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where

It = f (—W - D - 4> + Uii,ui) dV + [ U,u dA - f £.0, dA (5.2)
Jv JAu Ja»

This procedure represents an extension of Castigliano's principle for stresses, in the
formulation of Reissner [1], to thermoelasticity and heat conduction.

It is also noted, that Biot's [3] variational procedure, which yields the elastic equi-
librium equations and the heat conduction equation as the Euler equations, is a mixed
one, in the sense that the former is one of the equations obtained in applying the ex-
tended Green procedure, while the latter belongs to the equations obtained using the
extended Castigliano's procedure.

6. Comparison of variational principles. Following Reissner's presentation and
proof in isothermal elasticity, a comparison can be made between the values of I for
functions tu , , etc. which are not solutions of SI = 0 and for functions r,-,- , etc. which
are determined from 81 = 0. If both W and D are positive definite quadratic forms, the
conclusion is reached that in the extended variational theorem for displacements (solid
and entropy) one is concerned with a minimum problem, while in the extended variational
theorem for stresses one is concerned with a maximum problem. In contrast to this,
Reissner's general variational theorem, as extended to thermoelasticity and heat con-
duction, is only a stationary-value problem.
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THE SOLUTION OF THE HEAT EQUATION SUBJECT TO THE
SPECIFICATION OF ENERGY*

By J. R. CANNON (Rice University, Houston, Texas)

1. Introduction. The purpose of this paper is to show that if the total heat energy
of a certain part of a heat conductor is specified in advance as a function of time, the
initial temperature of the conductor is known, and in the case of a finite conductor, the
temperature behavior at one of the ends is specified in advance, then there exists a
unique temperature distribution in the conductor which produces the specified total
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energy in the given portion of the conductor. In the cases of a homogeneous semi-infinite
conductor and a homogeneous finite conductor, the determination of the temperature
distribution, which gives the specified energy in the given portion of the conductor, is
reduced in each case to solving a Yolterra integral equation of the second kind. First,
the case of a semi-infinite homogeneous conductor will be treated in detail. Then, the
analogous results for the homogeneous finite conductor will be summarized.

2. Preliminaries for the case of a homogeneous semi-infinite conductor. Consider
the problem of finding a temperature distribution u(x, t) such that

/.x(l)

E(t) = / u(x, t) dx, x(t) > 0, t > 0. (1)
•J 0

where u(x, t) satisfies

lit Uxx ) % ^ ^ 0, ^2^

u(x, 0) = <p(x), x > 0.

and E(t), x(t), and <p(x) are known continuous functions of their arguments in the interval
[0, oo) such that

»i(0)

E(0) = <p(x) dx. (3)
Jo

From the linearity of the differential equation, it suffices to consider the case for which <p(x) =0.
Definition 1. A function u(x, t) is a solution of (l)-(2) if and only if u(x, t) is a

continuous and bounded solution of (2) which satisfies (1).
3. An equivalent integral equation. Assume that (l)-(2) possesses a solution

u(x, t). Set w(0, t) = /(<). As u(x, t) is a continuous and bounded solution of (2), it is well
known [4] that

dm(x, t — r)

where

Hence,

U(x, 0= ~ I T) f(r) dr, (4)

m(x, t - t) = [rr(/ - t)]~U3 exp * TJ> 1 > T, (5)

E{i) = ~ /„ /„ dx /(t) dT dx' (6)

By Fubini's theorem,

E(t) = J |wi(0, t — t) — m(x(t), t — t)| /(r) dr. (7)

Therefore, the boundary temperature of any solution of (l)-(2) must satisfy (7). Since
bounded solutions of (2) are determined uniquely by their boundary and initial data,
the following equivalence theorem is valid.

Theorem 1. There exists a unique solution of (l)-(2) if and only if there exists a
unique continuous solution f(t) of (7) with /(0) = 0.
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Proof. Assume that (l)-(2) possesses a unique solution u(x, t). It is clear from
previous analysis that (7) possesses a continuous solution fit) with /(0) = 0. Moreover,
f(t) is unique. If not, then there exist solutions /,(<), i = 1, 2, of (7) such that fi(t) ^ /2(i)-
Set

«,(*, t) = - £ dm(xdlx ~ T) /.(t) dr, i = 1,2. (8)

Clearly, m,(x, <)> * = 1, 2, are solutions of (l)-(2). From (8) and f,(t) ^ f2(t), it follows
by an elementary argument that Ui(x, t) ^ u2(x, t) which contradicts the assumption of
uniqueness of the solution of (l)-(2).

Assume now that (7) possesses a unique continuous solution f(t) with /(0) = 0. It
follows immediately that u(x, t), which is defined by (4), is a solution of (l)-(2). More-
over, by an argument analogous to the one above, u(x, t) is unique.

4. A Volterra integral equation of the second kind for f(t). In this section, the
existence and uniqueness of solutions of (7) will be considered. For this purpose, assume
that

(a)E(t) is C1 in 0 < t < °° with E(0) = 0, ^

(b)x(/) is C1 in 0 < t < <*> with x(l) > f > 0, t > 0.

Assume that (7) possesses a continuous solution /(<) with /(0) = 0. It will be shown that
j(t) satisfies an equivalent Volterra integral equation of the second kind. From this fact,
the existence, uniqueness and stability of solutions of (7) will follow immediately. Now,
(7) can be rewritten as

f0' + <r1/2 [ rn(x(t), t - r)/(r) dr. (10)

Using the inversion theorem for Abel integral equations [1, 3], it follows formally that

+ Tl/2 £ m(x(t), t - t)/(t) dr|(2 - tyW2 dt], z > t. (11)

In order to justify the use of the inversion theorem, it suffices to perform the indicated
differentiation in (11). First, note that the integral in (11) certainly converges for all
z > 0. As

[' dt = ~f 2(2 - t)UiE'{t) dt, (12)
7T Jo (Z — t) % Jo

where the prime denotes differentiation with respect to the given argument, it follows that

_1 d r E(t) _1_ f E'(t) _ ( , . .
Jo (z - t)1/2 dt ~ x1/2 Jo (z - t)1/2 ~ Q{ )' ( }r1/2 dz

Set

Fit) = [ m(x(t), t - t)/(t) dr. (14)
Jo
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Since x(t) is C1 with x(t) > f > 0, t > 0, it follows that F(t) is C1 in 0 < t < co with
F(0) = 0. Moreover,

Hence,

FV) = I' {I m(x(t), t - r)|/(r) dr. (15)

1 d r Fit) 1 r F'(t)
r1/2 dz Jo (z - t)u2 dt ~ tt1/2 Jo (z - t)l/~2 M- (lb)

Therefore,

m = Q(z) + J72 fo' (2 - 0_1/2 I' Kr)\~ , t - r)} dr dt. (17)

By Fubini's theorem, it follows that

M = Q(z) + [ /(r){^j72 J'_T (z - m(x(t), t - r)} <?/} dr

= Q(z) + [' f(r)K(z, r) dr. (18)
Jo

Thus, any solution of (7) must satisfy (18).
Consider Eq. (18). Since Q(z) is continuous with Q(0) = 0 and since it can be shown

that K(z, t) is bounded by a polynomial in (2 — t)1/2 and that K (z, r) is two dimensionally
continuous in both variables for z > r, it follows that (18) possesses a unique continuous
solution f(z) such that /(0) = 0. By the method of solving Abel's equation [1, 3], it
follows from (17) that the solution /(z) of (18) is a solution of (7). Moreover, it is the
only solution of (7) since the existence of two distinct solutions of (7) would imply the
existence of two distinct solutions of (18) which is contrary to the known fact that (18)
can possess only one solution. Hence, the following theorem and corollary are valid.

Theorem 2. If E(t) and x(t) satisfy (9), then (7) possesses a unique continuous
solution ]{z) for z > 0 such that /(0) = 0. Moreover, f(z) is determined by the equation
(18).

Corollary. If E(t) and x(t) satisfy (9), then problem (l)-(2) possesses a unique
solution.

Remark. In the case that the total energy of the entire conductor is specified as a
function of time, equation (7) is simply an Abel integral equation.

5. Summary of results for homogeneous finite conductors. Consider now the
problem of finding the temperature distribution u(x, t) such that

E(t) = f u(x, t) dx, 0 < x{t) <1, t > 0, (19)
Jo

where u{x, t) satisfies

u, = uxx, 0< x < 1, t > 0,

u(x, 0) = <p(x), 0 < x < 1, (20)

«(1,0 = m, 0 < t, m = *(i)
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and E(t), x(t), \p(t), and <p(x) are known continuous functions of their arguments for
0 < t < co and 0 < x < 1 such that

[.x( 0)

£"(0) = / <p(x) dx. (21)
Jo

Again, it suffices to consider the case for which <p(x) = \f/(t) = 0.
Definition 2. A function u(x, t) is a solution of (19)-(20) if and only if u(x, t) is a

continuous solution of (20) which satisfies (19).
Assuming that (19)-(20) possesses a solution u(x, t) and setting u(0, t) — g(t), it

follows from the definition and [2, 4] that

«(*, t) = -fo' dmi(Xd* ~ T) g{r) dr, (22)

where

mM, t - r) = w - r)]-1/2 exp t > T. (23)

By the argument of section 3, the integral equation, which is equivalent to (19)-(20), is

E(t) = [ {m,(0, t - r) - m^xit), t - t)}^(t) dr. (24)
Jo

Now,

m.(0, / - r) = W - t)]-1/2 + 2[t(/ - r)]"1/2 £ exp ' ~k*U' ~ r)J
= k(/- r)]"1/2 + m2(i-r). (25)

Thus, (24) can be rewritten as

l' (T=%72 rfr = 7T,/2£(*) + T1/a £ [mMt), t- r) - m2{t - r)}g{r) dr. (26)

Assume that

(a)E(t) is C1 in 0 < / < °° with 2?(0) = 0, .
(27)

(b)x(O is C1 in 0 < t < °o with 0 < f < x(t) <1, t > 0.

Then, by the argument of section 4, the Volterra integral equation, which is equivalent to
(24), is

g(z) = Q(z) + f H(z, r)g(r) dr, (28)
Jo

where

H(z, r) = x-1/2 J' (z - 0~,/2{| [mMt), t ~ r) - m2(t - r)]j dt. (29)

Therefore, problem (19)-(20) possesses a unique solution u(x, t) which is determined by
equation (28).



160 GARRETT BIRIvHOFF [Vol. XXI, No. 2

References
1. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience Publishers, Inc.,

New York, 1953, p. 158
2. P. Hartman and A. Wintner, On the solutions of the equations of heat conduction, Amer. J. Math. 72

(1950) 367
3. F. G. Tricomi, Integral equations, Interscience Publishers, Inc., New York, 1957, p. 39
4. H. Weber, Die ■partiellen Differentialgleichungen der mathematischen Physik, Friedr. Vieweg und

Sohn, Braunschweig, Germany, 1912, pp. 101-111

A VARIATIONAL PRINCIPLE FOR NONLINEAR NETWORKS*

By GARRETT BIRKHOFF (Harvard University)

It is the main purpose of this note to describe a variational principle for nonlinear
networks of the kind studied by J. B. Diaz and the author in [1]. It will then be shown
that this principle is closely related to an electromechanical analogy discovered by
Duffin [2], in connection with n-dimensional mass-spring networks.

The notation and terminology of [1] will be used below. That is, a connected network
(oriented graph) N of n nodes Ak and r links a,- will be assumed defined by an incidence
matrix || eki ||, where ekj is +1, —1, or 0 when Ak is the initial node, the final node, or
not incident on au , respectively. In N, a subset dN of boundary nodes is distinguished,
and the set of all links is denoted by L.

It is assumed that, in equilibrium, the current ij = c,(Au,-) is a specified continuous
increasing function c,-(Aw,) of the potential drop Aw,- = 2^k ekju,- across the j-th link.
At each interior node Ak (not on dN), the usual node law XX, tljij = 0 is assumed.
At each boundary node Ah, it is assumed that either uh is known or that (on the residual
set d*N)

12eh,ii= X) ekiuk) = Fh(uh) on d*N, (1)
I I k

where Fh(u) is a continuous non-increasing function of u. (The case Fh{u) = vh constant
leads to the Neumann problem.)

With the preceding problem, we now associate the function

V = £ 7,(Aw,-) + Z Wh{uk), (2)
L d*N

where the functions F, and Wh are defined as the indefinite integrals

f* Au/ /»tu

V,(Auj) = / c,(s) ds, Wk(uk) = — / Fh(s) ds. (2')
Jo JO

We take as unknowns the values uk — u(Ak) at those interior and boundary nodes where
the potential uk is not given.

An easy computation shows that the first variation of the expression (2) defined
by (2') is

*Received October 11, 1962.


