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PICARD'S THEOREM AND RICKMAN'S THEOREM

BY WAY OF HARNACK'S INEQUALITY

JOHN L. LEWIS

(Communicated by Albert Baernstein II)

Abstract. In this note we give a very elementary proof of Picard's Theorem

and Rickman's Theorem which uses only Harnack's inequality.

1.   Introduction

The classical theorem of Picard can be stated as:
A nonconstant entire analytic function in the complex plane omits at most one
complex value.

Many proofs of this theorem have been given using (a) the modular function,

(b) Schottky and Bloch theorems, (c) a generalization of Schwarz's lemma, (d)

Nevannlinna's second fundamental theorem, and (e) probability (see [5] for (a),

(b); see [1] for (c); see [6] for(d); and see [2] for (e)). Rickman [10] has obtained
an analogue of Picard's theorem for entire quasiregular mappings. He proved

that:
A nonconstant entire K > 1 quasiregular function in W omits at most m =

m(n, K) values.
In this note we show that both theorems are rather easy consequences of

a Harnack-type inequality which can be stated as: If x = (xx, x2,... , x„)
denotes a point of Euclidean n space R" , B(x, 2r) = {y e R" : \y — x\ < 2r}

and A is a nonnegative real-valued function defined on B(x, 2r), then

(1.1)   M(r,h,x) = sup{h(y):y£B(x,r)} < d iaf{h(y) : y £ B(x, r)}

for some 6 > 1. A continuous function u defined on R" will be called a
Harnack function on R" with constant 6 provided that (1.1) holds for each

x £Rn , r > 0, whenever h is nonnegative on B(x, 2r) and h has the form

h = ±u + a for some a £ R. The key ingredient in our proof is

Lemma 1. Let u be a Harnack function with constant 8, u(xo) = 0, and

R > 0. Then there exist r, 0 < r < R, xx £ B(x0, 2R), and cx = cx(0) > 2
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such that u(xx) = 0 and

(c\)~x M(R, u, x0) < M(lOr, u, xx) < cxM(r, u, xx).

We note that the above lemma in much less generality can be found in Rick-

man's paper [10] and also in Eremenko and Lewis's [3]. Both Rickman and

Eremenko and Lewis prove Lemma 1 for the class of u that they consider by

first showing that if u(y) = 0, then the maximum of « on a ball with center at

y can be estimated above and below by the p measure of a larger and smaller

ball centered at y, respectively. In Rickman's case, p is a certain average of

the counting function for a given quasiregular entire function, while, in Ere-

menko and Lewis's case, p is a certain positive Riesz measure associated with

u+ = maxJM, 0}. Second, these authors prove a lemma similar to Lemma 1
with M(', u, •) replaced by p. Both proofs of Lemma 1 are somewhat in-
volved and use nonlinear pde theory (Rickman also uses the theory of extremal

length).

Proof. We obtain Lemma 1 directly by an embarassingly simple argument. Let

S(x) = 2R-\x - x0\ be the distance from x £ B(x0, 2R) to R"\5(jc0 , 2R).
Put  E  =   {x  :  u(x)  =  0} n B(xo, 2R),   and let  F  be the closure of

U6* *(*.!$)• Set

y = sup{M(lO~2ô(x) ,u,x):x£E},

and choose xi in E such that if r = ^^ , then

(1.2) y < 2M(r, u, xx).

We show that Lemma 1 is valid for xx, r as above. Indeed since \ô(x) - S(y)\ <

\x — y\ for x, y, £ B(xo, 2R), it follows easily that for y e B(xx, 20r)

(1.3) S(xx) < 2ô(y) < 4ô(xx).

Let K denote the closure of the set K and choose x2 £ B(xx, lOr) with

(1.4) M(l0r,u,xx) < 2u(x2).

We now consider two cases. If x2 £ F, then from (1.2), (1.4), and continuity

of u we see that

(1.5) M(l0r, u,xx) < 2u(x2)<2y<4M(r, u,xx).

If x2 $. F , we use interval notation to denote the line segment connecting two

points. Since F is closed, there exists z £ (xx, x2) n F with [x2, z) n F = 0.
We claim that each w £ [x2, z) contains a ball of radius £ centered at w on

which u > 0. Otherwise, by continuity of u and (1.3) we would have u(y) = 0
for some y with

r     ô(xx)     S(y)
\v - w\ < - = < —^-LW    w\- 4      400       100

Thus w £ F , which contradicts our choice of z. Hence our claim is true. Since

[x2, z] can be covered by at most 80 balls of radius | with centers in [x2, z),
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we can use Harnack's inequality (1.1) recursively and (1.4) to conclude that

M(l0r,u,xx)< 2u(x2) < 2080u(z) < 408OM(r, u,xx).

Here the right-hand inequality follows from the fact that z £ F and the same

argument as in (1.5). Thus if cx = 4080, then in either case we have

M(l0r, u, xx) < cxM(r, u, xx),

which is the right-hand inequality in Lemma 1. The proof of the left-hand
inequality in Lemma 1 is similar. That is, choose x-¡ £ B(xo, R) such that
u(x-i) > 2M(R, u, xo). Either x?, £ F or x^ 0 F, and in either case arguing
as above we get the left-hand inequality in Lemma 1. The proof of Lemma 1

is now complete.   D

Next we use Lemma 1 and elementary properties of harmonic functions to

give a short proof of Picard's Theorem for analytic functions. In the proof

we shall often justify our reasoning with such statements as "by well-known

properties of harmonic functions in R2". We do this so that the reader well

versed in harmonic functions can rapidly see how Picard's theorem follows from

Lemma 1. Later we shall see that the only properties of harmonic functions

which we use, except for real analyticity, are easily obtainable from the fact
that harmonic functions are Harnack functions.

Proof. The proof of Picard's Theorem is by contradiction. We identify the
complex plane with R2 in the usual way. Suppose F is an entire noncon-

stant analytic function which omits distinct complex numbers ax, a2. Then

f = 5T=it *s a nonconstant entire function in the complex plane ( R2) which

omits 0 and 1. Put ux = log|/| - 2, m2 = log|/- 1| - 2, and observe that

ux, Ui are harmonic in R2. From Harnack's theorem for positive harmonic

functions we deduce that ux, ui are Harnack functions for some constant 6.
Since nonconstant harmonic functions on R2 are unbounded above and below

(as is well known), we can choose xq £ R2 with ux(xo) = 0 and apply Lemma
1 with R = 2J, j = 1, 2, ... , to get sequences {zj}, {rj} with

(a)     lira M(r¡, ux, zf) = oo,
J—+00

(L6) (ß)   M(l0rj, ux, zj) < cxM(rj, ux, zf),
(y)   ux(Zj) = 0

for ; = 1, 2, ... . Define vXJ, v2J, j = 1,2, ... , on B(0, 1) by vtJ(z) =
u¡(zj + I0rjz)/M(l0rj, ux, zf) for /' = 1, 2 when z e 5(0, 1). Using (1.6)
(a)-(y) and properties of harmonic functions, it is easily seen that a subse-

quence of {Vij} converges for i = 1,2 uniformly on compact subsets of

B(0, 1) to harmonic functions vx, v2, respectively, in B(0, 1). Moreover,

from (1.6) (a)-(y) it can be deduced that

(*)   Vl(0) = 0for/=1,2,

(1.7) (**)   Vi = v2 on \jj=l{x : v¡(x) > 0} ¿ 0,

(* * *)   {x : vx (x) < 0} n {x : v2(x) < 0} = 0.

Since harmonic functions are real analytic, it follows from (1.7)(**) that vx =

v2. From (1.7)(***) it then follows that vx > 0. Using Harnack's inequality,
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(1.1), and (1.7)(*), we then conclude that vx = 0, which contradicts (1.7)(**).

From this contradiction we conclude Picard's theorem.   D

We note that Lemma 1 was used only to insure that vx ^ 0. In fact, from

(1.6)(/?) and uniform convergence it is easily seen that M(-^ ,vx,0)> (cx)~x.

We also note that our proof used the limit function technique of Eremenko and

Sodin (see [4, 14]).

2.   Proof of Rickman's Theorem

For completeness we give a rapid review of quasiregular mappings (see [9,

12]). Recall that a function f = (fx, fi, ... , fn) from a domain ficR" into

R" is said to be K > 1 quasiregular provided each of its coordinate functions

has a distributional partial derivative in Q which is locally «th power integrable

and

(2.1) \Df(x)\" = sup \Df(x)h\" < KJf(x)
\h\=i

for almost every x £ Q with respect to Lebesgue « measure. In (2.1) Df(x)

is the Jacobian matrix of /, while // is the determinant of Df (the Jacobian

of /). Moreover, if / ^ d in Q, then u = log \f — d\ is locally a weak

solution to

(2.2) V • [(A(x)Vu(x), Vu(x))(n-2V2A(x)Vu(x)] = 0

in Q, where A(x) = Jf(x)2ln[Dtf(x)Df(x)]-x, when Df(x)~x exists, and

A(x) = identity matrix, otherwise. Here, D'f denotes the transpose matrix of

Df. That is, if
A(x,n) = (A(x)n,n)^-2^2A(x)n,

when (x, n) £ Q x R" , then

/   (A(x,Vu),Vtf>) dx = 0,  whenever t¡> e C0°°(Q),
Ja

where ( •, • ) denotes inner product and dx denotes Lebesgue « measure.

We note for some c2 = c2(n, K) > 2 that

(a) (c2)~x | n\" < (A(x, n), n) for almost every x £ Q, whenever n £W ,

(b) \A(x, n)\ < c2|r7|"_1 for almost every x £ Q, whenever n £ R" .

Serrín [13] has considered weak solutions to elliptic equations of the form (2.2)

under more general structure conditions than (a) and (b). He showed that

positive solutions satisfy a Harnack inequality, where the constant 9 depends

only on n and the structure constant c2 in (a), (b).

Proof. Now suppose / is a nonconstant entire K > 1 quasiregular mapping

which omits distinct values ax, ... , am. Let b = YÜLi \a'\ + x > ana" Put
u,■ = log \f - a, | - b, 1 < i < m . Then each function of the form ±m, + a,
where a £ R and 1 < / < m, is a weak solution in R" to a nonlinear divergence
form elliptic equation satisfying structure conditions (a) and (b). From Serrin's
theorem we deduce that each u¡, I < i < m, is a Harnack function with

constant 6 depending only on « and K. To prove Rickman's Theorem we

shall again use Lemma 1 and the limit function technique of Eremenko and
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Sodin. Here, though the limit functions need not be real analytic, we will

need an additional counting argument to conclude that there can be at most
m = m(n, K) distinct limiting functions. We shall need some simple properties

of Harnack functions, similar to those used in the proof of Picard's Theorem.

Suppose w is a Harnack function with constant 8. Then there exist a =

a(8), 0 < a < 1, and c = c(6) > 1 such that

(2.3)
osc w=     sup     \w(y) -w(z)\ = M(tx, w, x) + M(tx, -w, x)

B(x,h) y,zeB(x,h)

<c(tx/t2)a  osc w = c(tx/t2)a[M(t2, w, x) + M(t2, -w , x)\,
B(x,t2)

when 0 < tx < t2. To obtain (2.3) from Harnack's inequality (1.1), suppose

2r < t2 and let h = M(2r ,w,x) — w, h = M(2r, -w, x) + w, respectively.
Since h > 0 in B(x ,2r) and if is a Harnack function with constant 8, we

can apply Harnack's inequality to each h . Adding the resulting inequalities, we

find for Ô = |=f that

M(r ,w,x) + M(r, -w, x) < 3[M(2r ,w,x) + M(2r, -w, x)].

Iterating this inequality starting with 2r = t2, we deduce that (2.3) is true.

Similarly, if h = M(2t ,w,x)-w, then from Harnack's inequality with r = t
we have

M(2t,w,x) + M(t,-w,x)< 6[M(2t,w,x)-w(x)].

Thus

(2.4) M(t,-w,x)<(9- l)M(2t,w,x)- 6w(x).

Equation (2.4) is also valid with w replaced by -w , since -w is also a Har-

nack function. Equations (2.3) and (2.4) imply that if w is nonconstant, then

(2.5) lim M(t, ±w, x) = oo.
t—>oo

Indeed, from (2.3) and (2.4) we have

osc w<c(tx/t2)a  ose w < Bc(txlt2)a[M(2t2, w, x)-w(x)],
B(x,h) B(x,h)

Letting t2 —> oo and using the fact that w is nonconstant, we get (2.5) for w.

A similar argument can be given for -w.

We now proceed as in the proof of Picard's Theorem. From (2.5) we see that

«i is unbounded above and below in R". Thus we can choose xo £ R" with

"i (*o) = 0 and apply Lemma 1 again with R = 2>'', j = 0, 1, 2,... , to obtain
sequences {zj}, {r;} for which (1.6) holds. Put

Uiizj + lOrjx)

and observe that vtj is a Harnack function with constant 8 for 1 < i <

m, j = 1,2, ... . From (1.6)(a) and the definition of w, it is easily seen for
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1 < i < m that

(2.6) M(tj, Ui, Zj) - M(tj, ux, Zj)—0   as y'^oo,

whenever tj > r¡. If tj = r¡ in (2.6), then from (l.6)(ß) we see for N large
enough that

(2.7) (2c,)-1 <M(±,Vij,0) < 2

for j > N and 1 < i < m. Using (2.6) with tj = 10r7, (2.7), and Harnack's
inequality applied to 2 - v¡j for j > N and 1 < i < m, we deduce that
{v¡j}j>N is bounded on compact subsets of B(0, 1). This fact, (2.3), and

Ascoli's theorem imply that there exists a subsequence of {v¡j}j>n which

converges uniformly to «¡, 1 < i< m, on compact subsets of 5(0, 1). We

claim that (compare with (1.7))

(*)   Vi(0) = 0,  for 1 < i<m,
(2.8) (**)   vx=v¡, l<i<m, on (J™ i ix '■ vj(x) > 0} ^ 0,

(* * *)   {x : v¡(x) < 0} n {x : vj(x) < 0} = 0,        1 < / £ j < m.

To prove (2.8)(*) observe from (1.6)(y) that for I < i < m and j =

1,2,...,

l<eb-\ax- a¡\ = |/(z;) -ax\-\ax- a¡\

< \f(Zj) - a¡\ < \f(zj) - ax\ + \ax - a¡\ <eb + b.

Taking logarithms we deduce first that -b < u¡j(zj) < log2 and thereupon
that (2.8)(*) is true. To prove (2.8)(**) observe from uniform convergence,

(1.6)(/?), (2.6), and (2.7) that v¡ is continuous with

(2.9) (2d)-1 < M(±,Vi, 0) < M(l ,Vi,0)<l

for 1 < i < m. Hence the union in (2.8)(**) is nonempty. Moreover, if

Vi(x) > 0 for some x 6 5(0, 1), then from (1.6)(a) we see that u¡j(x) —> oo

for j in a certain subsequence, say j £ {jk}. It follows from the definition

of {«/,;} that U[j(x) - Uij(x) —>0 for 1 </<m as ;'-»oo in {jk}. From

this fact and (1.6)(a) we conclude that (2.8)(**) is true. To prove (2.8)(***)

note that if v¡(x) < 0 for some x £ 5(0, 1), then |/(z7 + 10r;x) - a¡\ -» 0

as j -> oo through a certain sequence. Thus, u¡j(x), i ^ I, is bounded below

as j —» oo in this sequence, which in view of (1.6)(a) implies (2.8)(* * *). We

are now at the point where we used real analyticity in Picard's Theorem. Since

Vj, 1 < i < m, may not be real analytic, we need another argument. We show

in fact that

(2.10) c3\{x:vi(x)<0}\ > 1

for some cj, = ci(8) > 1, where |F| denotes the Lebesgue « measure of

E c 5(0, 1). Using (2.8)(* * *), we then conclude that m < c(8) = c(n, K),
which is Rickman's Theorem. To prove (2.10) observe from (2.8)(*), (2.4)

with w = -Vj, x = 0, and (2.9) that

(2.11) M(\, -vi, 0) >t>0
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for some t = t(ö), 0 < t < 1, and I < i < m. Choose y, £ 5(0, 5), 1 <

i < m, with v¡(y¡) = -M(\, -v¿, 0). Put w¡(x) = t>,(x) - v¡(yi) when 1 <

i < m and x £ B(y¡, \). We note that (2.3) holds for w = w,, whenever

5(x, t2) c 5(0, 1), as follows from uniform convergence of a subsequence of
{Vjj} to Vj, I < i < m. Likewise (2.4) is also valid for w¡. Using (2.3), (2.4),
and (2.9), we deduce for some et, = Câ,(8) that

(2.12) M(t,Wi,yi)<c4ta,       0<t<l

From (2.11) and (2.12) we deduce the existence of e0 = eo(0), 0 < e0 < \,
such that

M(e0, w¡, y,) < -\vtiyt) = \M(\ , -v¡, 0).

From this inequality and (2.11) we find that

Vi(x) < x2Vi(yi) = -\M(\, -Vi,0) < -\x,

when x £ B(y¡, e0) and 1 < 1 < m.
Thus (2.10) holds for c3 sufficiently large . The proof of Rickman's Theorem

is now complete.   D

3. Remarks about Harnack functions

Suppose v¡, 1 < 1 < m, are nonconstant Harnack functions which satisfy

(2.8) and m > 2. Let Ox = {x : vx(x) > 0}, and put 0, = {x : w,_i(x) < 0}
for 2 < i < m+ I. Using Harnack's inequality, it is easily seen that dO¡ =
dOj, l<i,j<m+l. Such an equality between open sets is topologically

possible (e.g., the lakes of Wada), but it requires some work to construct ex-

amples of such sets. Thus a natural question to ask is whether m > 2 can
occur in R2. If not, then Picard's Theorem could be proved using only simple
properties of Harnack functions. In R3, Rickman [11] has constructed some

examples which show that for a given positive integer m > 2 there exists for

K sufficiently large a K quasi-regular entire function which omits m values in
R3. Moreover, these examples can be used as in the proof of Rickman's Theo-

rem to show that m > 2 can occur in (2.8). In this case, though, one can ask

further questions, such as do there exist m > 2 Harnack functions satisfying
(2.8) and also any reasonable pde (for example, those considered by Serrín)? It

is not difficult to see, for example, that if the w's are C1 solutions to an elliptic

pde (either in divergence or nondivergence form) for which a Hopf boundary

maximum principle holds, then necessarily m = 1 in (2.8). At any rate any
relatively simple examples of (2.8) for which m > 2 would be interesting.

We note that Harnack functions could be defined on a metric space and a
version of Lemma 1 could be proved in this space provided that each ball of say

radius 400r in this space contains at most N disjoint balls of radius r. Thus it

is natural to ask when does Rickman's theorem hold for quasiregular mappings

f : Jf —* JV, where Jf ,JV are Riemannian « manifolds? This question has
been considered by Holopainen and Rickman [7, 8]. They used the technique
in Eremenko and Lewis to obtain an analogue of Rickman's Theorem when J?

is R" or n = 2/c + 1 and M is the «-dimensional Heisenberg group Hk , while
jy = R"\{<2i ,a2, ... , am}, endowed with any Riemannian metric. The case

Jf = R" completely answered a question of Gromov. Lemma 1 and the limit
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function technique of Eremenko and Sodin can be used to considerably simplify
the work of these authors, and conceivably they also will lead to an extension of

Rickman's Theorem to more general classes of functions and spaces. Finally, we

note that an analogue of Schottky's theorem can also be obtained using Lemma
1, as in Eremenko and Lewis's paper [3] or by the limit function technique
above.
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