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PERIODIC SOLUTIONS FOR NONAUTONOMOUS SECOND
ORDER SYSTEMS WITH SUBLINEAR NONLINEARITY

CHUN-LEI TANG

(Communicated by Jeffrey B. Rauch)

Abstract. The existence and multiplicity of periodic solutions are obtained
for nonautonomous second order systems with sublinear nonlinearity by using
the least action principle and the minimax methods.

1. Introduction and main results

Consider the second order systems{
ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

(1)

where T > 0 and F : [0, T ]×RN → R satisfies the following assumption:
(A) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable

in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+, R+), b ∈ L1(0, T ;R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

Suppose that the nonlinearity ∇F (t, x) is bounded, that is, there exists g ∈
L1(0, T ;R+) such that

|∇F (t, x)| ≤ g(t)

for all x ∈ RN and a.e. t ∈ [0, T ]. Mawhin-Willem [3] proved the existence of
solutions for problem (1) under the condition that∫ T

0

F (t, x) dt→ +∞

as |x| → ∞ or that ∫ T

0

F (t, x) dt→ −∞

as |x| → ∞. The recent related results are contained in [1, 2, 3, 5, 6]. In this
paper we suppose that the nonlinearity ∇F (t, x) is sublinear, that is, there exist
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f, g ∈ L1(0, T ;R+) and a ∈ [0, 1[ such that

|∇F (t, x)| ≤ f(t)|x|α + g(t)(2)

for all x ∈ RN and a.e. t ∈ [0, T ]. Then the existence of periodic solutions, which
generalizes Mawhin-Willem’s results mentioned above, are obtained for the nonau-
tonomous second order systems with sublinear nonlinearity by using the least action
principle and the minimax methods. Moreover the multiplicity of periodic solutions
is also obtained. The main results are the following theorems.

Theorem 1. Suppose that (2) and assumption (A) hold. Assume that

|x|−2α

∫ T

0

F (t, x) dt→ +∞(3)

as |x| → ∞. Then problem (1) has at least one solution which minimizes the
function ϕ given by

ϕ(u) =
1
2

∫ T

0

|u̇(t)|2 dt+
∫ T

0

[F (t, u(t))− F (t, 0)] dt

on the Hilbert space H1
T defined by

H1
T = {u : [0, T ] → RN | u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2(0, T ;RN)}
with the norm

‖u‖ =

(∫ T

0

|u(t)|2 dt+
∫ T

0

|u̇(t)|2 dt
) 1

2

, u ∈ H1
T .

Remark 1. Theorem 1 generalizes Theorem 1.5 of Mawhin-Willem [3]. In fact, it
follows from Theorem 1 by letting α = 0. On the other hand, there are functions
F satisfying our Theorem 1 and not satisfying the results in [1, 2, 3, 5, 6]. For
example, let α = 1

2 and

F (t, x) =
(

2
3
T − t

)
|x| 32 + (h(t), x)

where h ∈ L1(0, T ;RN).

Theorem 2. Suppose that (2) and assumption (A) hold. Assume that

|x|−2α

∫ T

0

F (t, x) dt→ −∞(4)

as |x| → ∞. Then problem (1) has at least one solution in H1
T .

Remark 2. Theorem 2 generalizes Theorem 4.8 of Mawhin-Willem [3]. In fact, it
follows from Theorem 2 by letting α = 0. There are functions F satisfying our
Theorem 2 and not satisfying the results in [1, 2, 3, 5, 6]. For example, let α = 1

2
and

F (t, x) =
(

1
3
T − t

)
|x| 32 + (h(t), x)

where h ∈ L1(0, T ;RN).
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Theorem 3. Suppose that (2), (4) and assumption (A) hold. Assume that there
exist δ > 0, ε > 0 and an integer k > 0 such that

−1
2
(k + 1)2ω2|x| ≤ F (t, x)− F (t, 0)(5)

for all x ∈ RN and a.e. t ∈ [0, T ], and

F (t, x)− F (t, 0) ≤ −1
2
k2ω2(1 + ε)|x|2(6)

for all |x| ≤ δ and a.e. t ∈ [0, T ], where ω = 2π
T . Then problem (1) has at least two

distinct solutions in H1
T .

Theorem 4. Suppose that (2), (3) and assumption (A) hold. Assume that there
exist δ > 0 and an integer k ≥ 0 such that

−1
2
(k + 1)2ω2|x|2 ≤ F (t, x)− F (t, 0) ≤ −1

2
k2ω2|x|2(7)

for all |x| ≤ δ and a.e. t ∈ [0, T ]. Then problem (1) has at least three distinct
solutions in H1

T .

Remark 3. There are functions F satisfying our Theorem 4 and not satisfying The-
orem 7 in [1] and its generalization in [6]. For example, let

F (t, x) =


(

2
3
T − t

)
|x| 32 , |x| ≥ 1,

−1
4
ω2|x|2 +

(
1
2
ω2 +

3
2
T − 9

4
t

)
|x|4 −

(
1
4
ω2 +

5
6
T − 5

4
t

)
|x|6, |x| ≤ 1,

for all t ∈ [0, T ].

2. Proofs of the theorems

For u ∈ H1
T , let u = 1

T

∫ T

0
u(t) dt and ũ = u− u. Then one has

‖ũ‖2
∞ ≤ T

12

∫ T

0

|u̇(t)|2 dt (Sobolev’s inequality)

and ∫ T

0

|ũ(t)|2 dt ≤ T 2

4π2

∫ T

0

|u̇(t)|2 dt (Wirtinger’s inequality).

It follows from assumption (A) that the functional ϕ on H1
T given by

ϕ(u) =
1
2

∫ T

0

|u̇(t)|2 dt+
∫ T

0

[F (t, u(t))− F (t, 0)] dt

is continuously differentiable and weakly lower semicontinuous on H1
T (see [3]).

Moreover one has

〈ϕ′(u), v〉 =
∫ T

0

(u̇(t), v̇(t)) dt+
∫ T

0

(∇F (t, u(t)), v(t)) dt

for all u, v ∈ H1
T . It is well-known that the solutions of problem (1) correspond to

the critical points of ϕ.
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Proof of Theorem 1. It follows from (2) and Sobolev’s inequality that

∣∣∣∣∣
∫ T

0

[F (t, u(t))− F (t, u)] dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F (t, u + sũ(t)), ũ(t)) ds dt

∣∣∣∣∣
≤
∫ T

0

∫ 1

0

f(t)|u+ sũ(t)|α|ũ(t)| ds dt+
∫ T

0

∫ 1

0

g(t)|ũ(t)| ds dt

≤ 2(|u|α + ‖ũ‖α
∞)‖ũ‖∞

∫ T

0

f(t) dt+ ‖ũ‖∞
∫ T

0

g(t) dt

≤ 3
T
‖ũ‖2

∞ +
T

3
|u|2α

(∫ T

0

f(t) dt

)2

+ 2‖ũ‖α+1
∞

∫ T

0

f(t) dt+ ‖ũ‖∞
∫ T

0

g(t) dt

≤ 1
4

∫ T

0

|u̇(t)|2 dt+ C1|u|2α + C2

(∫ T

0

|u̇(t)|2 dt
)α+1

2

+ C3

(∫ T

0

|u̇(t)|2 dt
) 1

2

for all u ∈ H1
T . Hence we have

ϕ(u) =
1
2

∫ T

0

|u̇(t)|2 dt+
∫ T

0

[F (t, u(t))− F (t, u)] dt+
∫ T

0

F (t, u) dt−
∫ T

0

F (t, 0) dt

≥ 1
4

∫ T

0

|u̇(t)|2 dt− C2

(∫ T

0

|u̇(t)|2 dt
)α+1

2

− C3

(∫ T

0

|u̇(t)|2 dt
) 1

2

+ |u|2α

(
|u|−2α

∫ T

0

F (t, u) dt− C1

)
−
∫ T

0

F (t, 0) dt

for all u ∈ H1
T . As ‖u‖ → ∞ if and only if (|u|2 +

∫ T

0 |u̇(t)|2 dt) 1
2 → ∞, the above

equality and (3) imply that

ϕ(u) → +∞
as ‖u‖ → ∞. By Theorem 1.1 and Corollary 1.1 in [3] we complete our proof.

Proof of Theorem 2. First we prove that ϕ satisfies the (PS) condition. Suppose
that (un) is a (PS) sequence for ϕ, that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is
bounded. In a way similar to the proof of Theorem 1, we have

∣∣∣∣∣
∫ T

0

(∇F (t, un(t)), ũn(t)) dt

∣∣∣∣∣ ≤ 1
4

∫ T

0

|u̇n(t)|2 dt+ C1|un|2α

+ C2

(∫ T

0

|u̇n(t)|2 dt
)α+1

2

+ C3

(∫ T

0

|u̇n(t)|2 dt
) 1

2
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for all n. Hence one has

‖ũn‖ ≥ 〈ϕ′(un), ũn〉

=
∫ T

0

|u̇n(t)|2 dt+
∫ T

0

(∇F (t, un(t)), ũn(t)) dt

≥ 3
4

∫ T

0

|u̇n(t)|2 dt− C1|un|2α

− C2

(∫ T

0

|u̇n(t)|2 dt
)α+1

2

− C3

(∫ T

0

|u̇n(t)|2 dt
) 1

2

for large n. It follows from Wirtinger’s inequality that

‖ũn‖ ≤
(
T 2

4π2
+ 1
) 1

2
(∫ T

0

|u̇n(t)|2 dt
) 1

2

for all n. Hence we obtain

C|un|α ≥
(∫ T

0

|u̇n(t)|2 dt
) 1

2

(8)

for some C > 0 and all large n. By the proof of Theorem 1 we have

∫ T

0

[F (t, un(t))− F (t, un)] dt ≤ 1
4

∫ T

0

|u̇n(t)|2 dt+ C1|un|2α

+ C2

(∫ T

0

|u̇n(t)|2 dt
)α+1

2

+ C3

(∫ T

0

|u̇n(t)|2 dt
) 1

2

for all n. It follows from the boundedness of {ϕ(un)}, (8) and the above inequality
that

C4 ≤ ϕ(un)

=
1
2

∫ T

0

|u̇n(t)|2 dt+
∫ T

0

[F (t, un(t))− F (t, un)] dt

+
∫ T

0

F (t, un) dt−
∫ T

0

F (t, 0) dt

≤ 3
4

∫ T

0

|u̇n(t)|2 dt+ C1|un|2α + C2

(∫ T

0

|u̇n(t)|2 dt
)α+1

2

+ C3

(∫ T

0

|u̇n(t)|2 dt
) 1

2

+
∫ T

0

F (t, un) dt−
∫ T

0

F (t, 0) dt

≤ |un|2α

(
|un|−2α

∫ T

0

F (t, un) dt+ C5

)
−
∫ T

0

F (t, 0) dt

for all large n and some real constant C4 and C5. The above inequality and (4)
implies that (|un|) is bounded. Hence (un) is bounded by (8). Arguing then as in
Proposition 4.1 in [3], we conclude that the (PS) condition is satisfied.
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Let H̃1
T be the subspace of H1

T given by

H̃1
T = {u ∈ H1

T |u = 0}.
Then we have

ϕ(u) → +∞(9)

as ‖u‖ → ∞ in H̃1
T . In fact, by the proof of Theorem 1 one has∣∣∣∣∣

∫ T

0

[F (t, u(t))− F (t, 0)] dt

∣∣∣∣∣
≤ 1

4

∫ T

0

|u̇(t)|2 dt+ C2

(∫ T

0

|u̇(t)|2 dt
)α+1

2

+ C3

(∫ T

0

|u̇(t)|2 dt
) 1

2

for all u ∈ H̃1
T . It follows that

ϕ(u) =
1
2

∫ T

0

|u̇(t)|2 dt+
∫ T

0

[F (t, u(t))− F (t, 0)] dt

≥ 1
4

∫ T

0

|u̇(t)|2 dt− C2

(∫ T

0

|u̇(t)|2 dt
)α+1

2

− C3

(∫ T

0

|u̇(t)|2 dt
) 1

2

for all u ∈ H̃1
T . By Wirtinger’s inequality, the norm

|||u||| =
(∫ T

0

|u̇(t)|2 dt
) 1

2

is an equivalent norm on H̃1
T . Hence (9) follows from the equivalence and the above

inequality.
On the other hand, one has

ϕ(u) → −∞(10)

as |u| → ∞ in RN , which follows from (4). Now Theorem 2 is proved by (9), (10)
and the Saddle Point Theorem (see Theorem 4.6 in [4]).

Proof of Theorem 3. Let E = H1
T ,

Hk =


k∑

j=0

(aj cos jωt+ bj sin jωt)|aj , bj ∈ RN , j = 0, . . . , k

(11)

and ψ = −ϕ. Then ψ ∈ C1(E,R) satisfies the (PS) condition. By Theorem 5.29
and Example 5.26 in [4], we only need to prove

(ψ1) lim inf ‖u‖−2ψ(u) > 0 as u→ 0 in Hk,
(ψ2) ψ(u) ≤ 0 for all u ∈ H⊥

k , and
(ψ3) ψ(u) → −∞ as ‖u‖ → ∞ in H⊥

k−1.
Notice that

F (t, x)− F (t, 0) =
∫ 1

0

(∇F (t, sx), x) ds

for all x ∈ RN and a.e. t ∈ [0, T ]. By (2) we have

F (t, x) − F (t, 0) ≤ f(t)
1 + α

|x|α+1 + g(t)|x| ≤ h(t)|x|3
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for all |x| ≥ δ, a.e. t ∈ [0, T ] and some h ∈ L1(0, T ;R+) given by

h(t) =
δα−2

1 + α
f(t) + δ−2g(t).

Now it follows from (6) that

F (t, x)− F (t, 0) ≤ −1
2
k2ω2(1 + ε)|x|2 + h(t)|x|3

for all x ∈ RN and a.e. t ∈ [0, T ]. Hence we obtain

ψ(u) ≥ −1
2

∫ T

0

|u̇(t)|2 dt+ 1
2
k2ω2(1 + ε)

∫ T

0

|u(t)|2 dt−
∫ T

0

h(t)|u(t)|3 dt

≥ 1
2
ε

∫ T

0

|u̇(t)|2 dt+ 1
2
k2ω2(1 + ε)|u|2T − ‖u‖3

∞

∫ T

0

h(t) dt

≥ C6‖u‖2 − C7‖u‖3

(12)

for all u ∈ Hk, where C6 = min{ ε
2 ,

1
2k

2ω2(1 + ε)T }, C7 = C3
∫ T

0
h(t) dt and C is a

positive constant such that

‖u‖∞ ≤ C‖u‖(13)

for all u ∈ H1
T (see Proposition 1.1 in [3]). Now (ψ1) follows from (12). For u ∈ H⊥

k ,
one has

ψ(u) ≤ −1
2

∫ T

0

|u̇(t)|2 dt+
1
2
(k + 1)2ω2

∫ T

0

|u̇(t)|2 dt ≤ 0

which is (ψ2). At last (ψ3) follows from (9). Hence the proof of Theorem 3 is
completed.

Proof of Theorem 4. From the proof of Theorem 1 we know that ϕ is coercive,
which implies that ϕ satisfies the (PS) condition. Let X2 be the finite-dimensional
subspace Hk given by (11) and let X1 = X⊥

2 . Then by (7) we have

ϕ(u) ≤ 1
2

∫ T

0

|u̇(t)|2 dt− 1
2
k2ω2

∫ T

0

|u(t)|2 dt ≤ 0

for all u ∈ X2 with ‖u‖ ≤ C−1δ and

ϕ(u) ≥ 1
2

∫ T

0

|u̇(t)|2 dt− 1
2
(k + 1)2ω2

∫ T

0

|u(t)|2 dt ≥ 0

for all u ∈ X1 with ‖u‖ ≤ C−1δ, where C is the positive constant given in (13).
The case that

∫ T

0
[F (t, x) − F (t, 0)] dt < 0 for some |x| < δ, implies inf ϕ < 0.

Now our Theorem 4 follows from Theorem 4 in [1].
On the contrary we have

∫ T

0 [F (t, x) − F (t, 0)] dt ≥ 0 for all |x| < δ. Then it
follows from (7) that for every given |x| < δ one has F (t, x) − F (t, 0) = 0 for a.e.
t ∈ [0, T ]. Let

E(x) = {t ∈ [0, T ]|F (t, x)− F (t, 0) 6= 0}.
Then measE(x) = 0 for all |x| < δ. Given |x0| < δ we have∣∣∣∣x0 +

1
n
em

∣∣∣∣ < δ
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for n > 1
δ−|x0| , where {em|1 ≤ m ≤ N} is the canonical basis of RN . Thus we

obtain

(∇F (t, x0), em) = lim
n→∞

F (t, x0 + 1
nem)− F (t, x0)

1
n

= 0

for all t /∈ (
⋃{E(x0 + 1

nem)|n > 1
δ−|x0| , 1 ≤ m ≤ N}) ∪ E(x0), which implies that

∇F (t, x0) = 0 for a.e. t ∈ [0, T ], that is, x0 is a solution of problem (1). Hence all
|x| < δ are solutions of problem (1). Therefore Theorem 4 is proved.
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