ON TOPOLOGICALLY INDUCED GENERALIZED
PROXIMITY RELATIONS

MICHAEL W. LODATO

1. Introduction. In this paper we examine one of the results in the
theory of the proximity spaces of Efremovic [1]:

A set X with a binary relation “A close to B” (written A 6 B) is a
proximity space if and only if there exists a compact Hausdorff space
Y in which X can be topologically imbedded so that

(1.1) A 8 Bin X if and only if A meets Bin ¥

(4 denotes the closure of the set 4) [2].

This proposition raises the question: Can we characterize the
relations § for which this result holds under weaker conditions on ¥?
In §4 we give an affirmative answer (Theorem 5.3) using rather mild
restrictions on Y and on the imbedding of X in Y. This result is es-
sentially a corollary to a fundamental theorem (Theorem 4.2).

2. Symmetric generalized proximity spaces. As in [3] we define a
symmetric generalized proximity space (or P,-space) to be an abstract
set X with a binary operation “4 § B” (a P,-relation) on its power set
satisfying the following axioms:

(P.1) A4 6 (B\UC) implies that either A 8 Bor 4 8 C.

(P.2) A é B implies that 4 and B are nonvoid.

(P.3) If A meets B then 4 6 B.

(P.4) A6 Band bdC for all bin B impHes that 4 & C.

(P.5) A 6 B implies Bé A4.

We read the symbols “4 & B” as “A is close to B”; and we say that
“A is remote from B” (in symbols, “4 not 8 B”) if 4 is not close to B.

(2.1) The following facts are evident: (1) If 4 6 B, ACC, and
BCD, then C 6 D. (2) Define

At ={xc X:x5 A};

then in a P,-space (4% & (B®) if and only if 4 é§ B.

(2.2) In [3] it is shown that there is a topology induced on every
P,-space (X, 8) by the closure operation 4—A®% Moreover, this
topology is symmetric: x in ¥ implies y in % for all points x, yEX.
Clearly, every T topological space is symmetric.

(2.3) THEOREM. Given any symmetric topological space X define &y
by:
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(2.4) A 8¢ B if and only if A meets B.

Then 8o ts a Ps-relation and is compatible with the given topology:
x 8o B if and only +f xEB.

Proor. We derive axioms (P.1) through (P.5) by use of the Kura-
towski closure axioms [4]. Axioms (P.1), (P.2), (P.3) and (P.5) are
trivial results of the closure axioms and (2.4). For (P.4), note that if
for a point b and a set C we have 5\C# J, then there exists a point
¢ in C such that ¢€5. By symmetry then 8&¢CC. Thus, if ANB#= &
and NC#= J for every b in B then BCC and so ANC#J. It is
now clear, from the above argument, that 8, is compatible with the
given topology.

(2.5) THEOREM. Given a P,-space (X, 8) and 8, defined by (2.4) in
terms of the topology induced by & we have that A 6o B implies that
A 8 B for all subsets A and B of X. Thus b is the smallest P-relation
compatible with the topology in a symmelric topological space.

ProoF. The demonstration follows directly from (2.3), (2.1) and
(P.3).

3. Clusters. A cluster w from a P,-space (X, 8) is a class of subsets
of X satisfying:

(C.1) A é Bforall 4, B&.

(C.2) AUBE&w implies that either A En or BEm.

(C.3) If Bé A for every A in 7, then B&m.

Note that this is the same definition used by Leader [5] in intro-
ducing clusters for Efremovic proximity spaces.

(3.1) THEOREM. For x, a point in a P,-space (X, ), the class w, of
all subsets of X which are close to x is a cluster from X.

ProOOF. We must show that , satisfies (C.1), (C.2) and (C.3). For
(C.1) suppose A, BEm,. Then x § A and x § B so that, by (2.5),
A & B. For (C.2) suppose A\UBEm,. Then x § (A\UB) and, by (P.1),
this means that either x 6 4 or x § B, that is, either A Ex, or BE&T,.
For (C.3) suppose that 4 6 C for every C in m,. Since, by (P.3),
{x} &, we have in particular, that 4 § x or, 4 €.

(3.2) The following facts are easily established. (1) Any cluster 7
from a P,-space (X, 6) is closed under the operation of supersets: if
w is a cluster from X, AE€mw, and 4 CB, then BEw. 2) If A€, a
cluster from X, and a 8 B for every @ in A4, then BEw. (3) If = and
a’ are clusters from X and 7 is a subclass of 7/, then 7=7". (4) If a
point x belongs to a cluster m, then 7 is just the class 7, of all subsets
A of X such that 4 6 x. (5) Given a cluster 7 from a nonvoid P,-space
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(X, 8) and any subset 4 of X, then either ACST or X — A Ex. (6) Let
7 be a cluster from (X, 8). If 4 is a subset of X which meets every
member of 7, then 4 €.

4. Extensions characterized by clusters. We say that a subset X of
a topological space Y is regularly dense in Y if and only if given U
open in Y and p a point in U there exists a subset E of X with
pE EC U, the closure being taken in Y.

(4.1) THEOREM. If X is regularly dense in Y, then X is dense in Y.
If Y is regular and X is dense in Y then X is regularly dense in Y.

ProoF. Y is open in Y, hence for any point p in ¥ there exists a
subset E of X such that pGF CXCY. Since this is true for any p
in ¥, we have YCXCY.

For Y regular, y&Y and U an open set of ¥ containing y we have
the existence of an open set V of ¥ containing y such that VCU.
Now E=VNX is a subset of X and E=CI(VNX)=V CU,* with
the second equality following from the density of X in Y. Thus,
yEECU.

(4.2) THEOREM. Given a set X and some binary relation & on the
power set of X, the following are equivalent:

(I) There exists a Ty topological space Y and a mapping f of X into
Y such that fX is regularly dense in Y and

(4.3) A & B in X if and only if CI(fA) meets CI(fB) in Y.

(I1) 8 is a P,-relation satisfying the additional axiom,
(P.6) Given A & B in X there exists a cluster m to which both A and B
belong.

ProoF. Suppose that (I) holds and define é by (4.3). (P.1), (P.2),
(P.3) and (P.5) are trivial consequences of the properties of closure.
For (P.4) suppose that 4 6 B and b 6§ C for all b in B. Then CI(f4)
NCI(fB)# & and CI(fb)NCI(fC) = & for all b in B, which since ¥V
is Ti, implies that f6&CI(fC) for all b in B. Thus fBCCI(fC) or
CI(fB) CCI(fC) so that CI(fAYNCI(fC)#* & showing that 4 & C.
For (P.6), since CI(fA)YNCI(fB)#= &, let ¢cCl(fA)NCI(fB) and
define m to be the class of all subsets S of X such that ¢&CI(fS).
Clearly A and B are in m and in showing that r is a cluster the
demonstrations of (C.1) and (C.2) are trivial. For (C.3) suppose that
CI(fD)NCI(fC) = & for every C in « but that D &, i.e., cECI(fD).
Thus, c€ Y — CI(fD) and since FX is regularly dense in ¥ there exists
a subset E of X such that ¢€CI(fE) CY—CI(fD). That is, there

1 Where Cl stands for closure.
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exists an E in m such that CI(fD)NCI(fE) = &. This contradicts the
hypothesis of (C.3). Thus (II) is satisfied.

For the converse suppose that (II) holds. Given x in X the class
of all subsets 4 of X such that x § 4 is a cluster from X, by (3.1).
Thus for any subset 4 of X, let @ be the set of all clusters m, deter-
mined by the points a in 4. Let @ be the set of all clusters to which 4
belongs. By (P.3), A&, for each a in 4 and so @ C@. We will de-
note &, the set of all clusters from X, by V.

A subset 4 of X absorbs a subset § of Y if and only if 4 belongs to
every cluster in B, that is, if and only if @ contains 8. For any subset
B of Y we define the closure, cl(8), of 8 by

(4.4) wEcl(B) if and only if every subset E of X which absorbs
Bis in .

We next show that

(4.5) cl(@)=a.

For if #Ecl(@) then since 4 absorbs @, 4 Ew so that tE@. On
the other hand, if €@ then 4 Ex. Now let P be in every 7, in @, i.e.,
P 6 afor every a in A and hence A CP?. Thus, by (3.2), (2), PEw so
that r€cl(@).

We now show that the Kuratowski closure axioms are satisfied by
the closure defined by (4.4).

(K.1) BCcl(B): This is trivial since if E absorbs 8 then E&~ for
every m&f.

(K.2) cl() = : Suppose w&cl(). Since it is vacuously true
that every subset of X absorbs &, we then have that every subset of
X is in 7. In particular, & and X are in 7. Thus, & § X, by (C.1),
contradicting (P.2).

(K.3) cl(cl(B)) Ccl(B): Suppose w&cl(cl(8)) and that E absorbs
B. By (4.4), E absorbing 8 implies that E absorbs cl(8). Hence ECw
showing that m&cl(B).

(K.4) cl(BUB)=cl(B)Ucl(B’): Suppose that w&cl(B\IB) and
that 4 absorbs 8 and 4’ absorbs 8’. Then, by (3.2), (1), A\JUA’ absorbs
B\UB’ so that A\JA'Ex. But, by (C.2), this means that either AEw
or A' &, that is 7€cl(B8) or r&cl(B’). Thus #&cl(B)Ucl(B’) and we
have cl(BUB’) Ccl(B)Ucl(8’). On the other hand, wEcl(B)\Jcl(B)
implies that either 7&cl(8) or 1Ecl(8’). Now if E absorbs f\US’,
then E absorbs B8 and also absorbs §’. Hence, EEn showing that
rEcl(BUB') and (K.4) holds.

To show that the topology is T3, suppose m’ Ecl(w), where = and
@' are clusters from X. This means that every set in 7 is also in ='.
Thus, 7 C7’ and by (3.2), (3), r=7'. Hence, cl(zr) =7 for every point
7 in the space Y.
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Now the correspondence which assigns to each point x in X the
cluster w, determined by it is a well-defined transformation mapping
X into Y which we will denote by f. Note that f4 = @ for every subset
A of X, so in order to show that (4.3) holds we must show that, using
(4.5),

(4.6) A 8 Bin X if and only if @ meets ® in V.

So if A & B there exists, by (P.6), a cluster 7 to which both 4 and
B belong. Thus, by definition of @, we have t€&@N®. On the other
hand, if T€@MN® then 4 and B are in 7 so that, by (C.1), 4 § B.

To show that fX = & is regularly dense in Y suppose that « is an
open subset of ¥ and that r&a. We thus have t€ Y —a=cl(Y —a).
This means, by (4.4), that there exists some subset E of X such that
E is in every cluster of ¥ —a but that E is not in w. Hence, by (C.3),
there is a C in w such that E not & C.

Since @ is the set of all clusters to which C belongs we have rEe.
And since E belongs to every cluster in Y—a and E not § C, then C
cannot belong to any cluster in ¥ —a, by (C.1). Hence @ is contained
in o and we have shown that X is regularly dense in Y.

The proof is now complete.

5. Symmetric P;-spaces. A P,-space (X, 8) in which § satisfies the
additional axiom

(5.1) x 0 y implies x =y for all points x, yEX

is called a symmetric Pr-space (see [3]). The following theorem follows
directly from (C.1) and (5.1).

(5.2) THEOREM. Every cluster = from a symmetric Pi-space (X, 8)
possesses at most one point.

(5.3) THEOREM. Given a set X and some binary relation & on the
power set of X, the following are equivalent:

(I") There exists a T, topological space Y in which X can be topo-
logically imbedded as a regularly dense subset so that (1.1) holds.

(I1) 6 is a symmetric Pi-relation satisfying (P.6).

ProoF. The demonstration is similar to that of Theorem (4.2). To
see that (5.1) holds, note that #N\j & implies that x Ny &, or
x=7.

To show that our imbedding is topological we note first that, be-
cause of (5.2) the correspondence between X and & induced by the
identification of ¥ with the cluster 7, determined by it is one-to-one.
To see that the mapping is bicontinuous we must show that if 4 is a
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subset of X, x & A% if and only if m,€kl(@), where kl(@®) is the closure
of @ in X relative to the space Y.

So suppose x& A% and that P absorbs @. Then P is a member of
every m, in @ and it follows that a & P for every a in A. Thus, A CP?
and since 4 €7, we have, from (3.2), (2), that PEw,. Thus, m.€kl(Q).

On the other hand, suppose m.Ekl(®@). Then since 4 absorbs @ we
have A Em,, i.e., 4 § x and hence xE 4% This completes the proof.

REFERENCES

1. V. A. Efremovic, The geometry of proximity, Mat. Sb. (N.S.) 31 (73) (1952),
189_2-?0&1. M. Smirnov, On proximity spaces, Mat. Sb. (N.S.) 31 (73) (1952), 543-574.

3. M. W. Lodato, Generalized proximity spaces: A generalization of topology, (to
aPP:f“’}){-. Kuratowski, Sur l'opération A de I’ Analysis Situs, Fund. Math. 3 (1922),
182-5_.1 959.. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213.

LABORATORY FOR ELECTRONICS, INC.,, MONTEREY, CALIFORNIA



