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SHEAVES ON P
1 × P

1, BIGRADED RESOLUTIONS,

AND COADJOINT ORBITS OF LOOP GROUPS

ROGER BIELAWSKI AND LORENZ SCHWACHHÖFER

(Communicated by Chuu-Lian Terng)

Abstract. We construct a canonical linear resolution of acyclic 1-dimensional

sheaves on P1 × P1 and discuss the resulting natural Poisson structure.

1. Introduction

The goal of this paper is to present a (yet another) variation on a theme developed
by several authors, notably Moser, Adams, Harnad, Hurtubise, Previato [13], [1]–
[5], and relating integrable systems, rank r perturbations, spectral curves and their
Jacobians, and coadjoint orbits of loop groups.

Let us briefly recall that, given matrices A, Y, F,G of size, respectively, N ×N ,
r × r, N × r, and r ×N , one defines a glr(C)-valued rational map

(1.1) Y +G(A− λ)−1F,

i.e. an element of the loop algebra g̃l(r)−, consisting of loops extending holomor-
phically to the outside of some circle S1 ⊂ C. This determines a (shifted) reduced

coadjoint orbit in g̃l(r)− (see Remark 4.5 for a definition). On the other hand, the
polynomial (1.1) also determines (generically) a curve S and a line bundle L of de-
gree g+r−1: the curve is defined as the spectrum of (1.1), and L is the dual of the
eigenbundle of (1.1). This describes S as an affine curve in C2, and the isospectral
flows, corresponding to Hamiltonians on the space of rank r perturbations, linearise
on the Jacobian of the projective model of S.

In fact, as shown by Adams, Harnad, and Hurtubise [1,2], it is more convenient
to compactify S inside a Hirzebruch surface Fd, d ≥ 1. This results in singularities,
which may be partially resolved, but it gives a particularly nice description of
Jac0(S), i.e. of the flow directions.

In this paper, we consider a different compactification of S, namely inside P1×P1

and defined as

(1.2) S =

{
(z, λ) ∈ P

1 × P
1; det

(
Y − z G
F A− λ

)
= 0

}
.

This is a very natural thing to do, but we know of only one occurrence in the
literature: the paper of Sanguinetti and Woodhouse [17] (we are grateful to Philip
Boalch for this reference). In that paper, in addition to other results, the authors
use the above compactification to give a nice picture of the duality phenomenon
discussed in [3]. Our application is to another subtlety of the rank r perturbation
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isospectral flow: the fact that the flow may leave the set where rankF = rankG = r,
without becoming singular. More precisely, we have:

Theorem 1.1. Let S be a smooth curve in P
1 × P

1, defined by (1.2) and corre-
sponding to a (shifted) rank r perturbation of the matrix A (r ≤ N). A line bundle
L ∈ Jacg−r+1(S) corresponds to (A, Y, F,G) with rankF = rankG = r if and only
if L satisfies:

H0(S,L(0,−1))=H1(S,L(0,−1)) = 0, H0(S,L(−1, 0))=0, H1(S,L(1,−2))=0.

We are interested in more than line bundles on smooth curves in P1 × P1. The
above approach generalises to acyclic (i.e. semistable) 1-dimensional sheaves on
P
1 × P

1, with a fixed bigraded Hilbert polynomial. In §§2 and 3, we construct a
natural linear resolution of such a sheaf, very much in the spirit of Beauville [6].
This gives us a linear polynomial matrix M(z, λ) (up to a certain group action).
If the support of the sheaf is a smooth curve of bidegree (r,N), then the matrix
has size r ×N . As long as the point (∞,∞) does not belong to the support of the
sheaf, then the matrices M(z, λ) can be identified with the quadruples A, Y, F,G.
The space M(k, l) of the (A, Y, F,G) has a natural Poisson structure, obtained by
identifying it with glN (C)∗ ⊕ glr(C)

∗ ⊕ T ∗MN×r(C). Thus we obtain a Poisson
structure on the quotient of an open subset of M(N, r) by GLN (C) × GLr(C).
The (generic) symplectic leaves are known, from [1, 5], to be reduced coadjoint
orbits of loop groups. Our aim is to describe these symplectic leaves directly in
terms of sheaves on P1 ×P1. We show that they correspond to symplectic leaves of
a particular Mukai-Tyurin-Bottacin Poisson structure [8–11, 14, 18] on the moduli
space MQ(r,N) of simple sheaves on P1 × P1 with (bigraded) Hilbert polynomial
Nx + ry. The surface Q = P1 × P1 is an example of a Poisson surface [8], and
consequently, for every choice of a Poisson structure on Q, i.e. a section s of the
anticanonical bundle K∗

Q � O(2, 2), one obtains a Poisson structure on MQ(r,N)
as a map

T ∗
[F ]MQ(r,N) � Ext1Q(F ,F ⊗KQ)

·s−→ Ext1Q(F ,F) � T[F ]MQ(r,N).

We show that the (generic) symplectic leaves glN (C)∗⊕ glr(C)
∗⊕T ∗MN×r(C), i.e.

reduced coadjoint orbits in g̃l(r)−, are the symplectic leaves of the Mukai-Tyurin-
Bottacin structure corresponding to s(z, λ) = 1, i.e. to the anticanonical divisor
2
(
{∞} × P

1 + P
1 × {∞}

)
.

2. Acyclic sheaves on P1 × P1
and their resolutions

Definition 2.1. Let X be a complex manifold and let F be a coherent sheaf on
X. Then:

(i) The support of F is the complex subspace suppF of X defined as the zero-
locus of the annihilator (in OX) of F . The dimension dimF of F is the
dimension of its support.

(ii) F is pure if dim E = dimF for all nontrivial coherent subsheaves E ⊂ F .
(iii) F is acyclic if H∗(F) = 0.

Remark 2.2. In the case of 1-dimensional sheaves on a smooth surface X, purity of
F means that at every point x ∈ suppF , the skyscraper sheaf Cx does not embed
into Fx. In addition, a 1-dimensional sheaf F on a smooth surface X is pure if and
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only if it is reflexive; i.e. after performing the duality F �→ Ext1X(F ,KX) twice, we
obtain F back (up to isomorphism) (see [9, §1.1]).

In the remainder of the paper, all sheaves are coherent.
We shall now consider sheaves on P

1 × P
1. For any p, q ∈ Z we denote by

O(p, q) the line bundle π∗
1O(p)⊗ π∗

2O(q), where π1, π2 : P1 × P1 → P1 are the two
projections. We shall also denote by ζ and η the two affine coordinates on P1 ×P1.

Let F be a sheaf on P1 × P1. Associated to F is its bigraded Hilbert polynomial

(2.1) PF(x, y) =
∑
x,y∈Z

χ(F(x, y)).

The sheaf F is 1-dimensional if and only if PF is linear.
We begin by describing a canonical resolution of acyclic 1-dimensional sheaves

on P1 × P1.

Theorem 2.3. Let F be a 1-dimensional acyclic sheaf on P1 × P1. Then F has a
linear resolution by locally free sheaves of the form

(2.2) 0 → O(−2,−1)⊕k ⊕O(−1,−2)⊕l M(ζ,η)−→ O(−1,−1)⊕(k+l) → F → 0,

for some k, l ≥ 0.
Conversely, any F defined as a cokernel of a map M(ζ, η) as above with

detM(ζ, η) �≡ 0 is acyclic and 1-dimensional.

Remark 2.4. Let F be a 1-dimensional acyclic sheaf on P1 × P1 with PF (x, y) =
lx+ ky. Then F is semistable with respect to O(1, 1).

Remark 2.5. This resolution is canonical, but not necessarily minimal, in the
sense of being obtained from the minimal resolution of the bigraded module⊕

i,j∈Z
H0(F(i, j)).

Proof. Let h0(F(0, 1)) = k and h0(F(1, 0)) = l so that PF = lx + ky. Let E =
F(1, 1), and let Γ∗(E) =

⊕
i,j∈Z

H0(E(i, j)) be the associated bigraded module over

the bigraded ring S =
⊕

i,j∈Z
H0(P1 × P1,O(i, j)). Furthermore, let Γ∗(E)|≥0 =⊕

i,j≥0 H
0(E(i, j)) be its truncation. Owing to [12, Lemma 6.8], the sheaf associated

to Γ∗(E)|≥0 is again E . Moreover, [12, Theorem 6.9] implies, as E(−1,−1) is acyclic,
that the natural map

H0(E)⊗H0(P1 × P
1,O(p, q)) −→ H0(E(p, q))

is surjective for any p, q ≥ 0. Therefore, we have a surjective homomorphism

S⊕(k+l) → Γ∗(E)|≥0 → 0

of bigraded S-modules. Since E is of pure dimension 1, its projective dimension is
1, and, hence, the above homomorphism extends to a linear free resolution

0 →
k+l⊕
i=1

S(−pi,−qi) →
k+l⊕
i=1

S → Γ∗(E)|≥0 → 0,

where pi, qi ≥ 0 and pi + qi > 0 for each i. The corresponding sheaves on P
1 × P

1

give us a locally free resolution of E :

(2.3) 0 →
k+l⊕
i=1

O(−pi,−qi) →
k+l⊕
i=1

O → E → 0.
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Since H∗(E(−1,−1)) = 0, either pi = 0 or qi = 0 for every i. Since h0(E(−1, 0)) =
k, we deduce, after tensoring (2.3) with O(−1, 0), that

∑
pi = k. Similarly

∑
qi =

l. Since h1(E) = 0, none of the pi or qi can be greater than 1, and so all nonzero pi
and all nonzero qi are equal to 1. This proves the existence of resolution (2.2).

Conversely, if F admits a resolution of the form (2.2), then it is 1-dimensional.
The long exact cohomology sequence implies that F is acyclic. �

Let us write n = k + l. The polynomial matrix M(ζ, η) in (2.3) has size n × n
and is of the form

(2.4)
(
A0 +A1ζ B0 +B1η

)
,

with A0, A1 ∈ Matn,k(C), B0, B1 ∈ Matn,l(C). Let us denote by A(k, l) the space
of such matrices with nonzero determinant. The group GLn(C)×GLk(C)×GLl(C)
acts on M(k, l) via

(2.5) (g, h1, h2).
(
A(ζ) B(η)

)
= g

(
A(ζ) B(η)

) (
h−1
1 0
0 h−1

2

)
,

and we can restate Theorem 2.3 as follows:

Corollary 2.6. There exists a natural bijection between

(a) isomorphism classes of 1-dimensional acyclic sheaves F on P1 × P1 such
that h0(F(0, 1)) = k, h0(F(1, 0)) = l
and

(b) orbits of GLk+l(C)×GLk(C)×GLl(C) on A(k, l). �

For a sheaf defined by (2.2), we can describe its support as follows. As a set, the
support of F is

S = {(ζ, η) ∈ P
1 × P

1; detM(ζ, η) = 0}.
Let us write detM(ζ, η) =

∏s
i=1 qi(ζ, η)

ki , where qi are irreducible polynomials.
We define the minimal polynomial pM (ζ, η) of M as

∏s
i=1 qi(ζ, η)

ri , where

ri = max{aibi; at a generic point, M(ζ, η) has a Jordan block of size ai

with eigenvalue qi(ζ, η)
bi}.

Then:

Proposition 2.7. The support of F is the curve
(
S,OP1×P1/(pM )

)
. �

Let us now fix the support S. For simplicity, we shall assume that it is an integral
curve in the linear system |O(k, l)| on P1 × P1; i.e. S is given by an irreducible
polynomial P (ζ, η) of bidegree (k, l), k, l ≥ 1. This immediately implies that the
rank of F is constant; i.e. F is locally free. Theorem 2.3 and Corollary 2.6 imply

Corollary 2.8. Let P (ζ, η) be an irreducible polynomial of bidegree (k, l) and S =
{(ζ, η); P (ζ, η) = 0} be the corresponding integral curve of genus g = (k−1)(l−1).
There exists a canonical biholomorphism

Jacg−1(S)−Θ � {M ∈ A(k, l); detM = P} /GLn(C)×GLk(C)×GLl(C).

Similarly, let US(r, d) be the moduli space of semistable vector bundles (locally
free sheaves) on S. For d = r(g − 1) define the generalised theta divisor Θ as the
set of bundles with nonzero section. Then we have:
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Corollary 2.9. Let P (ζ, η) be an irreducible polynomial of bidegree (k, l) and S =
{(ζ, η); P (ζ, η) = 0} be the corresponding integral curve of genus g = (k−1)(l−1).
There exists a canonical biholomorphism

US(r, r(g−1))−Θ � {M ∈ A(kr, lr); detM = P r} /GLnr(C)×GLkr(C)×GLlr(C).

3. A geometric resolution

There is a much more geometric way of constructing resolution (2.2), which
works under mild assumptions on the sheaf F (cf. [7] for the case of σ-sheaves).

Definition 3.1. Let F be a 1-dimensional sheaf on P1×P1. We say that F is bipure
if F has no nontrivial coherent subsheaves supported on {z} × P

1 or on P
1 × {z}

for any z ∈ P1.

Remark 3.2. Observe that bipure implies pure.

Now let F be an acyclic and bipure sheaf on P1 × P1 with Hilbert polynomial
lx + ky. As in the proof of Theorem 2.3, we consider the sheaf E = F(1, 1). Let
Dζ and Dη denote the divisors {ζ} × P1, P1 × {η}. We set

(3.1) Vζ = {s ∈ H0(E); s|Dζ
= 0}, Wη = {s ∈ H0(E); s|Dη

= 0}.
For any ζ and η, consider the maps

E(−1, 0) → E , E(0,−1) → E
given by multiplication by global nonzero sections of O(1, 0) and O(0, 1), van-
ishing at ζ and η, respectively. Since E is bipure, these maps are injective, and
therefore Vζ � H0(E(−1, 0)), Wη � H0(E(0,−1)) for any ζ, η. In particular,
dimVζ = k, dimWη = l, for any ζ and η. Therefore, ζ �→ Vζ and η �→ Wη

are subbundles of H0(E)⊗O on P
1. They are isomorphic to H0(E(−1, 0))⊗O(−1)

and to H0(E(0,−1))⊗O(−1). The isomorphism is realised explicitly via the map
H0(E(−1, 0))⊗O(−1) → H0(E)⊗O, defined as

H0(E(−1, 0))⊗O(−1) � (s, (a, b))
m�−→ (bζ − a)s ∈ H0(E)

(here (a, b) ∈ l, where l is the fibre ofO(−1) over [l]), and similarly for the subbundle
W . We now define a vector bundle U on P1×P1, the fibre of which at ζ, η) is Vζ⊕Wη;
i.e.

U �
(
H0(E(−1, 0))⊗O(−1, 0)

)
⊕

(
H0(E(0,−1))⊗O(0,−1)

)
.

We obtain an injective map of sheaves U → H0(E)⊗O. Let G be the cokernel, i.e.

(3.2) 0 → U −→ H0(E)⊗O −→ G → 0.

We claim that G � E , and so (3.2) is a natural resolution of E . To prove this, tensor
the resolution (2.2) by O(1, 1) to obtain

(3.3) 0 → O(−1, 0)⊕k ⊕O(0,−1)⊕l M(ζ,η)−→ O⊕(k+l) → E → 0.

Clearly, the middle term is identified with H0(E) ⊗ O. For any ζ0, consider the
image of M(ζ0, η) restricted to O(−1, 0)⊕k|ζ0 ⊕ 0. This image does not depend on
η, and since F is bipure, it is exactly Vζ0 , defined in (3.1), i.e. sections vanishing on
ζ0 ×P1. Similarly, for any η0, the image of M(ζ, η0) restricted to 0⊕O(0,−1)⊕l|η0

is precisely Wη0
. Hence, there are canonical isomorphisms between both first and

second terms in resolutions (3.2) and (3.3) which commute with the horizontal
maps. Therefore G � E .
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4. Poisson structure and orbits of loop groups

According to Corollary 2.6, acyclic sheaves with the Hilbert polynomial lx+ ky
correspond to orbits of GLk+l(C)×GLk(C)×GLl(C) on A(k, l), where A(k, l) is
the set of polynomial matrices defined in (2.4) and the action is given in (2.5).

We now make the following assumption about the sheaf F :

(4.1) (∞,∞) �∈ suppF .

This can, of course, always be achieved via an automorphism of P1 × P1. In terms
of the matrix M(ζ, η) corresponding to F , (4.1) means that det(A1, B1) �= 0. We
can, therefore, use the action of GLk+l(C) to make (A1, B1) equal to minus the
identity matrix so that M(ζ, η) becomes

(4.2)

(
X − ζ F
G Y − η

)
, X ∈ Matk,k(C), Y ∈ Matl,l(C), G, FT ∈ Matl,k(C).

The residual group action is that of conjugation by the block-diagonal GLk(C) ×
GLl(C). We denote this group by K.

Remark 4.1. We are, essentially, in the situation of [5]. The only difference is that
we do not fix X or Y .

We denote byM(k, l) the space of all matrices of the form (4.2), which we identify
with quadruples (X,Y, F,G) as above. The action of K = GLk(C) × GLl(C) on
M(k, l) is given by

(4.3) (g, h).(X,Y, F,G) = (gXg−1, hY h−1, gFh−1, hGg−1).

Let us also write S(k, l) for the set of isomorphism classes of acyclic sheaves with
Hilbert polynomial lx + ky on P1 × P1 which satisfy (4.1). The content of Corol-
lary 2.6 is that there exists a natural bijection

(4.4) M(k, l)/K � S(k, l).
4.1. Poisson structure. The vector space Matk,l ×Matl,k has a natural K-invari-
ant symplectic structure: ω = tr(dF ∧ dG). On the other hand, Matk,k � glk(C)

∗

and Matl,l � gll(C)
∗ have canonical Poisson structures, and therefore M(k, l) has

a natural K-invariant Poisson structure. If M(k, l)0 is the subset of M(k, l) on
which the action of K is free and proper, then M(k, l)0/K is a Poisson manifold,
and, consequently, we obtain a Poisson structure on the corresponding subset of
acyclic sheaves with Hilbert polynomial lx+ ky and satisfying (4.1). We shall now
describe symplectic leaves of M(k, l)0/K in terms of sheaves on P1 × P1.

First of all, let us describe sheaves corresponding to symplectic leaves in M(k, l).
Such a leaf is determined by fixing conjugacy classes of X and Y . On the other
hand, conjugacy classes of k × k matrices correspond to isomorphism classes of
torsion sheaves on P1, of length k. This correspondence is given by associating to
a matrix X ∈ Matk,k(C) the sheaf G via

(4.5) 0 → O(−1)⊕k X−ζ−→ O⊕k → G → 0.

If, for example, X is diagonalisable with distinct eigenvalues ζ1, . . . , ζr of multi-
plicities k1, . . . , kr, then G �

⊕r
i=1 C

ki |ζi ; i.e. G|ζi is the skyscraper sheaf of rank
ki.

Proposition 4.2. Let P be a conjugacy class of k×k matrices. The bijection (4.4)
induces a bijection between
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(i) orbits of GLk(C)×GLl(C) on {(X,Y, F,G) ∈ M(k, l); X ∈ P} and
(ii) isomorphism classes of sheaves F in S(k, l) such that F|η=∞ is isomorphic

to G defined by (4.5).

Proof. At η = ∞, the matrix (4.2) becomes
(
X − ζ 0

G −1

)
. The statement follows

from (4.5) and (2.2). �

Therefore symplectic leaves on M(k, l) correspond to fixing isomorphism classes
of F|η=∞ and of F|ζ=∞. Symplectic leaves on M(k, l)0/K are of course smaller
than K-orbits of symplectic leaves on M(k, l)0. They are obtained by fixing X and
Y and taking the symplectic quotient of Matk,l ×Matl,k by Stab(X) × Stab(Y ).
We shall describe sheaves corresponding to a particular symplectic leaf in the case
when X and Y are diagonalisable.

4.2. Orbits of GLk(C) and matrix-valued rational maps. We now consider
only the action of GLk(C) � GLk(C) × {1} ⊂ K on M(k, l). We fix a semisim-
ple conjugacy class of X; i.e. we suppose that X is diagonalisable, with distinct
eigenvalues ζ1, . . . , ζr of multiplicities k1, . . . , kr. The stabiliser of X is then iso-
morphic to

∏r
i=1 GLki

(C). If the action of GLk(C) is to be free, we must have
ki ≤ l, i = 1, . . . , r. Let us diagonalise X so that X has the block-diagonal form
(ζ1 · 1k1×k1

, . . . , ζr · 1kr×kr
), and let Fi, Gi denote the ki × l and l× ki submatrices

of F,G such that rows of F and the columns of G have the same coordinates as
the block ζi · 1ki×ki

. The action of GLk(C) is free and proper at (X,Y, F,G) if and
only if rankFi = rankGi = ki for i = 1, . . . , r.

As in [1, 5], we can associate to each element of M(k, l) a Matl,l(C)-valued
rational map:

(4.6) R(ζ) = Y +G(ζ −X)−1F.

The mapping (X,Y, F,G) �→ R(ζ) is clearly GLk(C)-invariant. If X is diagonalis-
able, as above, i.e. X = (ζ1 · 1k1×k1

, . . . , ζr · 1kr×kr
), then

(4.7) R(ζ) = Y +

r∑
i=1

GiFi

ζ − ζi
.

We clearly have:

Lemma 4.3. Let P be a semisimple conjugacy class of k × k matrices with eigen-
values ζ1, . . . , ζr of multiplicities k1, . . . , kr. The map (X,Y, F,G) �→ R(ζ) induces
a bijection between

(i) GLk(C)-orbits on {(X,Y, F,G) ∈ M(k, l)0; X ∈ P} and
(ii) the set Rl(P ) of all rational maps of the form

R(ζ) = Y +

r∑
i=1

Ri

ζ − ζi
,

where rankRi = ki. �

4.3. Orbits of loop groups. A rational map of the form (4.6) may be viewed as

an element of a loop Lie algebra g̃l(l)−, consisting of maps from a circle S1 in C,
containing the points ζi in its interior, which extend holomorphically outside S1

(including ∞). The group G̃L(l)+, consisting of smooth maps g : S1 → GLl(C),
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extending holomorphically to the interior of S1, acts on g̃l(l)− by pointwise conju-

gation, followed by projection to g̃l(l)−. In particular, if all eigenvalues of X are
distinct, then the action is

g(ζ).

(
Y +

r∑
i=1

Ri

ζ − ζi

)
= Y +

r∑
i=1

g(ζi)Rig(ζi)
−1

ζ − ζi
.

Therefore, if we fix conjugacy classes of the Ri, we obtain an orbit of G̃L(l)+ in

g̃l(l)−. We shall now consider quotients of such orbits by Stab(Y ) and describe
which sheaves correspond to elements of such an orbit. Let us give a name to such
quotients:

Definition 4.4. The quotient of an orbit of G̃L(l)+ in g̃l(l)− by GLl(C) is called
a semireduced orbit.

Remark 4.5. In the literature (see, e.g., [1]–[5]) a reduced orbit is the symplectic

quotient of an orbit by HY = Stab(Y ). The GLl(C)-moment map on g̃l(l)− is
identified with Y +

∑r
i=1 Ri so that a reduced orbit is obtained by fixing the value

of a = π
(∑r

i=1 Ri

)
, where π is the projection gll(C) → gll(C)/h

⊥
Y (with ⊥ taken

with respect to tr), and dividing by Stab(a) ⊂ Stab(Y ). Therefore, if Stab(Y ) fixes
a, then a reduced orbit can be identified with a subset of a semireduced orbit.

Let us, therefore, fix a semireduced orbit of G̃L(l)+. We choose r distinct points
ζ1, . . . , ζr in C. Furthermore, we choose r + 1 conjugacy classes Q0, Q1, . . . , Qr of
l × l matrices. This data determines a semireduced orbit Υ = Υ(Q0, . . . , Qr) of

G̃L(l)+ defined as

(4.8) Υ =

{
R(ζ) = Y +

r∑
i=1

Ri

ζ − ζi
; Y ∈ Q0, ∀i≥1Ri ∈ Qi

}
/GLl(C).

Let

(4.9) ki = rankQi, i = 1, . . . , r, k =
r∑

i=1

ki.

In the notation of Lemma 4.3, Υ ⊂ Rl(P ), where P is the semisimple conjugacy
class of k × k matrices with eigenvalues ζi of multiplicities ki.

Thanks to Proposition 4.2, the conjugacy class P determines F|η=∞, which, in
the case at hand, is

⊕r
i=1 C

ki |(ζi,∞). Similarly, Q0 determines the isomorphism
class of F|ζ=∞. We now discuss the significance of the other conjugacy classes
Q1, . . . , Ql.

We claim that these classes determine the isomorphism class of F|η2=∞, i.e. of
F restricted to the first order neighbourhood of η = ∞. This is only to be expected
if one thinks in terms of the Mukai-Tyurin-Bottacin Poisson structure; cf. [11]. We
again consider the canonical resolution (2.2) of F with M(ζ, η) given by (4.2). Let
η̃ = 1/η be a local coordinate near η = ∞ so that

M(ζ, η̃) =

(
X − ζ η̃F
G η̃Y − 1

)
.
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Using action (2.5), we can multiply M(ζ, η̃) on the right by
(
1 0
0 (1 − η̃Y )−1

)
. On

the scheme η̃2 = 0, we have (1− η̃Y )−1 = 1 + η̃Y , and so M(ζ, η̃) becomes(
X − ζ η̃F
G −1

)
.

To describe F|η̃2=0, it is enough to describe it near each ζi, i.e. to describe Gi =
F|Ui×{η̃2=0}, where Ui is an open neighbourhood of ζi (not containing the other

ζj). The resolution (2.2) of F restricted to Ui × {η̃2 = 0} becomes

0 → O(−2,−1)⊕ki ⊕O(−1,−2)⊕l Mi(ζ,η̃)−−−−−→ O(−1,−1)⊕(ki+l) −→ Gi → 0,

where

Mi(ζ, η̃) =

(
ζi − ζ η̃Fi

Gi −1

)
.

This implies that we have an exact sequence

(4.10) 0 → O(−2,−1)⊕ki
(ζi−ζ)+η̃FiGi−−−−−−−−−→ O(−1, 0)⊕ki −−−−→ Gi → 0

on Ui × {η̃2 = 0}. Therefore Gi is determined by the GLki
(C)-conjugacy class of

FiGi, which is the same as the GLl(C)-conjugacy class of GiFi. Lemma 4.3 and
formula (4.7) imply that the conjugacy class of GiFi is Qi. Thus, the conjugacy
classes Q1, . . . , Qr, which determine the orbit (4.8), correspond to the isomorphism
class of F|η̃2=0. Observe that the support of Gi is given by det((ζi−ζ)+η̃FiGi) = 0.

In other words, the eigenvalues of FiGi give ζ−ζi
η̃ at (ζ, η̃) = (ζi, 0), i.e. the first

order neighbourhood of suppF at (ζi,∞).
Summing up, we have:

Theorem 4.6. There exists a natural bijection between elements of the semireduced

rational orbit (4.8) of G̃L(l)+ in g̃l(l)− and isomorphism classes of 1-dimensional
acyclic sheaves F on P1 × P1 such that

(i) The Hilbert polynomial of F is PF(x, y) = lx+ ky.
(ii) (∞,∞) �∈ suppS, and F|η=∞ �

⊕r
i=1 C

ki |(ζi,∞).
(iii) The isomorphism class of F|ζ=∞ corresponds to Q0, as in Proposition 4.2.
(iv) The isomorphism class of F|η2=∞ corresponds to conjugacy classes Q1, . . . ,

Qr, as described above. �
Remark 4.7. A variation of this result is probably well known to the integrable
systems community (at least when F is a line bundle supported on a smooth curve
S). We think it useful, however, to state it in this language and in full generality.

4.4. Symplectic leaves of M(k, l)0/K. We can finally describe symplectic leaves
of S(k, l), i.e. sheaves corresponding to a particular symplectic leaf L in M(k, l)/K,
at least in the case when L ⊂ M(k, l)0/K and X and Y are semisimple. As we
have already mentioned in §4.1, a symplectic leaf in M(k, l)0/K is obtained by
fixing X and Y , as well as a coadjoint orbit Λ ⊂ h∗ of H = Stab(X) × Stab(Y ).
If μ : Matk,l ×Matl,k → h∗ is the moment map for H, then the symplectic leaf
determined by these data is

(4.11) L = {(X,Y, F,G) ∈ M(k, l)0; X and Y are given, μ(F,G) ∈ Λ}/H.

Let X be diagonal, written as in §4.2, i.e. X = (ζ1 · 1k1×k1
, . . . , ζr · 1kr×kr

), and let
Fi, Gi, i = 1, . . . , r, be the corresponding submatrices of F and G. Then Stab(X) �∏r

i=1 GLki
(C), and the moment map is the projection of the GLk(C)-moment map,
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i.e. (F,G) �→ FG, onto the Lie algebra of Stab(X). In other words, the Stab(X)-
moment map can be identified with [5]:

(4.12) μX(F,G) = (F1G1, . . . , FrGr).

Similarly, if Y is diagonal with s distinct eigenvalues of multiplicities l1, . . . , ls, then
we obtain li × k and k× li submatrices Gi, F i. The stabiliser of Y is isomorphic to∏s

i=1 GLli(C) and the moment map is

(4.13) μY (F,G) = (G1F 1, . . . , GsF s).

Therefore, an orbit Λ corresponds to r + s conjugacy classes π1, . . . , πr, ρ1, . . . , ρs
of ki × ki matrices for the πi and lj × lj matrices for the ρj . The leaf L will be
contained in M(k, l)0/K if and only if each conjugacy class consists of matrices
of maximal rank (ki or lj). From the discussion in the previous subsection, we
immediately obtain:

Proposition 4.8. Let L be a symplectic leaf of the Poisson manifold M(k, l)0/K,
defined as in (4.11), with semisimple X and Y . Then the image of L under the
bijection (4.4) consists of isomorphism classes of sheaves F in S(k, l) such that
the isomorphism classes of F|ζ2=∞ and of F|η2=∞ are fixed (and determined by
L). �

Spelling things out, X determines F|η=∞ �
⊕r

i=1 C
ki |(ζi,∞), and each πi, i =

1, . . . , r, determines F restricted to a neighbourhood of (ζi,∞) in {η2 = ∞} via
(4.10). Similarly, Y and the ρj determine F|ζ2=∞.

Remark 4.9. Symplectic leaves of M(k, l)0/K can also be identified with reduced

orbits (cf. Remark 4.5) of G̃L(l)+ in g̃l(l)−. Therefore, the last proposition de-
scribes sheaves corresponding to a reduced orbit with Y semisimple. Furthermore,
if we view M(k, l)0/K as an open subset of the moduli space of semistable sheaves
with Hilbert polynomial lx + ky, then this map is a symplectomorphism between
the Mukai-Tyurin-Bottacin symplectic structure, described in the introduction, and
the Kostant-Kirillov form on a reduced orbit of a Lie group. For an open dense
set where F is a line bundle on a smooth curve, this follows from results in [2, 4].
Since both symplectic structures extend everywhere, they must be isomorphic ev-
erywhere.

Example 4.10. If we want F to be a line bundle over its support, then we must
require that all ki and all lj be equal to 1. A symplectic leaf in M(k, l)0/K is now
given by fixing diagonal matrices X = diag(ζ1, . . . , ζk) and Y = diag(η1, . . . , ηl)
with all ζi and all ηj distinct, as well as the diagonal entries of FG and GF , and
quotienting by the group of (k + l)× (k+ l) diagonal matrices (acting as in (4.3)).
If the diagonal entries of FG are fixed to be α1, . . . , αk and the diagonal entries of
GF are β1, . . . , βl, then the corresponding subset of S(k, l) consists of sheaves F
supported on a 1-dimensional scheme S such that

S ∩ {η2 = ∞} =

k⋃
i=1

{
ζ − ζi =

αi

η

}
, S ∩ {ζ2 = ∞} =

l⋃
j=1

{
η − ηj =

βj

ζ

}
and the rank of F restricted to S ∩ {η2 = ∞} and S ∩ {η2 = ∞} is everywhere 1.

Remark 4.11. We expect that Proposition 4.8 remains true if X or Y are not
semisimple.
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5. Rank k perturbations

Let us now assume that k ≤ l. In [1], the authors consider Hamiltonian flows
on a subset M of M0(k, l)/K, where rankF = rankG = k. It is clear from the
previous section that a generic symplectic leaf of M0(k, l)/K is not contained in M.
Therefore a flow may leave M without becoming singular. Since such Hamiltonian
flows on a particular symplectic leaf can be linearised on the Jacobian of a spectral
curve, it is interesting to know which points of the (affine) Jacobian are outside M.
We are going to give a very satisfactory answer to this in terms of cohomology of
line bundles.

Let us therefore define the following set:

(5.1) M(k, l)1 = {M ∈ M(k, l) ; rankF = rankG = k} .

Remark 5.1. The manifold of GLk(C)-orbits in M(k, l)1 with X = 0 and fixed Y
can be identified with the set {Y +GF}, i.e. with the space of rank k perturbations
of the matrix Y , as considered first by Moser [13] (k = 2) and then by many other
authors, in particular Adams, Harnad, Hurtubise, Previato [1, 5].

We now ask which acyclic sheaves on P1 × P1 correspond to orbits of K =
GLk(C)×GLl(C) on M(k, l)1. We have:

Proposition 5.2. Let k ≤ l. The bijection of Corollary 2.6 induces a bijection
between:

(i) orbits of GLk(C)×GLl(C) on M(k, l)1 and
(ii) isomorphism classes of acyclic sheaves F on P1×P1 with Hilbert polynomial

PF (x, y) = lx+ ky, which satisfy, in addition, (4.1) and

H0(F(−1, 1)) = 0 and H1(F(1,−1)) = 0.

Proof. Consider the short exact sequences

0 → O(−1)⊕k (X−ζ,G)T−−−−−−−→ O⊕(k+l) −−−−→ W1 → 0,

0 → O(−1)⊕l (F,Y−η)T−−−−−−→ O⊕(k+l) −−−−→ W2 → 0.

The condition that G has rank k is equivalent to W1 being a vector bundle, iso-
morphic to O(1)⊕k ⊕ O⊕(l−k). This is equivalent to H0(W1 ⊗ O(−2)) = 0. On
the other hand, we claim that the condition that F has rank k is equivalent to
H1(W2 ⊗O(−2)) = 0. Indeed, any coherent sheaf on P1 splits into the sum of line
bundles O(i) and a torsion sheaf [16]. Since W2 has a resolution as above, we know
that all degrees i in the splitting are nonnegative and F has rank k if and only if
all i are strictly positive, which is equivalent to H1(W2 ⊗O(−2)) = 0.

We can use the above exact sequences to obtain two further resolutions of E =
F(1, 1):

(5.2) 0 → O(−1, 0)⊕k → π∗
2W2 → E → 0,

(5.3) 0 → O(0,−1)⊕l → π∗
1W1 → E → 0,

where the maps between the first two terms are given by the embedding in O⊕(k+l)

followed by the projection onto the quotientsW2,W1. Tensoring (5.2) withO(0,−2)
shows thatH1(W2(−2)) = 0 if and only ifH1(E(0,−2)) = 0, i.e. H1(F(1,−1)) = 0.
Similarly, tensoring (5.3) with O(−2, 0) shows that H0(W1(−2)) = 0 if and only if
H0(E(−2, 0)) = 0, i.e. H0(F(−1, 1)) = 0. �
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Remark 5.3. In the case k = l, H0(E(−2, 0)) = 0 implies that E(−2, 0) is acyclic
(and similarly, H1(E(0,−2)) = 0 implies that E(0,−2) is acyclic). In other words
G = E(−1, 0) satisfies H∗(G(−1, 0)) = H∗(G(0,−1)) = 0. Furthermore, the resolu-
tion (5.3) becomes the following resolution of G:
(5.4) 0 → O(−1,−1)⊕k −→ Ok −→ G → 0.

In the case when S = suppG is smooth and G is a line bundle, the corresponding
part of Jacg+k−1(S) and the resolution (5.4) have been considered by Murray and
Singer in [15].
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