
€3/4
l I
1 I\v >
BV B
FI1GURE 5

9Which for example occurs in the situations depicted in Figs. 1 and 2 and in the two foci example of
Fig. 3.



84 N. D. FOWKES [Vol. XXVI, No. 1

In the two foci problem (see I'ig. 3) the above work indicates that, for the modes we are
considering, the solution is exponentially small in e everywhere except in the two end
foci domains.

Note. It is not necessary to undertake any of the laborious analysis associated with
the focus, matching, and the separating characteristics in order to obtain the first order
solution behaviour.'

8. Discussion and summary. Earlier, in order to be explicit, a particular procedure
for uniquely covering the (z, y) plane with an («, 8) co-ordinate net (seec section (5))
was prescribed. There it was surmised, on the basis of experience gained in the one-
dimensional case of Part I, that all cut configurations would give equivalent results. A
complete discussion of this point is perhaps not warranted here,'' and therefore, it will
suffice to indicate by way of a simple example the qualifications to the statement that
need to be made. For this purpose the infinite boundary wall, constant depth rectangular
potential well defined by

glx,y) = —1 for |x] < e and |y| £ 0,
gz, y) = = for ¢ >a and |y| >0

is considered (see Iig. 6). We know on physical grounds what to expect in this case. Since
the boundaries act as reflecting walls, modes can be set up by reflection between any
two opposite boundary segments.

Now the cutting procedure prescribed earlier leads to cuts running from E and F
to all four corners, as shown in Fig. 6a. This configuration displays the ‘‘dashed’” re-
flection domain shown in this figure. The E'F’ cut configuration seen on the same figure
can be shown to indicate the presence of the same modes and therefore is for our purpose
equivalent. In fact all the obvious seemingly equivalent configurations can be shown
to be equivalent. The cut configuration displayed in Fig. 6b indicates the presence of a
class of “horizontal” reflection modes missed by our prescribed cutting procedure. All
the other modes suggested by the physics of the problem can obviously be displayed
by other cut configurations. It is clear from this that in complicated situations it may
be necessary to sketch the complete diagram of characterictics in order to extract all
possible modes. Usually, however, the problem will be best attacked by consideration
of the physics or geometry appropriate to the given problem.

Conclusion. It should be remembered that only those eigenmodes that vary slowly
around the transition surface have been extracted by the preceding work. These eigen-
modes have been obtained for quite general g(z, y). To do this it was found necessary
only to solve the non-linear partial differential equation

w(Vw)* = g(x),

|- — — =

Ficure 6

19The solution as given by (7.18) is not dependent on the detailed solution behaviour at the focus ete.
1A more complete discussion is given in [2].
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with 4 = 0 around the transition surface, using the method of characteristics—a straight-
forward calculation in a digital computer. Either by consideration of the physics of
the problem or by use of a complete characteristic diagram the foci and reflection regions
can be picked out. The solution along characteristics leading into foci is then immediately
given by (7.18) or (7.19). In the reflection regions the solution is given by (4.11) when
the eigencondition requirement,

Ai(§) = 0(9 or A7'(§) = 0

is satisfied. In all other regions of the solution domain the solution vanishes to order
¢" for all N. Regions that are not crossed by characteristics are simply shadow regions
in the solution domain.
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