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I. Introduction. Suppose M is a compact manifold with a finite tri-

angulation T. It is known that, for many algebraic invariants of T

(or M), such as the Euler characteristic, homology, and homotopy,

that there is a subcomplex K of T such that K carries all of these

algebraic invariants. This subcomplex has recently been called a spine

of M. This means that one need not consider all of T to consider cer-

tain questions usually of an algebraic nature.

While the spine is a useful tool for studying these problems, most

of the point-set topological structure of the manifold is lost because

of two basic problems of nonuniqueness of spines. The first of these

problems is that several manifolds may have the same spine. The

second problem is that a given manifold may have several different

spines.

In this paper we will explore the first of the problems of nonunique-

ness in the case of 3-manifolds. We shall define a type of spine, called

a standard spine, and show that (i) each connected compact 3-mani-

fold with boundary has a standard spine and (ii) if two compact 3-

manifolds have homeomorphic standard spines then the manifolds

are homeomorphic.

This means that the standard spine not only carries the algebraic

structure but also the point-set topological structure.

Note that a standard spine may not be the simplest-looking spine

of a 3-manifold with boundary. For example a circle is the spine of a

solid torus and of a solid Klein bottle. It follows that the standard

spine of these objects must be more complicated than a circle. In

general, each point of a standard spine is contained in a two-dimen-

sional neighborhood homeomorphic to one of three simple-looking

sets. Globally, a standard spine may be very complicated, at least,

complicated enough to carry orientation. In some cases a standard

spine is overcomplicated. For example, a point is a spine of a 3-cell

and a 3-cell is the only 3-manifold with boundary that collapses to a

point. A point is not a standard spine as a standard spine is a two-

dimensional object. An example of a standard spine of a 3-cell is

shown in Figure 2.

An n-manifold, M, with boundary is a separable metric space such
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that each point of M is contained in a neighborhood homeomorphic

to an «-cell. If p is a point of M and p is contained in an open w-cell,

then p is contained on the interior of M, Int(if). The boundary of M,

Bd(M), is M-lnt(M). If Bd(M) is empty, then M is an «-manifold.

Suppose K is a polyhedron and a is a simplex of K with a face ß.

If ß is the face of no simplex in K except a, then we say there is an

elementary collapse from K to K— (Int(a) + (Int(j3)), where Int(a:) and

Int(ß) are, respectively, a— (faces of a) and j3 — (faces of j8). If K is a

polyhedron, L is a subpolyhedron of K and there are polyhedra

K = KoZ)Ki'Z) • ■ ■ Z)Kn = L such that there is an elementary collapse

from Ki-i to Kit i—i, 2, • • ■ , «, then we say K collapses to L [3],

[5]. If X is a polyhedron, if K collapses to L, and if there is no ele-

mentary collapse of L, then L is a s^î'we of K.

Suppose M is a polyhedron, and L and X are subpolyhedra of M.

Then a regular neighborhood of Z, with respect to K is the union of all

simplices in K that intersect L. We denote the regular neighborhood of

L with respect to K as r¡(L, K). Note that, under this definition, K

does not have to contain L.

Suppose K is a polyhedron. Then the singular «-skeleton, Kn, of K

is the set of points in K such that if pG.Kn, then no neighborhood of

p, open in K, is homeomorphic to Euclidean (w + l)-space.

Let the set A be the join of the point (0, 0, 1) in Es and the line

segment [(1, 0, 0) ( — 1, 0, 0)], the set B the join of the point (1, 0, 0)

and the line segment [(0, 1, 0)(0, — 1, 0)], the set C the join of the

point (—1, 0, 0) and the line segment [(0, 1, 0)(0, —1, 0)], and the

set D be the join of the point (0, 0, —1) and the line segment

[(0, 1, 0)(0, — 1, 0)]. Let a standard neighborhood of Type I be B + C,

a standard neighborhood of Type II be A-\-B-\-C and a standard

neighborhood of Type III be A+B + C+D, as shown in Figure 1.

Suppose K is a 2-dimensional polyhedron, Ki is the singular 1-

skeleton of K, and K0 is the singular 0-skeleton of Ki. The poly-

hedron K is a standard 2-polyhedron if each point of K is contained in

a set open in K whose closure is homeomorphic to one of the three

standard neighborhoods, if Ki — Ko is the sum of a countable number

of pairwise disjoint open arcs, and if K — Ki is the sum of a countable

number of disjoint open disks. If K is a standard 2-polyhedron and if

K is the spine of a connected manifold M with nonvoid boundary,

then K is a standard spine of M.

It is known that every connected 3-manifold with nonvoid bound-

ary has a standard spine. However, a proof of this fact has not ap-

peared in print. Therefore, to complete the paper we will prove this

theorem in §IV.
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II. The imbedding theorem. We can now state and prove the main

result of this paper.

Theorem 1. Suppose M is a compact connected 3-manifold with non-

void boundary and K is a standard spine of M such that K can be poly-

hedrally imbedded in the interior of a 3-manifold with boundary, N.

Then the imbedding of K can be extended to imbed M in N.

Proof. Let M be a compact connected 3-manifold with nonvoid

boundary. As Moise [2] and Bing [l] have shown that every 3-

manifold can be triangulated, we may assume that M is triangulated.

Let K be a standard spine of M contained on the interior of M. Let T

be a finite triangulation of M such that K is a full subpolyhedron of

M, that is, if all of the vertices of a simplex a are contained in K,

then a is contained in K. Let K\ be the singular 1-skeleton of K and

Ko the singular 0-skeleton of K\. If i>» and v¡ are distinct vertices of

Kq, we may assume that T is fine enough that 17(î>,-, M) and r)(v¡, M)

are disjoint closed sets.

Let 7 be a piecewise linear homeomorphism of K into N, an orien-

table 3-manifold with boundary. Let y(K)—L, and let L\ be the

singular 1-skeleton of L, and L0 the singular 0-skeleton of L\. Let V

be a triangulation of N such that L is contained as a polyhedron in

the 2-skeleton of N, L and L\ are full subpolyhedra of N, and

7_1(j7(L0, L)) is contained in the interior of 17(^0, M).

(O.O.-I)
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We shall now extend 7 to a homeomorphism, <p, from r¡(K, M) into

N.
Step 1. Suppose v is a 0-simplex in K0 and u =y(v) is a 0-simplex in

Lí¡. Let i)(v, M) = C and rj(u, N) = C. In this step we shall describe a

homeomorphism between C and C.

We may consider C (and also C) as a tetrahedron in the following

way. Let Ki-Bd(C) be the vertices of C. This is possible, as exactly

four 1-simplices of Ki intersect in v. As exactly three 2-simplices of

K intersect in each 1-simplex of Ki, Bd(C) -(K — Ki) is the sum of

exactly six open arcs. It follows that K-Bd(C) is homeomorphic to

the l-skeleton of a tetrahedron. If there is a homeomorphism of the

vertices of one tetrahedron onto the vertices of another tetrahedron,

then this homeomorphism may be extended to the l-skeleton, then

to the 2-skeleton and, finally, to the tetrahedra.

Let ei, e2, e3, and e4 be the four 1-simplices of Kx that intersect at v.

Let $(e,-Bd(C)) be defined so that y~x<p(ei-Bd(C)) is contained in

e¡, *=1, 2, 3, 4. This may be done as7-I(r;(Lo, L) is contained on the

interior of n(Kts, M). This defines <£ to take Ki-Bd(C) ontoZi-Bd(C),

that is, the vertices of one tetrahedron onto the vertices of another.

It follows that <p may be extended to take C onto C in such a way

that

ï\r,(KhBd(C)) = r,(Lx,Bd(C'))

and

<t>\r,(K, Bd(C))=v(L, Bd(C')).

We complete Step 1 by defining this homeomorphism on the regular

neighborhood of each vertex in K0. Hence, <p(r](Ko, M)) =r¡(Lo, N).

Step 2. Let F be the closure of a component of r¡(Ki, MA —r¡(K0, M).

As each component of K\ — K0 is an open arc, F is a 3-cell. Further,

F-(r¡(K0, M)) is the sum of two disks Di and D2. As each 1-simplex

of Ki is contained in exactly three 2-simplices of K, K-(Bd(F)

— (Dx-\-D2)) is the sum of three open arcs Ai, A2, and A3. The closure

of each of these open arcs contains a point of Di and a point of D2.

Further, Bd(F)-(YlDj+ J^AA, j = l, 2, t = l, 2, 3, is the sum of
exactly three open disks.

By Step 1 we find that one component of the closure of r¡(Li, N)

—T}(L(„ N) will contain <p(Di-\-D2). Let F' be this component. Let

4>(Dj) =Dj,j=l,2.AsL is homeomorphic to K, L ■ (Bd(F') - J^Dj )
is the sum of three open arcs A{, A{, and A{. As <p is defined on the

endpoints of the AI, <f> may be extended to take A ¿ onto A /. As

Bd(F') — (^D'j + ^A'i ) is the sum of exactly three open disks, <p
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may be extended to take Bd(F) onto Bd(F') in such a way that

4>\ y(K, Bd(F)) =7](L, Bd(P)), and, hence, cj> may be extended to

take F onto F'. We complete Step 2 by defining this homeomorphism

on each component of the closure of r¡(Ki, M)—r¡(Ko, M). Hence,

4>{y){KuM)=7]{LuN)).
Step 3. As all "nonmanifold" points of K are contained in K\, the

closure of K—r¡(Ki, M) is a 2-manifold with boundary. As each com-

ponent of K — Ki is an open disk, the closure of each component of

K—t\(K\, M) is a disk. In the same way the closure of each component

of L—ri(Lu M) is a disk.
Let P be a component of the closure of K —r¡(Ki, M). Let P' be the

component of the closure of L—r¡(Li, N) intersected by y(P). As P

and P' are homeomorphic and <j> is defined to take Bd(P) onto Bd(P'),

(¡> may be extended to take P onto P'. As K and L are full subpoly-

hedra, and as P and P' are disks, the closure of r¡(P, M) —i)(Ki, M)

isa 3-celland, hence, may be expressed as PXI wherePX [ 1/2] =P,

and the closure of r¡(P', N)—i](Li, N) may be expressed as P'XI

where P'x[l/2]=P'. It follows that (PXl)-(v(Kly M)) = Bd(P)
XI. Hence, <KBd(P)XPj is defined and equal to Bd(P')XP It fol-
lows that 0 may be extended to take P XI onto P' X I. In the same

way, <t> may be extended to take r¡(K, M) onto r](L, N).

We complete the proof of this theorem by noting that there is a

homeomorphism h from M onto t]{K, M) keeping K fixed [4], [ó]

and, hence, the composition <j)h is an imbedding of M in N extending

the given imbedding 7 of K in N.

We obtain the following two corollaries from Theorem 1.

Corollary \. If K is a standard spine of a compact 3-manifold with

nonvoid boundary M and K' is a standard spine of a compact 3-mani-

fold with nonvoid boundary M' and K is homeomorphic to K', then M is

homeomorphic to M'.

I wish to thank J. J. Andrews for pointing out the above corollary.

Corollary 2. Suppose M is a contractible compact 3-manifold with

nonvoid boundary and K is a standard spine of M such that K can be

imbedded in E3. Then M can be imbedded in E3 and M is a 3-cell.

III. Bing's house with two rooms. There are many known spines

of a 3-cell. The following example, due to R. H. Bing, has some useful

properties, one of which we will use in proving Theorem 2 in §IV.

The most instructive method of describing this example is to show

a picture of this 2-polyhedron. This we have done in Figure 2. We

see in Figure 2 that T is a square disk with an open circular disk re-
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Figure 2

moved, P is a square disk with two open circular disks removed, B

is a square disk with an open circular disk removed, Fi, Fit F3, and F4

are square disks, Hi and H2 are right circular cylinders, and G\ and

G2 are rectangular disks. Let this polyhedron be called X. This poly-

hedron X is named Bing's house with two rooms.

The property that we will use in §IV is the following. Let C be a

cube. Then there is a collapse of C onto X such that Bd(C) —X is the

sum of two open disks. Let the closure of these disks be called D\ and

D2. As X is a standard 2-polyhedron, X is a standard spine of C. Let

Xi be the singular 1-skeleton of X and X0 the singular 0-skeleton of

Xi. Let/=Bd(C)-Pand^, = Bd(C)-Gi, t = l, 2.
Suppose M is a 3-manifold with nonvoid boundary and F is a tri-

angulation of M. Let K be a spine of M in the triangulation 7\ Let

Q be a 3-cell in M intersecting K such that K ■ Bd(Q) is at most a 1-

dimensional set and that M collapses to Q-\-K. Choose any 2-simplex,

a, in Bd(Q). There is a piecewise linear homeomorphism, y, from C

onto Q such that y{Di-\-Ai-\-Ai + J) is contained in the interior of a.

As K intersects Bd(Q) in at most a 1-dimensional set, K — Int(Q)

does not intersect y(X-¿) +y(Di+D2). As y(Di+D2) does not inter-
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sect K-lnt(Q), K+Q collapses onto (K-lnt(Q))+y(X)=K'. It
follows that K' is a spine of M. Further, as K — Int(<2) does not inter-

sect y{X\), each point of y(X{) is contained in a set open in K' whose

closure is homeomorphic to a standard neighborhood of Type II or

Type III.

IV. The construction of a standard spine. We will now give the

construction of a standard spine in the proof or the next theorem.

Theorem 2. If M is a compact connected 3-manifold with nonvoid

boundary, then M has a standard spine.

Proof. Let K\ i = 0, 1, 2, be the ¿-skeleton of any spine K of M,

contained in Int(M). We note that K{ is the entire ¿-skeleton of K as

distinct from the singular ¿-skeleton, Ki. Let vi, v2, • ■ • , vi7 • ■ • be

the elements of K", ei, e2, ■ ■ ■ , e¡, • • • be the elements of K1. Let

Vi = r}(vj, M) with respect to the second barycentric subdivision of

M, and £,• the closure of t]{eu M) — 23 ^¿ with respect to the third

barycentric subdivision of M.

It is clear that M collapses to K-\- XI ^¿+ 23-Ei- It is also clear

that, for each Vi, there is a homeomorphism of Bing's house with two

rooms into Vi, as described in §111. Let X¡ be the image of Bing's

house with two rooms in Vi. Further, M collapses to K—^T,Vi

+ "%2Xi+ 2-E,-. Further, each £,• is a cell intersecting ^Xf in the

sum of two disks, Dt,i and Dii2.

We may think of D¡,i as a free edge of Ei. Hence M collapses to

X-(E^+E£.0 + E-X'.-+(Bd(Ei)-£l>ili)=L. If one looks at
the local geometry one will see that each point is contained in a stand-

ard neighborhood of Types I, II or III.

Let Li, i = 0, 1, be the singular ¿-skeleton of L. To see that L — L\ is

the union of a finite number of sets, each homeomorphic to an open

disk with a finite number (possibly zero) of closed disks removed, note

the following four items: (i) Bing's house with two rooms with the

singular 1-skeleton removed is the union of three open disks; (ii)

Bd(E,)—Z?,-,i is an open disk; (iii) K — (^F¿+ ^E,) is the union of

open disks; and (iv) L contains a finite number of simplices.

As L — Li is the union of a finite number of open disks with a finite

number of closed disks removed, there is a finite number of arcs

A ,-,¿ = 1,2, • • • , q in L such that each component of L — (Li + 2-^»')

is an open disk.

Further we may choose these arcs in such a way that L0 • "^A < = 0.

It follows that we may take a regular neighborhood Ni about A ¡ for

each i such that Ni-Nj = 0 for i^j and Ni — L is the union of four
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components, the closure of each of which is a cell. As Ni is the regu-

lar neighborhood of an arc, it follows that Ni is a cell. Further,

L — (Li+^Ni) is the union of disjoint open disks. We obtain the

desired spine by collapsing the JV,- from one of the two of L—N.- whose

closure does not contain Int(^4¡).

V. Questions. It would be interesting to know whether a theo-

rem of this general nature would hold for higher-dimensional mani-

folds. One problem would be the identification of the proper standard

neighborhoods. A step in this direction is the observation that the

dual 2-skeleton of a 3-manifold have the proper standard neighbor-

hood.

In another direction it would be of interest to see if there is any

way to associate a unique standard spine with a given manifold.
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