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UNIFORMLY PERSISTENT SYSTEMS

GEOFFREY BUTLER, H. I. FREEDMAN1 AND PAUL WALTMAN2

ABSTRACT. Conditions are given under which weak persistence of a dy-

namical system with respect to the boundary of a given set implies uniform

persistence.

1. Introduction. Frequently in mathematical modeling, systems of ordinary

differential equations are used in the study of the dynamical behaviour of entities

which for the sense of the given context must remain nonnegative for all times.

Typically, then, the arena for such systems is the nonnegative cone in Rn. The

boundary of the cone is a "barrier" for the dynamical system in question; in many

cases it is also invariant so that entities that are zero at any time remain so for all

times. One has then a system of the form

(■t  -i\ J  *^i "" XiJiyXi, X2i • • • , Xn¡\ I = 1, . . . , 71,

1    ' \xi(0)>0; C=d/dt),

in the case of an autonomous system where each f% is smooth enough to guarantee

uniqueness of solutions to initial value problems, together with other properties

appropriate for the physical, biological, etc., system being modeled.

One question that arises is that of determining conditions which prevent solu-

tions of (1.1) which are initially strictly positive from approaching the boundary

of the cone as time evolves. This is of paramount importance in the modeling of

biological populations where such conditions rule out the possibility of one of the

populations becoming arbitrarily close to zero in a deterministic model and there-

fore risking extinction in a more realistic interpretation of the model. Generally

speaking the term persistence is given to systems in which strictly positive solutions

do not approach the boundary of the nonnegative cone as t —* oo. Various precise

definitions of persistence have been given: a version of (weak) persistence [5, 6, 7]

applied when it is required only that positive solutions do not asymptotically ap-

proach the boundary as t -» oo; persistence [3, 4] means that each strictly positive

solution is eventually at some positive distance from the boundary; uniform per-

sistence, also called cooperativeness or permanent coexistence [10, 12], means that

strictly positive solutions are eventually uniformly bounded away from the bound-

ary. Weak persistence has a drawback in that it guarantees only that extinction is

not certain. A priori, solutions may still approach arbitrarily close to the boundary
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for large values of t, and small stochastic perturbations applied to the model may

result in the solution being driven to the boundary.

The notion of uniform persistence avoids this problem and may be expected to

be a more robust concept, that is, more likely to be maintained under suitable small

variations of the system of equations. This is always a desirable consideration from

the point of view of applications. However, it is the case that, generally speaking, it

is easier to find conditions that guarantee persistence (or weak persistence), rather

than uniform persistence. It is the intention of this paper to bridge the gap between

these concepts by showing that it is frequently the case that weak persistence implies

uniform persistence. Although we have mentioned biological models as a motivation

for these concepts, it is easy to conceive other modeling situations in which some

form of persistence is a useful idea. Bearing in mind other possible applications,

we shall place our definitions and analysis in a more general setting than that of

the previous discussion, namely, for a continuous flow on a locally compact metric

space with boundary.

2.   Definitions, notation and preliminaries.  Let i be a locally compact
o _

metric space with metric d. For any subset S of i, we shall use S, dS, S to denote

its interior, boundary and closure, respectively. We shall consider a continuous flow

7 = (E, R, 7r) on E, where E is a closed subset of £, R is the real numbers and

ir(x,t) is a continuous map from E x R to E such that ir(Tr{x, t),s) — ir(x,t + s)

for all x G E, s, t G R.
o

We assume that dE is invariant for 7; note that this implies that E is also

invariant and we denote the restriction of 7 to dE by 87. We refer to [1] for all

of the basic definitions, ideas and results for such flows; here we present only the

notation we require and definitions which may not be entirely standard.

Notation. For any i££, the orbit, positive semiorbit and negative semiorbit

of 7 through x are denoted by 7(1), 7+(x), 7~(z), respectively, and the omega and

alpha limit sets of 7(1) are denoted by A+(x), A~(x), respectively.

DEFINITIONS. An isolated invariant set M for the flow 7 is a nonempty invariant

set which is the maximal invariant set in some neighbourhood of itself. Note that if

M is a compact, isolated invariant set, one may always choose a compact isolating

neighbourhood.

The stable set W+(M) of an isolated invariant set M is defined to be

{ie£:A+(i)/0, A+{x) CM}

and the unstable set W~(M) is similarly defined in terms of A- (x). In [1] these sets

are called regions of attraction and repulsion respectively. (Note that we assume no

special structure for M, W+(M) or W~(M), but when E is a smooth manifold and

M is, for example, a critical point, periodic orbit or periodic surface with hyperbolic

structure, well-known results show that W + (M) and W~(M) have (local) manifold

structure [9, 14, 16].)

The flow 7 will be called dissipative if for each x G E, A+(a;) ^ 0, and the

invariant set fi(J) = \Jx^e^+(x) nas compact closure [8].
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We shall say that 7 is weakly persistent if for all x G E, limt^00ci(7r(x, t), dE) > 0;
o

is persistent if for all x G E, we have )imt^00d(ir(x,t),dE)  > 0; is uniformly
o

persistent if there exists So > 0 such that for all x G.E, hjnf_>00d(7r(:r,£),(3.E) > £o-

If 7 is dissipative, then 37 is also dissipative and Q(87) is a compact, isolated

invariant set for 37, which may or may not be isolated for 7■ We shall call the

flow 87 isolated if there does exist a finite covering M of fl(87) by pairwise-disjoint

compact isolated invariant sets M\,M2,..'., Mfc for 87 such that each Mx is also

isolated for 7. M will then be called an isolated covering. If M, N are isolated

invariant sets for 7, not necessarily distinct, we shall say that M is chained to N,

and write this as M -* N, if there exist x <£ MuN such that x G W~(M)f)W+(N).

A chain of isolated invariant sets is a finite sequence M\, M2, ■ ■ ■, Mfc with Mi —>

M2 —> • • • —► Mfc (Mi -> Mi, if A; = 1). The chain is called a cycle if Mc = Mi.
Finally, 87 will be called acyclic if for some isolated covering M of fi(ô J), M =

U»=i -^»> no subset of {M{} forms a cycle.

REMARK. Our definition of cycle is very close to that of a fc-cycle, for example

in [14], but we do not necessarily require the invariant sets to be "transitive."

3. The main result.

THEOREM. Let 7 be a continuous flow on a locally compact metric space E

with metric d and boundary 8E. Let 87 be the restriction of 7 to 8E (assumed

invariant under 7). Assume that

(H-l) 7 is dissipative;

(H-2) 7 is weakly persistent;

(H-3) 87 is isolated;

(H-4) 87 is acyclic.

Then 7 is uniformly persistent.

o

PROOF. Suppose not. Then there exist omega limit sets ojn C E such that

d(u!n, 8E) —» 0 as n —► 00. Without loss of generality we may assume that each ojn

is the closure of a full orbit, i.e. ujn — 1%. Note that the sequence cjn is a uniformly

bounded sequence of nonempty, compact subsets of fi(7) which is compact by (H-l).

Let K. be the metric space of nonempty, compact subsets of fi( 7) with the Hausdorff

metric p. Then K is compact [17]. Hence we may choose a convergent subsequence,

which we relabel w„, such that p(u:n,uj) —> 0 as n —» 00, where u> G K. Clearly uj is

invariant and d(uj, 8E) — 0; this implies that b = u n 8E is a nonempty, compact

invariant subset of 8E. Thus b' = bCiiï(87) is a nonempty, compact invariant set.

By (H-3), we may find an acyclic set Mi, M2,..., Mfc of compact invariant sets for

87 such that each M¿ is isolated for 7 and fi(<97) c U;=i Mi.  Choose compact
o

isolating neighbourhoods í/¿, V¿ of M¿ in E such that Ut C.V¿, and such that the V¿

are pairwise disjoint, i = 1,... ,k.

Let bi = b' n Mll ^ 0. Then for n sufficiently large, u>n n V¿, ^ 0.

If we had ujn C Uiy, then since un n 8E 7^ 0, wn U Mil would be an invariant

set contained in Ui1, properly containing M^, which would violate the isolating

property. Thus for n sufficiently large, we can find points x\n, zi„ G 7n which are

"entry" and "exit" points for the orbit 7« and times si„,ii„ with 0 < si„ < ii„,
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such that 7r(ii„, [0,ii„]) C Î7tl, xi„ G 8Ull, zin = 7r(xi„,iin) G 8Utl, and such

that yin = Tr(xin, sin) satisfies d(yin, 61) —> 0 as n —► 00.

Claim 1.  d(xin,8E) —> 0 as n —* 00. If not, there exists a subsequence which
o

we again label xin, with xi„ —> £1 G 8Ui1f~) E. Without loss of generality we may

also assume that yin —> 171 G 61 C M2l. Consider the semiorbit 7+(£i)- If it is

contained in V^, then A+(£i) C V%1 and so either A+(£i) C Mtl, contradicting

(H-2), or A+(£i) U M¿, is an invariant set that violates the isolating property of

Vit. Thus we may suppose that 7+(£i) "exits" V¿j for the first time at t = n.

Then fi = 7r(£i, ri) G 8Vi1. Continuity of n shows that 7r(xin, ti) —> Ci as n —► 00.

Since fi is exterior to Ui1, we must have 0 < sin < iin < T\. We may now assume
o

that sin -> o~, say, where 0 < a < ti and 7t(£i,<t) = r)i G <9i?.  Since £1 G.E, this
o

violates the invariance of E, which proves the claim.

Thus we may suppose that xi„ —► £1 as n —► 00, where £1 G 8Ui1 C\8E. Consider

the orbit 7(^1 )•

Claim 2. A+(¿;i) C M¿t. The argument used to verify Claim 1 shows that, if

7+(£i) ever "exits" Vil, then it contains a point of &i, which is impossible since
o

61 is an invariant subset of V^ and £1 G 8V%1 which is disjoint from 61. Thus

7+(£i) C Vi1. Since Vi1 is an isolating neighborhood for Mil, the only remaining

possibility is that A+(£i) C M¿j as claimed.

7~(^i) is bounded, otherwise the semiorbits 7" would fail to be uniformly

bounded. Hence A-(£i) is a nonempty, compact invariant subset of 8E. Thus

it has nonempty intersection with Vl(87). Suppose then that A-(£i) fl M¿2 ^ 0.

Since the points xin on the orbits 7„ satisfy xi„ —> ̂ 1 as n —► 00, and since the

un = 7„ —* w (in the Hausdorff metric) as n —» 00, it follows, using the continuity

of n, that A-(£i) C w and so 62 — b' fl M¿2 ^¿ 0. Exactly parallel arguments

as used to verify Claim 2 but with time reversal and the use of negative semior-

bits rather than positive semiorbits shows that in fact we have A~(fi) C M%2.

Thus ii G W~(Ml2) n W+(Mn). Since 6 G dVil% we have $1 g Mt2 U Mh,

and so MJ2 —> M¿¡. Since 6' fl M¿2 / 0, we may repeat the preceding argu-

ments to obtain Ml3 with Ml3 —> M¿2. Since there are only finitely many sets

Mi, continued repetition of the above argument must eventually lead to a cycle

Mik —►•..—► Miv Mij = Mik, which violates (H-4). This completes the proof of

the theorem.

COROLLARY.   Let 7 be as in the theorem and suppose that (H-l) and (H-3) hold.
o

Suppose that 7 has no critical points in E. Then either 87 is cyclic (i.e., all isolated
o

coverings possess cycles) or there exists x G E with lim^oc d(n(x, t), 8E) = 0.

PROOF.  If not, (H-2) and (H-4) both hold so the theorem holds.  By uniform
o o

persistence and (H-l), D(E) is a compact subset of E which is a global weak
o o

attractor for E (see [1]). By Theorem 2.8.6 of [1], 7 has a critical point in E,

which is a contradiction, proving the corollary.

When E — R™ and the theorem is applied in the simplest instances, it says that

for dissipative systems whose minimal sets have hyperbolic structure and whose

boundary flow is acyclic, persistence implies uniform persistence (and hence the
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existence of an interior critical point). In most cases where persistence has been

shown to hold (e.g. [3, 4]) the hypotheses (H-l) to (H-4) are already required to

expedite this demonstration, and now one can conclude the stronger assertion of

uniform persistence.

Finally we note that the theorem can be applied in the more general context of

a closed invariant subset K of E and conditions which establish that orbits in E\K

are uniformly asymptotically bounded away from K, given that they are weakly

asymptotically bounded away from K. We simply take Í — E and define E = E\K.

Apply the theorem to the flow on E, so that (H-3) and (H-4) are applied to the

restriction of the flow to K.

4. Discussion. It has been shown that under certain natural hypotheses, per-

sistence implies uniform persistence. If any of these principal hypotheses are not

satisfied, the conclusion of the theorem is not true, i.e. the system may persist

without being uniformly persistent.

Examples to illustrate this may be found in the literature. If dissipativeness

(H-l) does not hold, the Lotka-Volterra predator-prey system described in [2, Chap-

ter 3] demonstrates persistence, but not uniform persistence. If (H-4) fails, then

the nontransitive competition models given in [13, 15] provide counterexamples to

uniform persistence though persistence may occur. Finally, if the invariant sets are

not isolated as described, i.e. (H-3) fails, the choice of parameters Ai = À2 in [11]

gives a counterexample to uniform persistence, though persistence holds.

The situation for which E is not locally compact remains unresolved. It would

be of interest in this case to know the circumstances under which persistence or

uniform persistence occurs.
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