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ABSTRACT. We construct a canonical linear resolution of acyclic 1-dimensional
sheaves on P! x P! and discuss the resulting natural Poisson structure.

1. INTRODUCTION

The goal of this paper is to present a (yet another) variation on a theme developed
by several authors, notably Moser, Adams, Harnad, Hurtubise, Previato [13], [1]-
[5], and relating integrable systems, rank r perturbations, spectral curves and their
Jacobians, and coadjoint orbits of loop groups.

Let us briefly recall that, given matrices A,Y, F, G of size, respectively, N x N,
rxr, Nxr,and r x N, one defines a gl (C)-valued rational map

(1.1) Y +G(A—-\"'F,

i.e. an element of the loop algebra QT[(T)*, consisting of loops extending holomor-
phically to the outside of some circle S* C C. This determines a (shifted) reduced
coadjoint orbit in gl(r)~ (see Remark B3 for a definition). On the other hand, the
polynomial (1)) also determines (generically) a curve S and a line bundle L of de-
gree g+ —1: the curve is defined as the spectrum of (1), and L is the dual of the
eigenbundle of (II]). This describes S as an affine curve in C?, and the isospectral
flows, corresponding to Hamiltonians on the space of rank r perturbations, linearise
on the Jacobian of the projective model of S.

In fact, as shown by Adams, Harnad, and Hurtubise [I12], it is more convenient
to compactify S inside a Hirzebruch surface F,;, d > 1. This results in singularities,
which may be partially resolved, but it gives a particularly nice description of
Jac®(S), i.e. of the flow directions.

In this paper, we consider a different compactification of S, namely inside P! x P!
and defined as

(1.2) S_{(Z,A)eplxpl;det (Y;Z A?/\>_o}.

This is a very natural thing to do, but we know of only one occurrence in the
literature: the paper of Sanguinetti and Woodhouse [I7] (we are grateful to Philip
Boalch for this reference). In that paper, in addition to other results, the authors
use the above compactification to give a nice picture of the duality phenomenon
discussed in [3]. Our application is to another subtlety of the rank r perturbation
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isospectral flow: the fact that the low may leave the set where rank F' = rank G = r,
without becoming singular. More precisely, we have:

Theorem 1.1. Let S be a smooth curve in P! x P, defined by ([2) and corre-
sponding to a (shifted) rank r perturbation of the matrix A (r < N). A line bundle
L € Jacd~"t1(S) corresponds to (A,Y, F,G) with rank F = rank G = r if and only
if L satisfies:

HY(S,L(0,-1))=H" (S, L(0,-1)) = 0, H°(S,L(—1,0))=0, H*(S, L(1,-2))=0.

We are interested in more than line bundles on smooth curves in P! x P!, The
above approach generalises to acyclic (i.e. semistable) 1-dimensional sheaves on
P! x P!, with a fixed bigraded Hilbert polynomial. In §§2 and 3, we construct a
natural linear resolution of such a sheaf, very much in the spirit of Beauville [6].
This gives us a linear polynomial matrix M(z,A) (up to a certain group action).
If the support of the sheaf is a smooth curve of bidegree (r, N), then the matrix
has size r x N. As long as the point (0o, 00) does not belong to the support of the
sheaf, then the matrices M (z, A) can be identified with the quadruples A,Y, F, G.
The space M(k,1) of the (A,Y, F,G) has a natural Poisson structure, obtained by
identifying it with gl (C)* @ gl.(C)* & T*Mnx,(C). Thus we obtain a Poisson
structure on the quotient of an open subset of M(N,r) by GLy(C) x GL,(C).
The (generic) symplectic leaves are known, from [I,[5], to be reduced coadjoint
orbits of loop groups. Our aim is to describe these symplectic leaves directly in
terms of sheaves on P! x P!. We show that they correspond to symplectic leaves of
a particular Mukai-Tyurin-Bottacin Poisson structure [SHIILI4L[18] on the moduli
space Mg(r, N) of simple sheaves on P! x P! with (bigraded) Hilbert polynomial
Nz + ry. The surface Q = P! x P! is an example of a Poisson surface [S], and
consequently, for every choice of a Poisson structure on @, i.e. a section s of the
anticanonical bundle K¢ ~ O(2,2), one obtains a Poisson structure on Mg(r, N)
as a map

Tir M(r, N) ~ Ext(F, F ® Kq) = Extg(F, F) ~ Tiz)Mq(r, N).

We show that the (generic) symplectic leaves gl (C)* @ gl,.(C)* @ T* My« (C), i.e.
reduced coadjoint orbits in gl(r)~, are the symplectic leaves of the Mukai-Tyurin-

Bottacin structure corresponding to s(z,A\) = 1, i.e. to the anticanonical divisor
2({00} x Pt + P! x {oo})

2. ACYCLIC SHEAVES ON P! x P! AND THEIR RESOLUTIONS

Definition 2.1. Let X be a complex manifold and let F be a coherent sheaf on
X. Then:

(i) The support of F is the complex subspace supp F of X defined as the zero-
locus of the annihilator (in Ox) of 7. The dimension dim F of F is the
dimension of its support.

(ii) F is pure if dim & = dim F for all nontrivial coherent subsheaves £ C F.

(iii) F is acyclic if H*(F) = 0.

Remark 2.2. In the case of 1-dimensional sheaves on a smooth surface X, purity of
F means that at every point x € supp F, the skyscraper sheaf C, does not embed
into F,. In addition, a 1-dimensional sheaf F on a smooth surface X is pure if and
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only if it is reflexive; i.e. after performing the duality F — Extﬁ( (F, Kx) twice, we
obtain F back (up to isomorphism) (see [9} §1.1]).

In the remainder of the paper, all sheaves are coherent.

We shall now consider sheaves on P! x P'. For any p,q € Z we denote by
O(p,q) the line bundle 7;O(p) ® 750(q), where 1,7 : P! x PL — P! are the two
projections. We shall also denote by ¢ and 7 the two affine coordinates on P* x P*.

Let F be a sheaf on P! x P!. Associated to F is its bigraded Hilbert polynomial

(2.1) Pr(z,y) = Y x(F(z,y)).
z, Yyl

The sheaf F is 1-dimensional if and only if Pz is linear.
We begin by describing a canonical resolution of acyclic 1-dimensional sheaves
on P! x P!,

Theorem 2.3. Let F be a 1-dimensional acyclic sheaf on P x P1. Then F has a
linear resolution by locally free sheaves of the form

(22) 0= O(=2,-1)% g (-1, -2)% M o1, 1)@+ L F g,

for some k,1 > 0.
Conversely, any F defined as a cokernel of a map M((,n) as above with
det M(¢,n) # 0 is acyclic and 1-dimensional.

Remark 2.4. Let F be a 1-dimensional acyclic sheaf on P* x P! with Pr(x,y) =
lz + ky. Then F is semistable with respect to O(1,1).

Remark 2.5. This resolution is canonical, but not necessarily minimal, in the
sense of being obtained from the minimal resolution of the bigraded module

@i,jeZ HO(‘F(Z7.7))
Proof. Let h°(F(0,1)) = k and h°(F(1,0)) = I so that Pr = lz + ky. Let & =
F(1,1), and let T.(€) = @, joz H(E(i, j)) be the associated bigraded module over
the bigraded ring S = @, ;; H°(P' x P',0(4, j)). Furthermore, let T'.(€)|>0 =
D, ;>0 H°(&(i, 7)) be its truncation. Owing to [12, Lemma 6.8], the sheaf associated
to '« (€)|>0 is again €. Moreover, [12, Theorem 6.9] implies, as £(—1, —1) is acyclic,
that the natural map
H(&) @ HY(P' x PY,O(p, q) — H°(E(p, q))
is surjective for any p,q > 0. Therefore, we have a surjective homomorphism
S®(k+l) — F* (g)lzo —0
of bigraded S-modules. Since £ is of pure dimension 1, its projective dimension is
1, and, hence, the above homomorphism extends to a linear free resolution
k+1 k+1

0— @S(—pi, —q;) — @S =T (&)|s0— 0,
i=1 i=1

where p;,q; > 0 and p; + g; > 0 for each 7. The corresponding sheaves on P! x P!
give us a locally free resolution of &:

k+l1 k+l1
(2.3) 0— @ O(—pi, —¢;) — @O —&—0.

=1 =1
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Since H*(E(—1,—1)) = 0, either p; = 0 or ¢; = 0 for every i. Since h®(E(—1,0)) =
k, we deduce, after tensoring (23) with O(—1,0), that > p; = k. Similarly Y ¢; =
I. Since h'(€) = 0, none of the p; or ¢; can be greater than 1, and so all nonzero p;
and all nonzero ¢; are equal to 1. This proves the existence of resolution (2:2)).
Conversely, if F admits a resolution of the form ([22)), then it is 1-dimensional.
The long exact cohomology sequence implies that F is acyclic. (]

Let us write n = k 4+ . The polynomial matrix M(¢,n) in (23] has size n X n
and is of the form
(2.4) (A() + A1< BO + Blﬂ) s

with Ag, A1 € Mat,, ,(C), By, B1 € Mat,, ;(C). Let us denote by A(k,[) the space
of such matrices with nonzero determinant. The group GL,,(C) x GL;(C) x GL;(C)
acts on M(k,l) via

-1
23 (b (4Q) Bo) =g (4@ Bw) () ,2).
and we can restate Theorem [2.3] as follows:

Corollary 2.6. There exists a natural bijection between

(a) isomorphism classes of 1-dimensional acyclic sheaves F on P! x P! such
that h°(F(0,1)) = k, h°(F(1,0)) =1
and

(b) orbits of GLi+1(C) x GLi(C) x GL;(C) on A(k,1). O

For a sheaf defined by (2.2]), we can describe its support as follows. As a set, the
support of F is

S ={(¢;n) € P x P'; det M((,n) = 0}.
Let us write det M(¢,n) = [[;_, ¢;(¢,n)¥, where ¢; are irreducible polynomials.
We define the minimal polynomial par(¢,n) of M as []]_, ¢:(¢,n)", where
r; = max{a;b;; at a generic point, M((,n) has a Jordan block of size a;

with eigenvalue ¢;(C, n)bi 1.
Then:
Proposition 2.7. The support of F is the curve (S, OPlel/(pM)). O

Let us now fix the support S. For simplicity, we shall assume that it is an integral
curve in the linear system |O(k,l)| on P! x P!; i.e. S is given by an irreducible
polynomial P(¢,n) of bidegree (k,1), k,I > 1. This immediately implies that the
rank of F is constant; i.e. F is locally free. Theorem [Z3] and Corollary imply

Corollary 2.8. Let P((,n) be an irreducible polynomial of bidegree (k,l) and S =
{(¢,n); P(¢,m) =0} be the corresponding integral curve of genus g = (k—1)(1—1).
There exists a canonical biholomorphism

Jac?™1(S) —© ~ {M € A(k,l); det M = P} /GL,(C) x GLi(C) x GL;(C).
Similarly, let Ug(r, d) be the moduli space of semistable vector bundles (locally

free sheaves) on S. For d = r(g — 1) define the generalised theta divisor © as the
set of bundles with nonzero section. Then we have:
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Corollary 2.9. Let P((,n) be an irreducible polynomial of bidegree (k,1) and S =
{(¢,n); P(¢,m) =0} be the corresponding integral curve of genus g = (k—1)(1—1).
There exists a canonical biholomorphism

Us(r,r(g—1))—O ~{M € A(kr,lr); det M = P"} /GLy,,(C)xGLyr(C)x GLy,-(C).

3. A GEOMETRIC RESOLUTION

There is a much more geometric way of constructing resolution (2.2)), which
works under mild assumptions on the sheaf F (cf. [7] for the case of o-sheaves).

Definition 3.1. Let F be a 1-dimensional sheaf on P! x P1. We say that F is bipure
if F has no nontrivial coherent subsheaves supported on {z} x P! or on P! x {2}
for any z € PL.

Remark 3.2. Observe that bipure implies pure.

Now let F be an acyclic and bipure sheaf on P' x P! with Hilbert polynomial
lx + ky. As in the proof of Theorem 23] we consider the sheaf & = F(1,1). Let
D¢ and D, denote the divisors {¢} x P, P! x {n}. We set

(3.1) Ve ={se€ H&);s|p, =0}, W, ={se€H();s|p, =0}
For any ¢ and 7, consider the maps
E(-1,00) =&, £(0,-1)=¢&

given by multiplication by global nonzero sections of O(1,0) and O(0,1), van-
ishing at ¢ and 7, respectively. Since £ is bipure, these maps are injective, and
therefore Vo ~ HY(E(-1,0)), W, ~ H°(&(0,-1)) for any ¢,n. In particular,
dim Ve = k, dimW,, = [, for any ¢ and 7. Therefore, ( — V; and n — W,
are subbundles of H%(£) ® O on P. They are isomorphic to H°(£(—1,0)) ® O(—1)
and to H°(£(0,—1)) ® O(—1). The isomorphism is realised explicitly via the map
H°(E(-1,0)) ® O(=1) — H°(&) ® O, defined as

H°(E(~1,0)) ® O(—1) 3 (s, (a, b)) = (b — a)s € H°(E)
(here (a,b) € I, where [ is the fibre of O(—1) over [{]), and similarly for the subbundle
W. We now define a vector bundle U on P* x P!, the fibre of which at ¢, ) is Ve®Why;
ie.
U~ (H°(E(-1,0)) ® O(-1,0)) & (H°(£(0,—1)) ® O(0,—1)) .
We obtain an injective map of sheaves U — H°(€) ® O. Let G be the cokernel, i.e.
(3.2) 0—-U— H' E) R0 —G—0.

We claim that G ~ &, and so ([B.2]) is a natural resolution of £. To prove this, tensor
the resolution (Z2) by O(1,1) to obtain

(3.3) 0= O(=1,00% @ 00, —1)® " pat+d ¢,

Clearly, the middle term is identified with H°(£) ® O. For any (g, consider the
image of M ((o,n) restricted to O(—1,0)®¥| & 0. This image does not depend on
n, and since F is bipure, it is exactly V¢,, defined in (B.I)), i.e. sections vanishing on
Co x PL. Similarly, for any 7o, the image of M ((,no) restricted to 0 & O(0, —1)®!,,
is precisely W,,. Hence, there are canonical isomorphisms between both first and
second terms in resolutions ([B.2) and (B.3) which commute with the horizontal
maps. Therefore G ~ £.
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4. POISSON STRUCTURE AND ORBITS OF LOOP GROUPS

According to Corollary 2.6] acyclic sheaves with the Hilbert polynomial lx + ky
correspond to orbits of GLg(C) x GL,(C) x GL;(C) on A(k,1), where A(k,1) is
the set of polynomial matrices defined in ([24)) and the action is given in ([2.5).

We now make the following assumption about the sheaf F:

(4.1) (00, 00) & supp F.

This can, of course, always be achieved via an automorphism of P! x P'. In terms
of the matrix M(¢,n) corresponding to F, (1)) means that det(A;, By) # 0. We
can, therefore, use the action of GLi4;(C) to make (A;, By) equal to minus the
identity matrix so that M ({,n) becomes

(4.2) <X o ¢ YF_ n) , X € Maty 4(C), Y € Mat(C), G, FT € Maty (C).
The residual group action is that of conjugation by the block-diagonal GLj(C) x
GL,(C). We denote this group by K.

Remark 4.1. We are, essentially, in the situation of [5]. The only difference is that
we do not fix X or Y.

We denote by M (k, 1) the space of all matrices of the form (£2]), which we identify
with quadruples (X,Y, F,G) as above. The action of K = GL;(C) x GL;(C) on
M(k,1) is given by

(4.3) (9,h).(X,Y,F,G) = (9Xg~ ", hYh™',gFh™" hGg™1).

Let us also write S(k, 1) for the set of isomorphism classes of acyclic sheaves with
Hilbert polynomial Iz + ky on P! x P! which satisfy (@I]). The content of Corol-
lary is that there exists a natural bijection

(4.4) Mk, )/ K ~ S(k,1).

4.1. Poisson structure. The vector space Maty ; x Mat; ,, has a natural K-invari-
ant symplectic structure: w = tr(dF' A dG). On the other hand, Maty 5, ~ gl (C)*
and Mat;; ~ gl;(C)* have canonical Poisson structures, and therefore M(k,1) has
a natural K-invariant Poisson structure. If M(k,1)? is the subset of M(k,l) on
which the action of K is free and proper, then M(k,1)?/K is a Poisson manifold,
and, consequently, we obtain a Poisson structure on the corresponding subset of
acyclic sheaves with Hilbert polynomial Iz 4+ ky and satisfying ([1]). We shall now
describe symplectic leaves of M(k,1)?/K in terms of sheaves on P* x P!.

First of all, let us describe sheaves corresponding to symplectic leaves in M(k, ).
Such a leaf is determined by fixing conjugacy classes of X and Y. On the other
hand, conjugacy classes of k x k matrices correspond to isomorphism classes of
torsion sheaves on P!, of length k. This correspondence is given by associating to
a matrix X € Maty, (C) the sheaf G via

(4.5) 0= O(-1)% X5 0%k g 0.

If, for example, X is diagonalisable with distinct eigenvalues (i, ..., (, of multi-
plicities k1, ..., k,, then G ~ @;_, CFil¢,; ie. G|e, is the skyscraper sheaf of rank
k;.

Proposition 4.2. Let P be a conjugacy class of k X k matrices. The bijection (4.4)
induces a bijection between
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(i) orbits of GLL(C) x GL;(C) on {(X,Y, F,G) € M(k,l); X € P} and
(ii) isomorphism classes of sheaves F in S(k,l) such that F|,—o is isomorphic

to G defined by (&H).

Proof. At n = oo, the matrix ([@2]) becomes (XC; ¢ _01). The statement follows

from (L) and 2.2). O

Therefore symplectic leaves on M (k, ) correspond to fixing isomorphism classes
of Fly=oo and of F|c—oo. Symplectic leaves on M(k,1)°/K are of course smaller
than K-orbits of symplectic leaves on M(k,1)°. They are obtained by fixing X and
Y and taking the symplectic quotient of Maty; x Mat; ; by Stab(X) x Stab(Y").
We shall describe sheaves corresponding to a particular symplectic leaf in the case
when X and Y are diagonalisable.

4.2. Orbits of GL;(C) and matrix-valued rational maps. We now consider
only the action of GL;(C) ~ GLk(C) x {1} € K on M(k,l). We fix a semisim-
ple conjugacy class of X; i.e. we suppose that X is diagonalisable, with distinct
eigenvalues (1, ...,(, of multiplicities k1, ..., k.. The stabiliser of X is then iso-
morphic to [[;_; GLy,(C). If the action of GLj(C) is to be free, we must have
k; <l,i=1,...,r. Let us diagonalise X so that X has the block-diagonal form
(¢1 Lk xkyy - G Lk xk,. ), and let F;, G; denote the k; x I and I x k; submatrices
of F,G such that rows of F' and the columns of GG have the same coordinates as
the block ¢; - 1g, xk,- The action of GL;(C) is free and proper at (X,Y, F, G) if and
only if rank F; = rank G; = k; fori =1,... 7.

As in [IL5], we can associate to each element of M(k,l) a Mat; ;(C)-valued
rational map:

(4.6) RO =Y +G(—-X)'F
The mapping (X,Y, F,G) — R(() is clearly GLy(C)-invariant. If X is diagonalis-
able, as above, i.e. X = (¢1 - Lkyxkys--5Cr - Lk, xk, ), then

", G,F;
(4.7) R(¢) :Y+ZC_C.
i=1 v

We clearly have:

Lemma 4.3. Let P be a semisimple conjugacy class of k x k matrices with eigen-
values (1, ..., ¢ of multiplicities ky, ..., k.. The map (X,Y,F,G) — R({) induces
a bijection between

(i) GLk(C)-orbits on {(X,Y,F,G) € M(k,1)°’; X € P} and

(i) the set Ry(P) of all rational maps of the form

T R
R(C)=Y + —,
;C—Q

where rank R; = k;. O

4.3. Orbits of loop groups. A rational map of the form ({8 may be viewed as
an element of a loop Lie algebra gl(l)~, consisting of maps from a circle S* in C,
containing the points ¢; in its interior, which extend holomorphically outside S*

(including 0o). The group GL(I)*, consisting of smooth maps g : S' — GL;(C),



4162 ROGER BIELAWSKI AND LORENZ SCHWACHHOFER

extending holomorphically to the interior of S, acts on gNI(Z)* by pointwise conju-
gation, followed by projection to gl(l)~. In particular, if all eigenvalues of X are
distinct, then the action is

- R; g\Gi)11ig(Gi) — Cz ig Cz
¢). <Y+ E ) Y + E
i=1 C_C’L C Cz

Therefore, if we fix conjugacy classes of the R;, we obtain an orbit of Eif(l)*‘ in
gl(l)~. We shall now consider quotients of such orbits by Stab(Y) and describe
which sheaves correspond to elements of such an orbit. Let us give a name to such
quotients:

Definition 4.4. The quotient of an orbit of 55(1)‘* in gl(1)~ by GLy(C) is called
a semireduced orbit.

Remark 4.5. In the literature (see, e.g., [I]-[5]) a reduced orbit is the symplectic
quotient of an orbit by Hy = Stab(Y). The GL;(C)-moment map on gl(l)~ is
identified with Y + "7, R; so that a reduced orbit is obtained by fixing the value
of a = m(3°;_, Ri), where 7 is the projection gl;(C) — g;(C)/by (with L taken
with respect to tr), and dividing by Stab(a) C Stab(Y). Therefore, if Stab(Y") fixes
a, then a reduced orbit can be identified with a subset of a semireduced orbit.

Let us, therefore, fix a semireduced orbit of EZ(Z)“‘. We choose r distinct points
(1,...,( in C. Furthermore, we choose r + 1 conjugacy classes Qo, Q1,...,Q, of
I x I matrices. This data determines a semireduced orbit T = YT(Qo,...,Q,) of

GL()" defined as

(4.8) T = {R(C) =Y+ Z C]_%ic_; Y € Qo, Vi>1R; € Qi} /GLi(C).
i=1 ¢

Let

(4.9) ki =rankQ;, i=1,...,r, k=) k.

In the notation of Lemma 3] T C R;(P), where P is the semisimple conjugacy
class of k x k matrices with eigenvalues (; of multiplicities k;.

Thanks to Proposition 42} the conjugacy class P determines F|,—o, which, in
the case at hand, is @)_, Cki|(<i7oo). Similarly, QJg determines the isomorphism
class of F|¢=oc. We now discuss the significance of the other conjugacy classes
Qlu ) Ql'

We claim that these classes determine the isomorphism class of F|,2—n, i.e. of
F restricted to the first order neighbourhood of n = co. This is only to be expected
if one thinks in terms of the Mukai-Tyurin-Bottacin Poisson structure; cf. [11]. We
again consider the canonical resolution ([2.2) of F with M(¢,n) given by (£2). Let
71 = 1/n be a local coordinate near 1 = co so that

M(¢, 1) = <XC;< ﬁ{jF_ 1) :
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Using action (23]), we can multiply M (¢, 7) on the right by (é (1- ngl). On
the scheme 7? = 0, we have (1 — 77Y)~! =1+ 7Y, and so M((,7) becomes

X—-( 7F
G -1)°
To describe Flj2—¢, it is enough to describe it near each (;, i.e. to describe G; =

Flu,x qi2=0y, where U; is an open neighbourhood of (; (not containing the other

¢j). The resolution ([Z2) of F restricted to U; x {ij? = 0} becomes
0= O(=2,~1)%k @ O(—1, —2)@t 2D,

where R
= (96 ™).

7

O(—1,-1)8k+) s G, — 0,

This implies that we have an exact sequence

(4.10) 0= O(=2,—1)@k: LGZOTNG o 3 gy@k G 0

on U; x { = 0}. Therefore G; is determined by the G Ly, (C)-conjugacy class of
F;G;, which is the same as the GL;(C)-conjugacy class of G;F;. Lemma (3] and
formula ([471) imply that the conjugacy class of G;F; is @;. Thus, the conjugacy
classes @1, ..., Q,, which determine the orbit ([&8]), correspond to the isomorphism
class of F|z2—9. Observe that the support of G; is given by det(((; —¢)+7nF;G;) = 0.

In other words, the eigenvalues of F;G; give C:.]Ci at (¢,7) = ({,0), i.e. the first

order neighbourhood of supp F at ((;, 00).
Summing up, we have:

Theorem 4.6. There exists a natural bijection between elements of the semireduced
rational orbit [ of Z:f(w in g[(l)_ and isomorphism classes of 1-dimensional
acyclic sheaves F on P! x P! such that

(i) The Hilbert polynomial of F is Pr(x,y) = lz + ky.
( (00,00) € supp S, and Fly—oe = @;_1 C¥|(¢; 00)-
i

ii)

(iii) The isomorphism class of F|c=oc corresponds to Qo, as in Proposition E2l
(iv) The isomorphism class of F|,2—«, corresponds to conjugacy classes Q1, ...,
Q., as described above. O

Remark 4.7. A variation of this result is probably well known to the integrable
systems community (at least when F is a line bundle supported on a smooth curve
S). We think it useful, however, to state it in this language and in full generality.

4.4. Symplectic leaves of M(k,1)?/K. We can finally describe symplectic leaves
of S(k,1), i.e. sheaves corresponding to a particular symplectic leaf L in M(k,1)/K,
at least in the case when L C M(k,1)°/K and X and Y are semisimple. As we
have already mentioned in §4&11 a symplectic leaf in M(k,1)°/K is obtained by
fixing X and Y, as well as a coadjoint orbit A C h* of H = Stab(X) x Stab(Y).
If oo : Maty; x Mat; , — bh* is the moment map for H, then the symplectic leaf
determined by these data is

(411)  L={(X,Y,F,G) € M(k,))% X and Y are given, u(F,G) € A}/H.
Let X be diagonal, written as in §42 i.e. X = (C1- Lkyxkys---»GCr - Lk xk, ), and let

F;,,G;,i=1,...,r, be the corresponding submatrices of F' and G. Then Stab(X) ~
[T;_, GLi,(C), and the moment map is the projection of the GL(C)-moment map,
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ie. (F,G)w— FG@G, onto the Lie algebra of Stab(X). In other words, the Stab(X)-
moment map can be identified with [5]:

(412) /Lx(F,G):(FlGl,...,FrGT).

Similarly, if Y is diagonal with s distinct eigenvalues of multiplicities Iy, ..., s, then
we obtain I; x k and k x [; submatrices G*, F’. The stabiliser of Y is isomorphic to
[1;_, GL;;(C) and the moment map is

(4.13) py (F,G) = (G'F',... ,G°F®).

Therefore, an orbit A corresponds to r + s conjugacy classes 1, ..., T, P1,-- -, Ps
of k; x k; matrices for the m; and I; x [; matrices for the p;. The leaf L will be
contained in M(k,1)°/K if and only if each conjugacy class consists of matrices
of maximal rank (k; or {;). From the discussion in the previous subsection, we
immediately obtain:

Proposition 4.8. Let L be a symplectic leaf of the Poisson manifold M(k,1)°/K,
defined as in ([EII)), with semisimple X and Y. Then the image of L under the
bijection @A) consists of isomorphism classes of sheaves F in S(k,l) such that
the isomorphism classes of F|c2—oo and of F|,2—o are fized (and determined by
L) O

Spelling things out, X determines F|,—oc ~ P._, Cki|((ivoo)7 and each m;, 1 =
1,...,7, determines F restricted to a neighbourhood of (¢;,c0) in {n? = oo} via
(@I0). Similarly, Y and the p; determine F|r2—n.

Remark 4.9. Symplectic leaves of M(k,1)°/K can also be identified with reduced
orbits (cf. Remark E5) of GL(I)™ in gl(l)~. Therefore, the last proposition de-
scribes sheaves corresponding to a reduced orbit with Y semisimple. Furthermore,
if we view M(k,1)?/K as an open subset of the moduli space of semistable sheaves
with Hilbert polynomial lx 4+ ky, then this map is a symplectomorphism between
the Mukai-Tyurin-Bottacin symplectic structure, described in the introduction, and
the Kostant-Kirillov form on a reduced orbit of a Lie group. For an open dense
set where F is a line bundle on a smooth curve, this follows from results in [2,[].
Since both symplectic structures extend everywhere, they must be isomorphic ev-
erywhere.

Example 4.10. If we want F to be a line bundle over its support, then we must
require that all k; and all [; be equal to 1. A symplectic leaf in M(k,1)°/K is now
given by fixing diagonal matrices X = diag(¢y,...,¢x) and Y = diag(m,...,m)
with all ¢; and all n; distinct, as well as the diagonal entries of F'G and GF, and
quotienting by the group of (k +1) x (k + 1) diagonal matrices (acting as in (@3)).
If the diagonal entries of F'G are fixed to be aq, ..., o) and the diagonal entries of
GF are f1,...,0, then the corresponding subset of S(k,l) consists of sheaves F
supported on a 1-dimensional scheme S such that
k l

50{772—00}—U{<_<i_%}’ SO{CQ—OO}—U{H—W—&}

i=1 K j=1 ¢
and the rank of F restricted to SN {n* = oo} and SN {n* = oo} is everywhere 1.

Remark 4.11. We expect that Proposition .8 remains true if X or Y are not
semisimple.
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5. RANK k PERTURBATIONS

Let us now assume that k& < [. In [I], the authors consider Hamiltonian flows
on a subset M of M°(k,l)/K, where rank F = rank G = k. It is clear from the
previous section that a generic symplectic leaf of M°(k,1)/K is not contained in M.
Therefore a flow may leave M without becoming singular. Since such Hamiltonian
flows on a particular symplectic leaf can be linearised on the Jacobian of a spectral
curve, it is interesting to know which points of the (affine) Jacobian are outside M.
We are going to give a very satisfactory answer to this in terms of cohomology of
line bundles.

Let us therefore define the following set:

(5.1) M(k, ) = {M € M(k,l); rank F = rank G = k} .

Remark 5.1. The manifold of G Lx(C)-orbits in M(k,)! with X = 0 and fixed Y
can be identified with the set {Y + GF'}, i.e. with the space of rank k perturbations
of the matriz Y, as considered first by Moser [I3] (k = 2) and then by many other
authors, in particular Adams, Harnad, Hurtubise, Previato [IL5].

We now ask which acyclic sheaves on P! x P! correspond to orbits of K =
GL(C) x GL;(C) on M(k,1)!. We have:

Proposition 5.2. Let k < 1. The bijection of Corollary induces a bijection
between:
(i) orbits of GLi(C) x GL;(C) on M(k,1)* and
(ii) isomorphism classes of acyclic sheaves F on Pt x Pt with Hilbert polynomial
Pr(x,y) = lz + ky, which satisfy, in addition, 1) and

H°(F(-1,1)) =0 and H'(F(1,-1)) = 0.
Proof. Consider the short exact sequences

_ T
0 ook 299 patin oy,

_N\T
0 O(—1)@ LY petkt w0,

The condition that G has rank k is equivalent to W being a vector bundle, iso-
morphic to O(1)®F @ O®(=F) This is equivalent to H(W; ® O(—2)) = 0. On
the other hand, we claim that the condition that F' has rank k is equivalent to
H'(W, ® O(—2)) = 0. Indeed, any coherent sheaf on P! splits into the sum of line
bundles O(7) and a torsion sheaf [16]. Since W, has a resolution as above, we know
that all degrees i in the splitting are nonnegative and F' has rank k if and only if
all 4 are strictly positive, which is equivalent to H'(Ws, ® O(—2)) = 0.

We can use the above exact sequences to obtain two further resolutions of & =
F(1,1):

(5.2) 0— O(—1,00%% - mW, — £ =0,

(5.3) 0— 00, -1)% = W, = € =0,

where the maps between the first two terms are given by the embedding in O®(*+0)
followed by the projection onto the quotients Wa, Wy. Tensoring (£.2) with O(0, —2)
shows that H*(W,(—2)) = 0 if and only if H!(£(0,—2)) = 0,i.e. H(F(1,—1)) = 0.
Similarly, tensoring (E3) with O(—2,0) shows that H°(W;(—2)) = 0 if and only if
HO(E(~2,0)) =0, i.e. HO(F(—1,1)) = 0. O
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Remark 5.3. In the case k = [, H°(£(—2,0)) = 0 implies that £(—2,0) is acyclic
(and similarly, H*(£(0,—2)) = 0 implies that £(0, —2) is acyclic). In other words
G = &(—1,0) satisfies H*(G(—1,0)) = H*(G(0,—1)) = 0. Furthermore, the resolu-
tion (B3] becomes the following resolution of G:

(5.4) 0—0O(-1,-1)% — 0 — g —o.

In the case when S = supp G is smooth and G is a line bundle, the corresponding
part of Jac?™*~1(S) and the resolution (54) have been considered by Murray and
Singer in [15].
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