
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 140, Number 12, December 2012, Pages 4131–4140
S 0002-9939(2012)11298-5
Article electronically published on April 26, 2012

AUSLANDER-REITEN COMPONENTS DETERMINED BY

THEIR COMPOSITION FACTORS

ALICJA JAWORSKA, PIOTR MALICKI, AND ANDRZEJ SKOWROŃSKI

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We provide sufficient conditions for a component of the Auslander-
Reiten quiver of an Artin algebra to be determined by the composition factors
of its indecomposable modules.

1. Introduction and main results

Let A be an Artin algebra over a commutative Artin ring R. We denote by modA
the category of finitely generated right A-modules, by K0(A) the Grothendieck
group of A, and by [M ] the image of a module M from modA in K0(A). Thus,
for modules M and N in modA, [M ] = [N ] if and only if M and N have the same
composition factors including the multiplicities. An interesting open problem is to
find handy criteria for two indecomposable modules M and N in modA with the
same composition factors to be isomorphic. It was shown in [16] that this is the case
when M does not lie on a short cycle M → X → M of non-zero non-isomorphisms
in modA with X an indecomposable module, generalizing earlier results about
directing modules proved in [6], [8]. In fact, it follows from [7] and [16] that an
indecomposable module M in modA lies on a short cycle M → X → M in modA
if and only if M is the middle term of a chain Y → M → DTrY of non-zero
homomorphisms in modA with Y a non-projective indecomposable module. Hence
the above result from [16] gives in fact another interpretation of a result from [3]. An
important combinatorial and homological invariant of the module category modA
of an Artin algebra A is its Auslander-Reiten quiver ΓA [4]. Sometimes, we may
recover the algebra A and the category modA from the shape of the components
C of ΓA and their behaviour in the category modA. By a component of ΓA we
mean a connected component of the translation quiver ΓA.

In this article we are concerned with the problem of finding handy criteria for
a component C of the Auslander-Reiten quiver ΓA of an Artin algebra A to be
uniquely determined in ΓA by the composition factors of its indecomposable mod-
ules. We say that two components C and D of ΓA have the same composition
factors if, for any element x ∈ K0(A), x = [M ] for an indecomposable module M
in C if and only if x = [N ] for an indecomposable module N in D .
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In order to state the main results, we recall some concepts. For an Artin alge-
bra A, we denote by radA the Jacobson radical of modA, generated by all non-
isomorphisms between indecomposable modules in modA, and by rad∞A the infinite

radical of modA, which is the intersection of all powers radiA, i ≥ 1, of radA. Re-
call that, by a result of M. Auslander [2], rad∞A = 0 if and only if A is of finite
representation type, that is, there are in modA only finitely many indecomposable
modules up to isomorphism. Following [24], a component quiver ΣA of A is the
quiver whose vertices are the components C of ΓA, and two components C and D
of ΓA are linked in ΣA by an arrow C → D provided rad∞A (X,Y ) �= 0 for some
modules X ∈ C and Y ∈ D . We note that a component C of ΓA is generalized
standard in the sense of [22] if and only if ΣA has no loop at C . By a short cycle
in ΣA we mean a cycle C → D → C , where possibly C = D . We also mention
that a component C of ΓA lies on a short cycle C → D → C in ΣA with C �= D
if and only if C has an external short path X → Y → Z with X and Z in C and
Y in D [15]. Recall also that a translation quiver of the form ZA∞/(τ r), r ≥ 1,
is called a stable tube of rank r. We note that every regular component (without
projective modules and injective modules) of the Auslander-Reiten quiver ΓA of an
Artin algebra A is either a stable tube or is acyclic (without oriented cycles) of the
form ZΔ for an acyclic locally finite connected valued quiver Δ (see [13], [27]).

The following theorem is the first main result of this article.

Theorem 1. Let A be an Artin algebra and C and D be two components of ΓA

with the same composition factors. Assume that C is not a stable tube of rank one
and does not lie on a short cycle in ΣA. Then C = D .

The above theorem says that a generalized standard Auslander-Reiten compo-
nent C of an Artin algebra A without external short paths, different from a stable
tube of rank one, is uniquely determined in ΓA by the composition factors of its in-
decomposable modules. We point out that the assumption on C not being a stable
tube of rank one is essential for the validity of the above theorem. For example,
if H is the path algebra KΔ of a Euclidean quiver Δ over an algebraically closed
field K, then the component quiver ΣH of H is acyclic and the Auslander-Reiten
quiver ΓH of H contains infinitely many pairwise different stable tubes of rank one
having the same composition factors (see [17], [20]).

The second main result of the article clarifies the situation in general.

Theorem 2. Let A be an Artin algebra, C a stable tube of rank one in ΓA which
does not lie on a short cycle in ΣA, and D a component of ΓA different from C
and having the same composition factors as C . Then there is a quotient algebra B
of A such that the following statements hold:

(a) B is a concealed canonical algebra.
(b) C and D are stable tubes of a separating family of stable tubes of ΓB.
(c) D is a stable tube of rank one.

Recall that a concealed canonical algebra is an algebra of the form B = EndΛ(T ),
where Λ is a canonical algebra in the sense of C. M. Ringel [19] (see also [17])
and T is a multiplicity-free tilting module in the additive category add(PΛ), for
the canonical decomposition ΓΛ = PΛ ∨ T Λ ∨ QΛ of ΓΛ, with T Λ the canonical
infinite separating family of stable tubes of ΓΛ. Then ΓB admits a decomposition
ΓB = PB ∨ T B ∨ QB, where the image T B = HomΛ(T, T Λ) of the family T Λ via
the functor HomΛ(T,−) : modΛ → modB is an infinite separating family of stable
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tubes of ΓB. Moreover, all but finitely many stable tubes of T B have rank one and
the same composition factors. We also mention that, by a result of H. Lenzing and
J. A. de la Peña [11], the class of concealed canonical algebras coincides with the
class of Artin algebras whose Auslander-Reiten quiver admits a separating family
of stable tubes.

We exhibit in Section 3 examples of generalized standard stable tubes of arbi-
trary large rank which are not uniquely determined by the composition factors. It
would be interesting to clarify if an acyclic generalized standard regular component
of the Auslander-Reiten quiver of an Artin algebra is uniquely determined by its
composition factors (see Section 3 for related comments).

For basic background on the representation theory applied here we refer to [1],
[4], [17], [20], [21].

2. Proofs of Theorems 1 and 2

Let A be an Artin algebra over a commutative Artin ring R. We denote by
τA and τ−A the Auslander-Reiten translations DTr and TrD, respectively. For a
module V in modR, we denote by |V | its length over R. In the proofs a crucial
role will be played by the following formulas from [23, Proposition 4.1], their being
consequences of [3, (1.4)] (see also [4, Corollary IV.4.3]).

For indecomposable modules M,N and X in modA with [M ] = [N ] the following
equalities hold:

(i) |HomA(X,M)| − |HomA(M, τAX)| = |HomA(X,N)| − |HomA(N, τAX)|,
(ii) |HomA(M,X)| − |HomA(τ

−
AX,M)| = |HomA(N,X)| − |HomA(τ

−
AX,N)|.

Let C and D be components of ΓA with the same composition factors such that C
does not lie on a short cycle in ΣA. We assume that C �= D and show in several
steps that C and D are stable tubes of rank one of a separating family of stable
tubes in the Auslander-Reiten quiver ΓB of a concealed canonical algebra B.

(1) C is a semi-regular component of ΓA (C does not contain both a projective
module and an injective module). Assume C contains a projective module P and
an injective module I. Since C and D have the same composition factors, there
exist modules M and N in D such that [P ] = [M ] and [I] = [N ]. Then we have
HomA(P,M) �= 0 and HomA(N, I) �= 0, because the top of P is a composition factor
of M , and the socle of I is a composition factor of N . Hence, we have in ΣA the
short cycle C → D → C , because HomA(P,M) = rad∞A (P,M) and HomA(N, I) =
rad∞A (N, I), a contradiction. Therefore, C is a semi-regular component of ΓA.

(2) C is a cyclic component of ΓA (every module in C lies on an oriented cycle
in C ). Take a module X in C . It follows from our assumption that [X] = [Y ]
for some module Y in D , and so X is not uniquely determined by [X], because
C �= D . Applying [16, Corollary 2.2], we conclude that we have in modA a short
cycle X → Z → X. Observe that then Z belongs to C , because C does not lie on a
short cycle in ΣA. Moreover, since there is no loop at C in ΣA, C is a generalized
standard component of ΓA, and hence rad∞A (X,Z) = 0 and rad∞A (Z,X) = 0. Then
HomA(X,Z) �= 0 and HomA(Z,X) �= 0 imply that there exist paths of irreducible
homomorphisms in modA from X to Z and from Z to X (see [4, Proposition
V.7.5]), and consequently there exists an oriented cycle in C passing through X
and Z. Hence, C is a cyclic component.

(3) C is a ray tube (obtained from a stable tube by a finite number (possibly
empty) of ray insertions) or a coray tube (obtained from a stable tube by a finite
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number (possibly empty) of coray insertions) in the sense of [17, (4.5)] (see also
[21, XV.2]). This is a direct consequence of [14, (2.6)], since by (1) and (2) C is
semi-regular with oriented cycles.

(4) We may assume (without loss of generality) that C is a ray tube, hence
without injective modules. Let annA(C ) be the annihilator of C in A, that is, the
intersection of the annihilators annA(X) = {a ∈ A | Xa = 0} of all modules X in
C , and B = A/ annA(C ). Then C is a faithful component of ΓB. Since C does not
lie on a short cycle in ΣA, we conclude that C is without external short paths [15];
that is, there are no paths U → V → W in modA with U and W in C but V not
in C . Then it follows from [9, Theorem 2] that B is an almost concealed canonical
algebra and C is a faithful ray tube of a separating family T B of ray tubes of ΓB.
Recall that then there exists a canonical algebra Λ (in the sense of C. M. Ringel
[17], [19]) such that B = EndΛ(T ) for a tilting module T in the additive category
add(PΛ ∪ T Λ) of PΛ ∪ T Λ, for the canonical decomposition ΓΛ = PΛ ∨ T Λ ∨ QΛ

of ΓΛ with T Λ the canonical separating family of stable tubes. By general theory
(see [11], [12], [17], [19], [25]), ΓB admits a decomposition

ΓB = PB ∨ T B ∨QB,

where T B is a family of ray tubes separating PB from QB (in the sense of [19]).
In particular, T B is an infinite family of pairwise orthogonal generalized standard
ray tubes, HomB(T B ,PB) = 0, HomB(QB, T B) = 0, and HomB(QB,PB) = 0. In
fact, since C is a faithful ray tube of T B, all ray tubes of T B except C are stable
tubes. Moreover, the separation property of T B implies that HomB(X ,C ) �= 0
for any component X from PB and HomB(C ,Y ) �= 0 for any component Y from
QB. Moreover, we note that QB contains all indecomposable injective B-modules.

(5) D is a component of ΓB. Write A = P ′ ⊕ P ′′, where the simple summands
of P ′/ radP ′ are exactly the simple composition factors of modules in C . Denote
by tP ′′(A) the ideal of A generated by the images of all homomorphisms in modA
from P ′′ to A. Since C is a semi-regular component of ΓA without external short
paths, it follows from arguments in [15, Section 1] that EndA(P

′) ∼= A/tP ′′(A) and
tP ′′(A) = annA(C ). Observe that 1A = e + f for orthogonal idempotents e and f
in A with P ′ = eA and P ′′ = fA, and consequently EndA(P

′) ∼= eAe and tP ′′(A) =
AfA. Clearly, then B = A/ annA(C ) ∼= eAe. On the other hand, since D has the
same composition factors as C , we have Nf = HomA(fA,N) = HomA(P

′′, N) = 0,
and consequently N annA(C ) = N(AfA) = (Nf)A = 0, for any module N in D .
This shows that D is a component of ΓB.

(6) D is a component of T B. Assume D /∈ T B. Fix a stable tube T ∗ of
T B of rank one, which is different from C . By general theory ([11], [12], [19]),
B is a tubular (branch) extension of a concealed canonical algebra C such that
ΓC = PC ∨ T C ∨ QC , where T C is a separating family of stable tubes, PB = PC ,
C is obtained from a stable tube T of T C by a finite number (possibly empty) of
ray insertions and the remaining tubes of T C and T B coincide (T C\T = T B\C ).
Clearly, C is a quotient algebra of B.

Let M be a module in C which lies in T . In particular, the composition factors
of M are C-modules. Take a module N ∈ D such that [M ] = [N ]. Assume
D ∈ QB. Since [M ] = [N ] there exists a projective module P ∈ PB = PC such
that HomB(P,N) �= 0. By the separation property of T B we have HomB(X,N) �= 0
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for some module X ∈ T ∗. Then, applying formula (i), we obtain

0 = |HomA(X,M)| − |HomA(M, τAX)| = |HomA(X,N)| − |HomA(N, τAX)|
= |HomA(X,N)| > 0,

since M and X belong to orthogonal tubes of T B and HomB(QB, T B) = 0. Dually,
if D ∈ PB , then there exists an injective module I inQB such that HomB(N, I) �= 0.
By the separation property of T B, we have HomB(N, Y ) �= 0 for some module
Y ∈ T ∗. Then, by formula (ii), we have

0 = |HomA(M,Y )| − |HomA(τ
−
A Y,M)| = |HomA(N, Y )| − |HomA(τ

−
A Y,N)|

= |HomA(N, Y )| > 0,

since M and Y belong to orthogonal tubes of T B and HomB(T B ,PB) = 0. The
above contradictions show that D ∈ T B.

(7) T B is a family of stable tubes. Assume C contains a projective module P .
Take an indecomposable module Y in D with [P ] = [Y ]. Then the top of P is a
composition factor of Y and hence HomB(P, Y ) �= 0. Therefore, HomB(C ,D) �= 0,
which contradicts the fact that C and D are orthogonal. We conclude that C is a
stable tube of T B . Clearly, then T B is a separating family of stable tubes of ΓB,
and consequently B is a concealed canonical algebra, by [11].

(8) C and D are stable tubes of rank one. Since C and D belong to the separating
family T B of stable tubes of ΓB, we know that C and D are orthogonal, generalized
standard, and without external short paths. In particular, C and D do not lie on
short cycles in ΣB. Then, applying [23, Lemmas 3.1 and 3.3], we conclude that C
and D consist of modules which do not lie on infinite short cycles in modB. Assume
C is of rank r ≥ 2. Take a moduleX lying on the mouth of C (X has one immediate
predecessor and one immediate successor in C ). Then, by [23, Corollary 4.4], X
is uniquely determined by [X], which contradicts the fact that [X] = [Y ] for some
module Y in D and C �= D . Therefore, C is of rank one. Applying the same
arguments, we conclude that D is also of rank one.

Summing up, the proofs of Theorems 1 and 2 are provided.

3. Examples

Let K be an algebraically closed field and Q be a finite quiver. For any arrow
α ∈ Q, by s(α) and t(α) we mean the source and the target of α, respectively.
By KQ we denote the path algebra of Q. Recall that, if the quiver Q is acyclic,
then KQ is a hereditary algebra [1]. For a finite-dimensional algebra H over K,
we denote by T (H) the trivial extension algebra of H by its duality H-H-bimodule
D(H) = HomK(H,K). Recall that T (H) = H ⊕ D(H) as a K-vector space and
the multiplication in T (H) is given by (a, f)(b, g) = (ab, ag + fb) for a, b ∈ H and
f, g ∈ D(H). Then T (H) is a symmetric algebra and H is the quotient algebra of
T (H) by the ideal D(H).

For a natural number n ≥ 4, Qn will be the quiver of the following form:

1

��

n+ 1

��
3 ��

��

��

4�� �� · · ·�� �� n− 2�� �� n− 1��

��

��2

��

n

��
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Each arrow in Qn will be named either by α or by β in such a way that an arrow
which starts in the vertex 3 and terminates in the vertex 1 is α, and s(α) = t(β),
t(α) = s(β), for all arrows α and β. Let In be the admissible ideal in the path
algebra KQn generated by all paths αβ, βα such that s(αβ) �= t(αβ), s(βα) �=
t(βα), and all commutativity relations ω1−ω2, where ω1, ω2 are all paths of length
2 in Qn such that their source and target coincide with the vertex i, for all i ∈
{3, . . . , n− 1}. Then by Λn we denote the quotient algebra KQn/In.

We consider now the quiver Δn of Euclidean type D̃n, for any n ≥ 4, defined in
the following way. If n is an odd number, then Δn is of the form:

1 n+ 1

		���
��

3 ��



�����

����
��
�

4 · · ·�� n− 2�� �� n− 1

2 n

���������

and similarly, for an even number n, the quiver Δn is of the form:

1 n+ 1

3 ��



�����

����
��
�

4 · · ·�� �� n− 2 n− 1��



�����

����
���

��

2 n

(in particular, all maximal subquivers of type An−1 of Qn have an alternate orien-
tation of arrows).

Let Hn be the path algebra KΔn and H∗
n the path algebra KΔ∗

n, where Δ∗
n is

the opposite quiver of Δn. Note that Δn is a subquiver of Qn given by the arrows
α and Δ∗

n is a subquiver of Qn given by the arrows β. Moreover, observe that Λn is
the trivial extension algebra T (Hn) of Hn and the trivial extension algebra T (H∗

n)
of H∗

n. In particular, Hn and H∗
n are quotient algebras of Λn.

Assume now that n > 4 is an odd number. For each arrow α in Δn such that
s(α) = i and t(α) ∈ {i − 1, i + 1}, for some i ∈ {3, . . . , n}, we put αl instead of α,
where l is given by the formula:

l =

{
i−1
2 , α : i → i+ 1,

n− i+1
2 , α : i → i− 1.

Observe that l ∈ {1, . . . , n− 2}. We define the family of indecomposable represen-
tations Fα1

, . . . , Fαn−2
of Hn over K:

• Fαl
for l /∈ {n−1

2 , n− 2} :

0 0

����
��
�

0 ��



�����

����
��
�

· · · K
1

K · · · �� 0

0 0



�����

where K stands in for the vertices s(αl), t(αl), zero space elsewhere
(here by we mean �� or �� );
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• Fαn−1
2

:

0 K
1

�����
��

0 ��



�����

����
��
�

0 · · ·�� 0�� �� K

0 K
1

�������

where K stands in for the vertices n− 1, n, n+ 1, zero space elsewhere;
• Fαn−2

:

K 0

����
��
�

K ��

1
�������

1�����
��

0 · · ·�� 0�� �� 0

K 0



�����

where K stands in for the vertices 1, 2, 3, zero space elsewhere.

Let El = Fαl
for l ∈ {1, . . . , n − 2}. Obviously E1, . . . , En−2 are pairwise

orthogonal bricks. Direct calculation shows that τHn
El+1 = El if l ∈ {1, . . . , n− 3}

and τHn
E1 = En−2. Moreover, Ext2Hn

(Er, Ep) = 0 for any r, p ∈ {1, . . . , n − 2},
because Hn is a hereditary algebra. It allows us to state that E1, . . . , En−2 form
the mouth of a standard stable tube T of rank n− 2 in ΓHn

(see [17], [20]). Since
pdHn

X ≤ 1 for any Hn-module X in T , it follows from [26, Proposition 1.1] that
T is also a component of the Auslander-Reiten quiver ΓΛn

.
Analogously, let E∗

1 , E
∗
2 , . . . , E

∗
n−2 be the indecomposable H∗

n-modules, where
the indices l are given in such a way that, for any l ∈ {1, . . . , n − 2}, El and E∗

l

have the same composition factors in modΛn including the multiplicities. It is easy
to see that these modules form the mouth of a stable tube T ∗ of rank n− 2 in ΓH∗

n

such that τH∗
n
E∗

l = E∗
l+1 for l ∈ {1, . . . , n−3} and τH∗

n
E∗

n−2 = E∗
1 . Using once more

[26, Proposition 1.1] we get that T ∗ is also a component of the Auslander-Reiten
quiver ΓΛn

. Note that top(E∗
l ) = soc(El) and top(El) = soc(E∗

l ) in modΛn, for
any l ∈ {1, . . . , n− 2}. Therefore, T has an external short path El → E∗

l → El in
modΛn, which implies existence of a short cycle T → T ∗ → T in ΣΛn

. Observe
also that T and T ∗ have the same composition factors since [El] = [E∗

l ] for all
l ∈ {1, . . . , n − 2}. Moreover, T and T ∗ are generalized standard stable tubes
in ΓΛn

since they are generalized standard in ΓHn
and ΓH∗

n
, respectively (see for

example [20, Chapter X]).
Assume n ≥ 4 is an even number. For each arrow α in Hn such that s(α) = i and

t(α) ∈ {i−1, i+1}, for some i ∈ {3, . . . , n−1}, we define the index l in the previous
way. Similarly, we define the indecomposable representations Fα1

, . . . , Fαn−2
of Hn

over K:

• Fαl
for l /∈ {n−2

2 , n− 2} :

0 0

0 ��



�����

����
��
�

· · · K
1

K · · · 0

�������

���
��

��
��

0 0
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where K stands in for the vertices s(αl), t(αl), zero space elsewhere
(here by we mean �� or �� );

• Fαn−2
2

:

0 K

0 ��



�����

����
��
�

0 · · ·�� �� 0 K��

1
�������

1 ���
���

�

0 K

where K stands in for the vertices n− 1, n, n+ 1, zero space elsewhere;
• Fαn−2

:

K 0

K ��

1
�������

1�����
��

0 · · ·�� �� 0 0

�������

���
��

��
��

K 0

where K stands in for the vertices 1, 2, 3, zero space elsewhere.

As before the modules El = Fαl
, l ∈ {1, . . . , n−2}, form the mouth of a stable tube

T of rank n− 2 in ΓHn
in such a way that τHn

El+1 = El for l ∈ {1, . . . , n− 3} and
τHn

E1 = En−2. Similarly, let T ∗ be the stable tube of rank n − 2 in ΓH∗
n
whose

mouth consists of the modules E∗
1 , E

∗
2 , . . . , E

∗
n−2, where the indices l are given in

such a way that, for any l ∈ {1, . . . , n− 2}, El and E∗
l have the same composition

factors and top(E∗
l ) = soc(El), top(El) = soc(E∗

l ) in modΛn. Therefore, there is
a short cycle T → T ∗ → T in ΣΛn

. Moreover, T and T ∗ are generalized standard
components in ΓΛn

.
Summing up, we have proved that for an arbitrary m ≥ 2, the Auslander-Reiten

quiver ΓΛm+2
of Λm+2 contains a generalized standard stable tube of rank m which

is not uniquely determined by its composition factors.
We end this section with comments concerning acyclic generalized standard

Auslander-Reiten components. It has been proved in [22, Corollaries 2.4 and
3.3] that every acyclic generalized standard component C of the Auslander-Reiten
quiver ΓA of an Artin algebra A is of the form ZΔ for a finite acyclic connected
valued quiver Δ with at least three vertices, B = A/ annA(C ) is a tilted algebra of
the form EndH(T ), for some wild hereditary Artin algebra H and a regular tilting
H-module, and C is the connecting component CT of ΓB determined by T . More-
over, C. M. Ringel proved in [18] that, for any connected wild hereditary Artin
algebra H whose ordinary valued quiver has at least three vertices, there exists
a multiplicity-free regular tilting module T in modH, and consequently the con-
necting component CT of the Auslander-Reiten quiver ΓB of the associated tilted
algebra B = EndH(T ) is an acyclic generalized standard faithful regular compo-
nent of ΓB. We refer also to [10] for constructions of tilted algebras having regular
connecting components with arbitrary large composition factors.

Let K be an algebraically closed field, Q an arbitrary connected acyclic wild
quiver with at least three vertices, and H = KQ. Then it follows from [10,
Corollary 4] that there are infinitely many pairwise non-isomorphic tilted alge-
bras B = EndH(T ), for multiplicity-free regular tilting modules T in modH, such
that the connecting component CT determined by T is regular and without simple
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modules. Take such a tilted algebra B = EndH(T ) and consider the trivial exten-
sion algebra Λ = T (B) of B by the B-B-bimodule D(B) = HomK(B,K). Then
it follows from [5, Section 5] that the Auslander-Reiten quiver ΓΛ of Λ consists
of two acyclic generalized standard regular sincere components C = CT and D ,
having sections of type Δ = Qop, and infinitely many components whose stable
parts are of the form ZA∞. However, it is not clear if C and D may have the same
composition factors. It would be interesting to know if such a situation may occur.
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