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1. Introduction. The theory of turbulence, as developed from Reynolds' point of

view, is based upon the equations of turbulent fluctuation [l] and has been applied

to the solutions of various special problems [2, 3, 4, 5, 6, 7]. Owing to present cir-

cumstances, these papers either have not been submitted to scientific journals for

publication or are already printed but have failed to appear before the scientific

public. The theory in its original form and its applications has three apparent diffi-

culties: first, the equations of correlation of the second, third or even higher orders

constructed out of the equations of turbulent fluctuation contain the unknown terms

of correlation between the pressure and velocity fluctuations; secondly, there exist

in these equations the terms of decay of turbulence the values of which have to be

determined; thirdly, when the differential equations of the velocity correlations of a

given order are derived from the equations of turbulent fluctuation, the presence of the

inertia terms causes the appearance of the velocity correlations of the next higher

order, which are also unknown. This has been pointed out by von K&rman and

Howarth [8] in their theory of homogeneous isotropic turbulence.

In the present paper we shall show that the pressure fluctuation can be derived

from the equations of turbulent fluctuation, and is expressible as a function of the

velocity fluctuation, the mean velocity inside the fluid volume, and the pressure

fluctuation on the boundary. We shall also show that the decay terms can be put

into simpler and more familiar forms by kinematic considerations. A general equation

of vorticity decay will be derived for the determination of Taylor's scale of the micro-

turbulence which appears in the decay term; in the case of homogeneous isotropic

turbulence, this equation was given first by von Karman [8]. To get over the third

difficulty we shall compare the orders of magnitudes of the different terms in the equa-

tions of triple correlation. We shall find that the term involving the divergence of

the quadruple correlation is actually smaller than the correlation between the pres-

sure gradient and the two components of velocity fluctuation, and can therefore

be neglected as a first approximation. From this we can also understand why, for the

flows in channels and pipes in which the mean velocity profile is comparatively steep,

particularly in the neighborhood of the walls, all the equations of mean motion and

the equations of double and triple correlation are necessary to describe the phenomena

of turbulent motions of fluids. On the other hand, as a consequence of the approxima-

tion based on the fact that the divergence of the quadruple correlation is smaller

than the correlation between the pressure gradient and the two components of veloc-

ity fluctuation, we can stop at the equations of triple correlation instead of building

equations of higher orders. As a matter of fact, for the flows in jets [3] and wakes [4]
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where no wall is present, the equations of mean motion and of double correlation are

sufficient, after some simple approximations to the triple correlations are made, for

the determination of the mean velocity distribution, and the equations of triple cor-

relation can be dispensed with.

From a mathematical point of view the present program indicates that the turbu-

lence problem can be reduced rigorously to a set of non-linear partial integro-differential

equations the solutions of which are very difficult to ascertain. In order to facilitate

the solution of special problems, approximate forms of the integral parts of the equa-

tions have been developed in a general way. These approximations, however, are only

valid in regions not too close to the boundary of the moving fluid volume. It may also

be worthwhile to point out that the unsatisfactory part of the present theory lies

in the uncertain nature of the correlation integrals, as will be seen presently in §8.

A better and more accurate representation of these integrals is possible, provided

more accurate experimental information can be obtained as to the distribution of

turbulence levels and to the correlation functions between two distinct points in

general.

The rigorous way of treating the turbulence problem is probably to solve the

Reynolds' equations of mean motion and the equations of turbulent fluctuation simul-

taneously. This procedure, however, is very difficult owing to the non-linearity of the

two sets of equations. Hence we have adopted the method of solving the equations

of turbulent fluctuation by setting up the differential equations satisfied by the veloc-

ity correlation functions of different orders, a method initiated by von Karman and

Howarth [8] in treating the problem of homogeneous isotropic turbulence. This

process of setting up the correlation equations of different orders and seeking their

solution can be regarded as a method of successive approximation to the solution

of the turbulence problem; it will be explained in the concluding section of the present

paper. The correlation functions of higher orders in the various special problems, ob-

tained by this setting-up process, should be verifiable by direct observation with the

advance of modern experimental technique; at present experiments have only been

performed to measure the mean velocity distribution and the second order stress

tensors in a turbulent flow. It should also be noted that although the equations of

correlation havfe a much rtiore complicated mathematical appearance than that of

the Navier-Stokes' differential equations from which they are derived, the method of

Prandtl's boundary layer approximations can still be used without leading to contra-

dictions for the particular problems [3, 4, 5] under consideration.

For the sake of convenience we list below the different equations of motion which

have been derived heretofore [l]. Reynolds' equations of mean motion and the equa-

tion of continuity for an incompressible fluid are given by

dUi 11 , N
 + UWitj = f,t + — r'i.i + W2Uit U\i =0. (1.1)

dl p p

Here, the tensor notation is employed, and Ui are the velocity components of the

mean motion, t is the time, p is the density, p is the mean pressure, v is the coefficient

of kinematic viscosity, a subscript preceded by a comma denotes the covariant

derivative, V2 denotes the Laplacian operator, and Reynolds' apparent stress tU is

defined by the relation
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r'i = — pWiW', (1-2)

Wi being the velocity components of the turbulent motion.

The equations of turbulent fluctuation and the equation of continuity for the

velocity fluctuation w\ which are the differences of the Navier-Stokes' equations and

Reynolds' equations (1.1), are

dwi 1 1
 b U'Wi,j-\- w>wi,j+ w'Ui,j = a,i T'i.j+ vV2Wi, w',j = 0, (1.3)
dt p p

where a is the pressure fluctuation. From the above set of equations we derive the

equations of vorticity fluctuation,

d
— <>>ik + U'u>ik,j + U',kWi,j — U',iWk,j + w'uik.jw\kwi,i — w',iwk,j
dt

1
+ w'tijk.j + W\lcUi,j — W',iUk,i = (T'i.ik ~ T'k.ji) + VV2a>ik, (1.4)

p

where the mean vorticity and the vorticity fluctuation «,■* are defined by the equa-

tions
fit k = Ui,k — Uk.i, Uik = Wi.k — Wk,i. (1-5)

The equations of double velocity correlation derived from (1.3) are

1 dr.* 1 . . ̂  1
 (Ui.jT'k + Uk.jT'i) U'Tik.j + (W'WiWk),j

p dt p p
1     v

— (a,iWk + a.kWi) V2Tik — 2vgmnWi,mWk,nt (1.6)

P P

where the superimposed bar denotes the mean. The ten equations of triple correlation

are

— wiwkwi+ Ui.jW'WkWi + Uk.jw'wiwi + Ui,jW'WiWk + U'(wiWkWt),, + (w'WiWkWt)
dt

1      
= (a,iWkWi + Q.kWiWi + a.iWiWk)

p

+ — (j'i.jTkl + T'k.jTli + T'l.jTik) + Vgmn(lViWkWl)

P

— 2vgmn{wi,nwk<nwi + Wk,mWi,nWi + wi,mWi,nWk). (1.7)

2. The pressure fluctuation. Let us take the divergence of the equations of turbu-

lent fluctuation (1.3). Because of the equation of continuity satisfied by w{, the pres-

sure fluctuation a satisfies the following Poisson's equation:

— V2ta = — 2 Um,nwn,m + (wmwn — wmwn),mn. (2.1)

P

Since any two successive covariant differentiations are commutative in a Euclidean

space, the gradient of the pressure fluctuation w,t also satisfies a Poisson's equation,
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— V2o,* = - 2(Um,nwn,m),k + (wmwn - wmw"),mnk. (2.2)

P

The general solution of (2.2) can be written in the form,

■ja.k = fff {U'm.nw'",n)',k \dV' ~ ^ f f f (w7"®7" ~ v>'mw'n)'.~nk —dV'

+ — f f {— ̂ - o'.t )W, (2.3)
4wp J J I. r dn dn \ r /)

where the integrations extend over the whole region of the moving fluid, the first

two integrals represent the particular integrals, and the third represents the comple-

mentary solution which is a harmonic function expressed in terms of the boundary

values of itself and its normal derivative; x'' are the coordinates of a point P' which

ranges over the region of the moving fluid, r is the distance from P' to the point P

with coordinates xi, dV' is a volume element, dS' is a surface element, d/dn' denotes

the normal derivative, and the primes on the various quantities on the right side of

(2.3) indicate that these quantities are to be evaluated at P'. We shall see finally

that the surface integral in (2.3) can be neglected for points P where a,k is defined

and which are not too close to the boundary of the moving fluid.

We now let both x' and x" represent rectangular cartesian coordinates, and let £*

denote the difference vector of x" and xi.e.,

? = xn - x\ (2.4)

Covariant differentiation then reduces to ordinary differentiation, and the difference

between covariant and contravariant tensor character disappears. Hence £' is equal

to £,• and the distance r between P and P' is given by

= (2.5)

The element of volume dV' is equal to d^d^d!?.

The solution (2.3) clearly shows that besides the harmonic function expressed as

a surface integral on the boundary, the pressure fluctuation at a point P, and its

gradient, are determined by the turbulent velocity fluctuation wi not only at P but

also everywhere within the fluid. However, due to the factor 1/r in the integrands

the effect of the velocity fluctuation at distant points P' on the pressure fluctuation

at P gradually dies away as P' recedes farther and farther from P.

3. Velocity correlation between two distinct points. The partial differentiations in

the integrand functions in (2.3) are taken with respect to the coordinates x'k which

are independent of xi. Hence, if we multiply (2.3) by the velocity fluctuation Wi at

the point P, we obtain the correlation between w,- and a,k at the same point P:

— a^w7=^~ Jj"J + Wmw'nw<)'.mnk^dV'

+irjl {7 <i^)" £(7)}iS'- (3A)
We shall neglect, however, the surface integral in the above equation on the
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ground that the correlation a\kWi is small provided that the point P where the correla-

tion a,kWi is under consideration is situated not too close to the boundary. This

condition limits the present theory to regions where free turbulence predominates.

Likewise, under the same condition of approximation the correlation function

p~la,kWiWi is given by

— a.kWiWi = — J"JJ [U'm,n{w'nwlwi)',m\,k —dV'

— — J"J"J" |w'mw'" wiwi — w'mw'nwiwi\,mnk — dV'. (3.2)

If we solve for a from (2.1) and form its correlation with w,-, we find, to the same

order of approximation, that

— awi = — J JJ" U'm,n(w'"wi)',m — dV' + — JJJ* (w'mw'nwiy,mn — dV'. (3.3)

In the three equations (3.1), (3.2) and (3.3) we recognize three types of functions,

namely, w'mWi, w,mw>nwi and w'nwflVi, and ■w'mw'nwiwi\ they are, according to Taylor

[10] and von Karman [8], the velocity correlations between two distinct points P

and P' of the second, third and fourth orders respectively. They are usually functions

of both the coordinates xi and x'k and probably also of the time t. The double correla-

tion function w'nwi between P and P' has been measured extensively for isotropic

turbulence by several authors [l 1, 12]; for flow in a channel [13] and in a pipe [14],

they have been recorded only in a number of isolated cases and only within limits.

It has been observed that for isotropic turbulence w'nwi vanishes very rapidly

for large values of the quantities £' defined in (2.4). This must also hold true for the

other two Jcorrelation functions w,mw'nwi and w,nwfltii, and also for other types of

flow; furthermore their derivatives with respect to £h should all approach zero rapidly

with increasing £\

On the other hand, the quadruple correlation u/mw'nwlwi between the points P

and P' does not necessarily vanish when P and P' are widely separated, for the aver-

age values of both w>mw'n and WiW; over a period of time r are themselves not sepa-

rately equal to zero in general. Hence as an analogy to the velocity vector W\ we

may separate the product WiWi into two parts, the correlation wflVi and a symmetric

tensor uu the time average of which vanishes,*

WiWi = WiWi + uu, (3.4)

  \ /* tr+r/2

u = — I uudt - 0.
r J r-r/i

An analogous relation holds good for wmw'n. The quadruple correlation wtmw'nw(wi

between the points P and P' consequently becomes

w'mw'nwiwi — w'mw'" WiW,- + u'mnuu. (3.5)

As P and P' recede farther and farther from each other, the correlation function

* The author wishes to express his gratitude to Mr. S. L. Chang for pointing out relation (3.4).
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u'mnuu, which behaves like w,nWi, will tend toward zero as a limit. Substitution of

(3.5) into (3.2) yields

— a,kwiwi = — f f f [U'm,n{w'nwiw%)',m\,k —dV'
p 2 ir J J J r

+ ~fff — (3.6)
If we substitute in the equations of thedoubleand triple correlations (1.6) and (1.7)

for p~1aikwi from (3.1) and p~1as:kWiWi from (3.6) above, we obtain a set of integro-

differential equations for the mean velocity, the double and triple velocity correlations

of a turbulent flow at a point P being the dependent variables with the velocity correla-

tions between two distinct points w'nw{ and w'nw(wi as kernels. This set of integro-

differential equations is too complicated for solving special problems, so we shall

presently develop approximate forms of the integral parts of the equations in a gen-

eral way.

It should be noted that for homogeneous isotropic turbulence the following rela-

tion between the triple correlations holds [8 ]:

1

w'mw'nwi = — w'iwmwn. (3.7)

4. Conservation relations satisfied by the velocity correlations. The velocity fluc-

tuation w'n at the point P' satisfies the equation of continuity w'n,n = 0. Let us multiply

this equation by iv, and average over an interval of time r. Since P and P' are inde-

pendent, we obtain the conservation equation for the double correlation w'nwi be-

tween P and P',
d  

—— (w'"wi)x = 0, (4.1)
dx'n

where the coordinates are still rectangular cartesian, and the subscript x indicates

that the variables xk are to be held constant while the differentiation is carried out.

Instead of x' and x'\ we can use the coordinates x' and £', i.e., we transform from

the old variables x' and x'' to the new variables x{ and £' by means of the equations

x< = x\ x'i=xi+Zi. (4.2)

In terms of the new coordinates x' and £*, Eq. (4.1) becomes

 (w'nwi) x =  (w'"Wi)x = 0. (4.3)
dx'n d$n

For the sake of simplicity we shall drop the subscript x in (4.3); it will be understood

that the variables xk are regarded as constants during the differentiation. Hence we

can write the divergence equation (4.3) in the covariant form,

(w'nwi),n = 0. (4.4)

Similarly, from the equation of continuity for wi at the point P, we have

 ; (w'nlV^x' = 0.
dxl
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In terms of the new coordinates xi and this relation becomes

 (w'nW^t (w'nW^x = 0.
dxi d?

After changing the variables from x{, x'* to x', £' it can be seen that w'nWi, considered

as a function of x4 and £* rather than of x' and x'\ varies slowly with xi but rapidly

with £* for points not too close to the boundary of the fluid volume. Hence, as a first

approximation the equation of conservation for the double correlation between P

and P' in the index i is given by

O'nWO.i = 0. (4.5)

VVe note that to the first approximation the correlation function wi' Wi satisfies the

conservation equation symmetrically with respect to the indices i and k.

Likewise, the other two correlation functions w,mw'nwi and w'nWiWh between P

and P' can be shown to satisfy the following relations:

(w'mw'nwr) ,i = 0, (w'"WiWk) ,n = 0. (4-6)

The first equation in (4.6) is derived by an approximation as was (4.5); the second one

is rigorous. We must not forget that all the covariant derivatives in (4.5) and (4.6)

are taken with respect to the variables £•', the coordinates x* being held constant.

It is obvious that since the coordinates x' of the point P are regarded as constants

under the integrations in (3.1), (3.2) and (3.3), the covariant derivatives with respect

to x'k in the integrand functions can all be replaced rigorously by covariant deriva-

tives with respect to the variables £*, because of the equations of coordinate trans-

formation (4.2). For example, (3.1) then becomes

— ̂7 = JJ [U'm.nW^).n\.k ~dV'

+ — J"J"J" (w'mw>mnk  dV'. (4.7)

The other two integrals (3.3) and (3.6) can be altered analogously

5. Correlation integrals between the pressure gradient and velocity fluctuations.

Let us examine the integral (4.7) more closely. In the integrand function of the first

integral on the right hand side, U'm,„ is a more slowly varying function of £' than

its factor w'nwi} both functions being regarded as functions of xk and £'. Hence, we

expand U'm,n at the point P' in a multiple power series in £%

dU'm dTJm " 1 d'+1U
 = f- V —   thth ... a, (5 i)
dxdx» H si dx"dx" ■ ■ ■ dx'-dxn

Substitution of (5.1) into (4.7) would yield a series of integrals which would be too

complicated for any practical application. But if we neglect the higher order terms,

in (5.1), then we have as a first approximation to (4.7),

— (a,iWk + Q,kWi) = anmikUm,n + ba, (5.2)
P
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where the functions anmik and £>u are defined by

anmik = — JJJ [(w'nWi),mk + (w'nwk),mi] — dV'}

bit = — J J J l(w'mw'nwi),mnk + (w'mw'"wk) ,mnl] —dV'. (5.3)

Owing to the conservation relations (4.5) and (4.6), the above two sets of functions

also satisfy the following divergence conditions:

a\ik = 0, gikanmik = 0, gikbik = 0. (5.4)

Of these three conservation relations, the first follows from the rigorous continu-

ity equation (4.4) and is hence exact, while the other two follow from (4.5) and the

first equation of (4.6) and are hence approximations. The nature of the functions aBml*

and bik will be discussed in §8 below.

Because of (5.4), contraction of (5.2) by means of gik yields,

1   1  
— a,iWl = — (ow').» = 0- (5-5)

P P

This result is consistent with the correlation (3.3). For we may substitute the series

in (5.1) into (3.3) and preserve the largest term; but the latter is smaller than the

first term on the right-hand side of (5.2) by a factor of X which is Taylor's scale of

micro-turbulence [10, 8]; the second term on the right-hand side of (3.3) is also smaller

than bik by an analogous factor. Hence the approximate form of (3.3), to the same

degree of accuracy as in (5.2), is

— awi = 0. (5.6)
P

This relation has also been proved to hold true for isotropic turbulence by von

Karman and Howarth [8].

By a similar process, we find from (3.2) that the triple correlation between the

pressure gradient and two components of the velocity fluctuations is, to the same de-

gree of approximation,

— {a,iwkwi + a,kwiwi + ts,iWiWk) = bnmikiUm,n + cikt, (5.7)

P

where the forms of the tensors bnmikt and Ciki are given by respectively by

b"mik i = — JJ J" [(w'nwiwk),mi + (w'"wkwi) ,mi + (w'"wiwi),mk] — dV',

cm = — J J J [(M/mnwa).mni + («'mnukl),mni + (u'm"uu),m „*] — dV'. (5.8)

Because of (4.6), the functions bnmiki satisfy the rigorous conservation relation,

b\m = 0. (5.9)

We shall discuss the general behaviour of the functions i and i in §8.
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6. Terms involving the decay of turbulence in the equations of double and triple

correlation. To determine the terms in the decay of turbulence, it is necessary to

know explicitly the double and triple velocity correlations between two adjacent

points. Physically, the correlation functions between two near-by points must satisfy

two conditions: first, they should become the velocity correlations at one point when

the two points coincide; secondly, they should degenerate into the isotropic corre-

lations when the flow obeys the condition of isotropy. By two adjacent points we mean

that expansions of the double and triple correlation functions in terms of the coordi-

nates £* stop after the second and third powers of £*, respectively. Furthermore, since

only approximate expressions of the decay terms are required, conservation equations

in the forms (4.4), (4.5) and (4.6) will suffice for the present purpose. In view of the

property that the double correlation wiw'n satisfies the conservation relations (4.4)

and (4.5) symmetrically with respect to the two indices i and n as a first approxima-

tion, it should also satisfy the supplementary condition that its expansion be sym-

metrical in the coordinates of P and P'.

The second order velocity correlation between two adjacent points that satisfies

the above two conditions and the supplementary condition of symmetry can be ex-

panded into powers of £' in the form,

 j— (A Silc / Cmn \

a>.vt = ^ + wW)

— — (Rnt'Zk + RkiZ'ti) + —— Eikjiv.„£'£!£m£n +•••!, (6.1)
X2 4!X4 ;

where q is the mean magnitude of the velocity fluctuation, or the root-mean-square

of the velocity fluctuation, defined by

q2 = WjW>, (6.2)

and Rik stands for

Rik = —WiWk. (6.3)

The function X is Taylor's scale of micro-turbulence, both q and X being functions of

the coordinates x' of P; A, Bm„, Cmn, G and are all independent of £'. The co-

efficients Bmn and Cmn are symmetric in m and n\ Eikiimn is both symmetric in i and k

and in the last four indices j, I, m and n, but is not symmetric in any one index of the

first set of two and any one in the last set of four, e.g., it is not symmetric in i and j.

Hence this tensor has 6X15 =90 independent components.

The form given in (6.1) for the correlation tensor -w{U}\ between two adjacent

points is the most general linear combination of the products of the tensors £<£*,

and WiWk. The functions A, Bik, Cik and G will be assumed to be constants; it is not

necessary to know the exact nature of the separate components of Eikjimn for our present

purpose, but we shall assume for the time being that the invariant E = gikg'lgmnEikjimn

is constant.

A question naturally arises as to whether the functions q2 and X2 in (6.1), which

vary with the coordinates, should be replaced by expressions which are symmetrical

in the coordinates of P and P'. However, this is not essential, for both q2 and X2 vary
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much more slowly than wtw'k as a function of since P and P' are close to each other,

we may use their values at P as an approximation. Nevertheless, one must be careful

with this approximation, whenever differentiation with respect to x'{ is involved.

The function wtw'k must satisfy the equation of continuity (4.4), or (4.5). By

setting the coefficients of £* and £'£'£"■ equal to zero separately, we find that

2A5ik + Bik + R\Clk - 5GRik - 3GSik = 0, (6.4)

gk'E ikslmn 0. (6.5)

Since Eq. (6.4) is symmetric in the indices i and k, and since Cik has been assumed

to be a constant, we must have

Cmn = — C5mn, (6.6)

where C is a constant. On the other hand if Cmn depends upon the correlation tensor

WiW/c, then it is possible to have the more general solution Cmn = — C8mn-\-DSmn, where

Sm„ is the inverse matrix of Rmn defined by S'iRki=Ski. For the sake of simplicity, we

choose D to be zero for the time being. Obviously, the number of independent equa-

tions in (6.5) is 30.

In order to give a simpler appearance to the final forms of the decay term in the

equations of double correlation and of the equation of vorticity decay, we put

A = l + 4G, C = %(k — 4G). (6.7)

The first equation amounts to a change of the factor X, this factor being arbitrary;

the change makes X assume the same numerical value as Taylor's scale of micro-

turbulence, when the correlation tensor obeys the condition of isotropy. The second

equation in (6.7) only defines C in terms of a new constant k. Utilizing relations (6.4),

(6.6) and (6.7), we put (6.1) into the form

wiw\ = wiwl + + 4G)«* - |[(2 + 5G)r2 - \(k + llG)i?mnr«n]Sa
OA \

- H* - 4G)r2Rik - G(RnVh + Rk,m + —■ Eikjlm+•••}, (6.8)
4!X2 )

where the tensor Eikjimn satisfies the thirty linear equations (6.5). We shall see pres-

ently that, with the form of Wiw'k given in (6.8), only the constant k will appear in

the term involving the decay of turbulence (6.14), while only G will be present in the

equation for the decay of vorticity (7.11).

For isotropic turbulence we have wiwk = \q_iiik, and it is easy to verify that in

(6.8) the terms in £<£* and r2 coincide with terms in the isotropic correlation tensor

according to von Karman and Howarth [8]. The validity of formula (6.8) and its

properties can be subjected to experimental verification.

For the triple velocity correlation WiWjW'k between two neighboring points, we

have to assume a form which degenerates into WiWjWk when the points coincide and

becomes the triple correlation for isotropic turbulence when the condition of isotropy

is satisfied by the flow. Since the expansion of the triple isotropic correlation function

begins with the third powers of £*, as shown by von Karman and Howarth [8], the

same must hold for the present general case. This expansion must satisfy the equation

of continuity (4.6), and the final result obtained, is
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Fq3 r 5
wiwjw'k - WiWjWk + r- [2Z££k (Siktj + 5y*fc)r2 + 5<y£*r2] + • • • . (6.9)

3!3V3X3 2

This equation tells us that up to this degree of accuracy the correlation function

WiWfiv'k is the sum of WiWjWk and an isotropic correlation tensor; similarly, we have

    Fq3 r 5
wiwjw'n = wiwmwn ~7~~t  + SmU)r2 + 5m„^r2] + • • • . (6.10)

3.3\/3X 2

In the above expression the relation (3.7) for isotropic turbulence has-been utilized.

In the expansions of (6.9) and (6.10), we have introduced the further assumption

that the triple correlation h can be expressed by [8]

F
h = r3, (6.11)

3!X3

where X is Taylor's scale of micro-turbulence and F is a numerical constant which

may be different for different flows. This emphasizes the point that this length X plays

an important role, not only for double but also for triple correlations as well. The

validity of this point should be tested experimentally.

Differentiating the correlation function (6.8) with respect to x'', we obtain

dw' k
  WiW'k - Wi  =   (w,•«/*)*
dx'' dx'' d£*

= — ii(l + 4G)(5<.ft + «*.£,) - [(2 + 5G)f, - \{k + llG)i?.n£"K*
3X2 v

— — 4G)%8Rik — G(Ri£ k + Rub,? + ■£*«£< + Rk&ul;1)

+ —}• (6-12)

and furthermore, under the same approximation as in (4.6) where 3( )i/dxi is neg-

lected, we get

vk r a / aw'Ai / a2 —\
— =  1 Wi    1 I = - I WiW'k J
v' Ldxp\ dx ') Jf_o \d£pd£' h

dWi dWk

dx" dx' \_dxp \ 3x'*/Jf-o \d£pd£* /j_o

02

= - + 4G){SuSkp + Sk,Sip) - [(2 + 5G)5.p - \{k + llG)2?.p]SjJfc
3X2

— \(k — 4G)btpRik — G(Ri„&kP + RipSk, + RktSiP + RkpSi,)}. (6.13)

Hence the term that represents the decay of turbulence in the equations of double

correlation (1.6) is equal to

dWi dwk 2v 2vk
2vgmn — — = - —- (k - 5)q2gik + —- WiWk. (6.14)

dxm dx" 3X2 X2

If we differentiate the triple correlation (6.9) with respect to the coordinates x'm,

the result is
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d   dw'i
WiWkw'i = WiWk = — (wiwicw'i)x-

dx'm dx'm d£

Similarly, to the same order of approximation as in (6.13) the following relation is

true:

d dw'i dWk dw'i dWi dw'i d2  
  WiWk  — = Wi   1- Wk — = (WiWkW'i) X.
dx" dx'm dx" dx'm dx" dx'm

This equation and formula (6.9) then yield

/ d2 \
- — ( WiWkW'i] =0. (6.15)

\dtmd£n /£„ o

dWk dwi dWi dwi ( d2
Wi b wk 

dx" dxm dx"dx"

Cyclic permutation of the indices i, k, I in (6.15) gives rise to two similar relations;

the sum of the three is identically zero, which shows that the term analogous to the

decay of turbulence in the equations of triple correlation vanishes in general:

2vgmn[wi,mwk,nwi + wk,mwi,nwi + wi,mwi,nwk\ - 0. (6.16)

7. The equation of vorticity decay. Since Taylor's scale of micro-turbulence X

plays a very important role in the decay of turbulence, it is necessary to find the equa-

tion which governs the behaviour of this fundamental length. This equation is pro-

vided by the decay of vorticity. The root-mean-square of the vorticity fluctuation

(to2)1'2 satisfies the equation

w2 = %gmpgn'o>mnUp„ (7.1)

where wm„ is the antisymmetrical tensor defined by (1.5). It is not difficult to derive

the equation satisfied by to2 from (1.4) directly. However, this procedure would be

too lengthy and we shall pursue an alternative course.

We notice that
  J /» <+t/2

gmpgn'umnup, - — I (wm,„ — w„,m)(wm,sgn' — w"fpgmp)dt

T J t—r/2

= 2{wm,nwm,sgn' — wn,mwm,n). (7.2)

On the other hand, to the same order of approximation as in (6.12) and (6.13), the

following expressions are true:

gn'Wm,nWm,t = — (V!(»mW'")M, Wn,mWm,n = — ( Wmw'n,\ = 0,

\dZmdtn /£_ o

where V2f stands for the Laplacian operator in the variables £'. It then follows that

o2 = — (V2£wmw'm)j_0. (7.3)

Our next step is to derive the differential equation satisfied by (V2iwmw'm)t=o-

From the equation of turbulent fluctuation at the point P', which can be written

in the form

dw'k 1 1
 f- U''w'k,j + w''w'k,j -f w''U'k,i — a'.k T''k.i + vV'2w'k, (7.4)

dt p p
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we derive the equation satisfied by the general double correlation function:

 WiW'k + U'(WiW'k),j + U''(WiW'k)',, + (WWiW'k) j + (w''wiw'k)',i
dt

+ w'kW'Ui.j + Wiw''U'k,j

1
= {aw'k),i (a'wi)',k + v^iwiw'k) + vv'2(wiU>'k), (7.5)

P P

where the covariant derivatives ( )and ( )are taken with respect to the variables

x' and x'', respectively.

In Eq. (7.5) we next replace x' and x'' by the two new sets of variables x' and p

by use of (4.2), and neglect terms involving the partial derivatives with respect to x'

when p are held constant, except for the term U'd( )(/dx'; this exception is made

because U' is large when compared with wk. Since we are only interested in the cor-

relation functions for two adjacent points, we can write

(w''WiW'kY,j = — (W'w'iWk)x,
dp

as in the case of isotropic turbulence (3.7). With all these approximations in view,

Eq. (7.5) in rectangular coordinates then becomes

d
— WiW'k + U> ; (WiW'k)i — U'   {WiW\)£ + U'i  (u\w'k),
dt dx' dd£'

dl\  — dU'k
 (w'wiw'k + w'w'iwk)z + w'kw' f- WiW1'

dp dx' dp

1 d   1 d
~ (aw'k)x — (a'wdz + 2w2((wiw'k)I. (7.6)

p of* p

For two adjacent points the power series expansion of aw'k in £* is in odd powers of £*.

Hence, by interchanging the two points P and P', we should have

tsw'i = — a'wi. (7.7)

Consequently (7.6) is essentially symmetric in the indices i and k.

Next, let us contract the indices i and k in (7.6). As in (4.4), aw'k should satisfy

rigorously the equation of continuity,

The result of this contraction then becomes

k (aw'k)z = 0. (7.8)

— wkw'k + U> —: (wkw'k)( — U> (■wkw'k)x + U'' (■wkw'k)1
dt dx' dp dp

d     dUk   dU"
— 2 —: (w'wkw'k)x + w'kiv' 1- wkw'> = 2fV2f{wkw'k)x. (7.9)

dp dx' dp
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Let us operate upon (7.9) with the Laplacian operator V2j and then set £i = 0,

denoting ( )(_0 by ( )o for smiplicity. The resulting equation is,

d /   d   / a2  \
— (V2(WkW k)0 + U'  ; (v2(Wkw'k)o -f 2U',mgmn I —:  wkw'k)
dt dx' \3£'d£" ) 0

— 2^V2{—t w'wkw,k\ + 2Uk,i(V2iiv'w'k)o = 2v{yilwicw'k)a. (7.10)
\ d£' /o

It is to be noted that in the above equation we have neglected the term WkW'V2xUk,j,

which is smaller than the term Uk,j(V2iw'w'k)o by a factor which is the square of the

ratio of X to a macroscopic length. Equation (7.10) also follows from the equation of

vorticity fluctuation (1.4) directly as mentioned before.

By substituting into (7.10) the explicit forms of the correlation functions wcw'k

and wiivj-w'k for two adjacent points given in (6.8) and (6.9), respectively, and then

setting £' = 0, we obtain the equation of vorticity decay,

d /q2\ d /q2\ 14G   70F q3 2v q2
5— ( — ) + 5t/> ( —) Ui,kW'wk = — = E — , (7.11)

dt\\*J dx'\X2/ X2 3V3 X3 3 X4

in which E is defined as before,

E = gikg'lgmnEikjlmn- (7.12)

We assume that both E and F are constants which may be different for flows with

different Reynolds numbers. In deriving equation (7.11), the equation of continuity

U',j = 0 for the mean motion has been utilized. It is also readily verifiable that (7.11)

agrees with von Karman's equation of vorticity decay for isotropic turbulence [8],

8. Nature of the correlation integrals and the final forms of the dynamical equa-

tions of correlation. Up to the present the only remaining uncertain quantities in the

equations of the double and triple correlations (1.6) and (1.7) are the correlation

integrals, anmik, and bik in (5.3), bnmiu and ciki of (5.8), and the quadruple velocity

correlation w,WiWkWi- Let us examine the correlation integrals first. The function

a"mik defined in (5.3), for example, would be uniquely determined if the double cor-

relation Wiw'k were known. But unfortunately the equation of continuity (4.4) and the

general dynamical equation of double correlation (7.6) are insufficient to yield a defi-

nite solution for wiw'k, because of the presence of the triple correlation wiwjw'k in

(7.6).
On the other hand, although the integrand functions of the four kinds of correla-

tion integrals are not known, we are dealing primarily with the integrals themselves

and they can only vary slowly with the coordinates involved. This argument can be

understood, if we recall that the correlation functions wiw'n, WiWkw'n, wiw'mw'n and

uiku'mn under the integral signs only change slowly when both the point P and the

point of integration P' undergo a rigid body translation, and that they vary rapidly

when the relative displacement of the two points changes. This rapidly varying part

of the functions is integrated away, leaving the slowly varying part behind. The

neglecting of the term d(w'nwi)i/dxi against d(w'nw')x/dl;' in (4.5) also follows from

this interpretation.

There is another mathematical reason for the fact that the four kinds of integrals
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are slowly varying functions of the coordinates. If, for instance, we differentiate with

respect to x' the quantities Ciki defined in (5.8), we find that

—— = — f f f {—( [(w'mnW,k) ,mnl + (u'mnUk,),mni + (u'mnU,i) .mnk] ~\
dx' 4ir J J J {dx"\ r /j

- -([0?=55).-, + (u'mnUkl),mni + («'»"«,,•).«„*] | <1V'. (8.1)

The first part of the integrand function is small when compared with the second, and

the second can be transformed into a surface integral on the boundary of the fluid by

means of the usual divergence theorem of vector analysis. If the point P is not very

close to the surface, this surface integral is negligible on the ground that the correla-

tion function u'mnuik and its derivatives between P, the point in the interior of the

fluid, and P', the point of integration on the boundary, are negligible.

Since the correlation integrals are slowly varying functions of the coordinates, we

shall expand them as powers of the coordinates used in the special problems to be

solved. From kinematic considerations, the integrands of the integrals may further-

more contain powers of q, the root-mean-square of the velocity fluctuation, as fac-

tors. Both theory and experiment at present do not assure us of the exact dependence

of this factor. Nevertheless, so far as the mean velocity distribution is concerned, this

uncertainty is probably not important, as we shall see in the problem of pressure flow

between two parallel infinite planes [9].

By substituting into Eqs. (1.6) and (1.7) the approximate forms of the four cor-

relation integrals from (5.2) and (5.7), and the decay terms (6.14) and (6.16), we ob-

tain finally

1 *■« 1 . . .. 1
 (Ui,iT>k + Uk.jT'i) U'Tik.j + (W'WiWk),j

dt p p
v 2v 2vk .

= - anmikUm,n - bik V2t<* + — (k - 5)q2gik   WiWk, (8.2)
p 3X2 X2

— WiWkWi -(- Ui,jw'wkwi + Uk.jw'wiwi + Ui.jW'WiWk + U'\wiWkWi),,•-f (w'wiwkwi),j
dt

1
= — b"miklUm,n — Ciki + — (T'i.jTkl + T'k.jTu + T'l.iTki) + Vgmn(wiWkWl) ,mn- (8.3)

P2

In the second set of equations we notice that the term involving the quadruple cor-

relation is actually smaller than the terms bnmikiUm,n and Ciki which form the correla-

tion between the pressure gradient and two components of velocity fluctuation. This

is due to the fact that the term (w'WiWkWi).,y is equal to a velocity fluctuation raised

to the fourth power and divided by a macroscopic length, while on the other hand Cai

is, from its definition (5.8), of the order of a velocity fluctuation raised to the fourth

power and divided by a length which has the same order of magnitude as Taylor's

scale of micro-turbulence. The permissibility of neglecting the terms (w'lViWkivi) ,j and

p~2T'i,jTki as a first approximation, for instance in the problem of pressure flow be-

tween two parallel infinite planes [9], can be regarded as a justification of the above

approximation and its associated 'interpretation.
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We must not forget that the other dynamical equations necessary for the solution

of a turbulence problem are the equations of mean motion (1.1) and the equation of

vorticity decay (7.11).

9. Conclusion and summary. It is now not difficult to see that the foregoing de-

velopment is essentially a method of successive approximation to the solution of the

turbulence problem. In the initial approximation we have the well-known Reynolds'

equations of mean motion which contain the unknown apparent stress. From the

mathematical point of view the momentum and vorticity transport theories connect

this stress with the mean velocity by physical arguments, in order to make the mean

velocity distribution determinate.

The next approximation in solving the given turbulence problem is to use the

equations of mean motion and of double correlation by making certain approxima-

tions to the triple velocity correlation in the equations. This procedure has been fol-

lowed in the determination of the velocity distributions in jets [3] and wakes [4],

where free turbulence predominates; for the triple correlations we use their values

at the centers of the flows as an approximation. The mean velocity distributions thus

obtained agree with the experimental observations very well over large portions of

the flows.

In the third approximation to the solution of the problem we have to solve the

equations of mean motion and of both the double and triple correlations simultane-

ously by assuming approximations for the quadruple correlations. It is obvious that

this process of forming the differential equations of the correlations out of the equa-

tions of turbulent fluctuation can be generalized to higher orders. Fortunately, as in

the problem of pressure flow through a channel [9] where a wall is present, we can

stop at the equations of triple correlation and neglect the quadruple correlations as an

approximation, so that the solution of the problem is not too unnecessarily compli-

cated from the theoretical point of view. As we shall see, the solution of this particular

problem holds true in all parts of the channel, if all the equations of mean motion and

of double and triple correlation are used. On the other hand, the solution for the mean

velocity based upon the equations of mean motion and of double correlation by using

the value of the triple correlation in the center of the channel as in jets and wakes, is

only valid in the central part of the channel, and fails when the wall of the channel is

approached. This brings up incidentally the important role played by the triple cor-

relation in such problems.

In order to see more clearly how the equations of double and triple correlation

in the forms (8.2) and (8.3) and the equation of vorticity decay (7.11) are derived

from the equations of turbulent fluctuation, it might be of interest to sum up the

conditions and approximations under which they are valid. They are listed below:

(1) The velocity correlation between a point in the interior of the fluid and another

on the boundary is negligible. This excludes the immediate neighborhood of the

boundary of the fluid as a region of application of the theory.

(2) The variation of the mean velocity is small as compared with the correlation

function between two distinct points when the relative displacement between the

points changes, so that the higher order terms in the series (5.1) and similar series

may be dropped.

(3) The second and third order velocity correlations between two adjacent points
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are expansible as power series in £'/X with the terms that do not contain £■ propor-

tional to the Reynolds stress at the points. This brings out the point that Taylor's

scale of micro-turbulence X plays an equally important role for both the double and

triple velocity correlations.

(4) The slowly varying nature of the functions anmik, bik, bnmikt and ciki with the

coordinates, and its physical interpretation, have been explained in the preceding

section.

With the advance of modern experimental technique the above four conditions

and their theoretical consequences, as presented here, can all be tested by direct ex-

perimental observation. The less certain part of the theory lies probably in the dis-

cussions in §8 of the slowly varying nature of the correlation integrals with the

coordinates; this perhaps could be improved if more accurate experimental evidence

were available.
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pleasure to the author to thank Dr. R. A. Millikan and Dr. Th. von Karman for the

opportunity given him to work at California Institute of Technology. He is also grate-

ful to Dr. von Karman for his interest in the problem and for many helpful criticisms

and discussions. To Dr. C. C. Lin, who collaborated with the author during the early
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