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1. Introduction. In this paper we examine one of the results in the

theory of the proximity spaces of Efremovic [l]:

A set X with a binary relation "A close to B" (written A 8 B) is a

proximity space if and only if there exists a compact Hausdorff space

Y in which X can be topologically imbedded so that

(1.1) A 8 B in X if and only if A meets B in Y

(A denotes the closure of the set A) [2].

This proposition raises the question: Can we characterize the

relations ô for which this result holds under weaker conditions on F?

In §4 we give an affirmative answer (Theorem 5.3) using rather mild

restrictions on F and on the imbedding of X in F. This result is es-

sentially a corollary to a fundamental theorem (Theorem 4.2).

2. Symmetric generalized proximity spaces. As in [3] we define a

symmetric generalized proximity space (or Ps-space) to be an abstract

set X with a binary operation "A ô B" (a P¡-relation) on its power set

satisfying the following axioms:

(P.l) A 8 (BKJC) implies that either A 8 B or A 8 C.
(P.2) A 8 B implies that A and B are nonvoid.

(P.3)  If A meets B then A 8 B.

(P.4) A 8 B and b 8 C for all b in B implies that A 8 C.
(P.5) A 8B implies B 8 A.
We read the symbols "A 8 B" as "A is close to B" ; and we say that

"A is remote from B" (in symbols, "A not 5 23") if A is not close to B.

(2.1) The following facts are evident: (1) If A 8B,AEC, and

BED, then C 8 D. (2) Define

A" = {xE X:xô A};

then in a P,-space (A6) 8 (Bs) if and only if A 8 B.

(2.2) In [3] it is shown that there is a topology induced on every

P„-space (X, 8) by the closure operation A—>AS. Moreover, this

topology is symmetric: x in y implies y in x for all points x, yEX.

Clearly, every Ti topological space is symmetric.

(2.3) Theorem. Given any symmetric topological space X define 80

by:
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(2.4) A 80 B if and only if A meets B.

Then 5o is a P ¡-relation and is compatible with the given topology:

x 80 B if and only if xEB.

Proof. We derive axioms (P.l) through (P.5) by use of the Kura-

towski closure axioms [4]. Axioms (P.l), (P.2), (P.3) and (P.5) are

trivial results of the closure axioms and (2.4). For (P.4), note that if

for a point b and a set C we have b(~\C7¿0, then there exists a point

ein Csuch that cEb- By symmetry then bEcEC. Thus, if AC\Btí0

and bC\C^0 for every b in B then BQC and so Ai\C^0. It is

now clear, from the above argument, that So is compatible with the

given topology.

(2.5) Theorem. Given a P¡-space (X, 8) and 50 defined by (2.4) in

terms of the topology induced by 8 we have that A 80 B implies that

A 8 B for all subsets A and B of X. Thus S0 is the smallest P-relation

compatible with the topology in a symmetric topological space.

Proof. The demonstration follows directly from (2.3), (2.1) and

(P.3).

3. Clusters. A cluster ir from a P,-space (X, 8) is a class of subsets

of X satisfying:

(Cl) A 5 23 for all .4, BEir.
(C.2) AKJBEtt implies that either AEir or BE*.

(C.3)  If B 8 A for every A in ir, then BEir.

Note that this is the same definition used by Leader [5] in intro-

ducing clusters for Efremovic proximity spaces.

(3.1) Theorem. For x, a point in a P¡-space (X, 8), the class irx of

all subsets of X which are close to x is a cluster from X.

Proof. We must show that xx satisfies (C.l), (C.2) and (C.3). For

(C.l) suppose A, BEtTz- Then x 8 A and x 8 B so that, by (2.5),

A8B. For (C.2) suppose A\JBEirx. Then x 5 (A\JB) and, by (P.l),
this means that either x 8 A or x 8 B, that is, either A Etz or BEifx.

For (C.3) suppose that A 8 C for every C in irx. Since, by (P.3),

{x} Etx, we have in particular, that A 8 x or, A EiTx-

(3.2) The following facts are easily established. (1) Any cluster x

from a P,-space (X, 8) is closed under the operation of supersets: if

x is a cluster from X, A Et, and A EB, then BEir- (2) If A En, a

cluster from X, and a 8 B for every a in A, then BEir. (3) If w and

ir' are clusters from X and ir is a subclass of ir', then w = ir'. (4) If a

point x belongs to a cluster ir, then ir is just the class irx of all subsets

A of X such that A 8 x. (5) Given a cluster ir from a nonvoid P,-space
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(X, 5) and any subset A of X, then either A Gir or X — A En- (6) Let

7T be a cluster from (X, 6). If A is a subset of X which meets every

member of tt, then A Gir.

4. Extensions characterized by clusters. We say that a subset X of

a topological space Y is regularly dense in F if and only if given U

open in Y and £ a point in Z7 there exists a subset £ of X with

pEEEU, the closure being taken in F.

(4.1) Theorem. If X is regularly dense in Y, then X is dense in Y.

If Y is regular and X is dense in Y then X is regularly dense in Y.

Proof. Y is open in F, hence for any point p in Y there exists a

subset E of X such that pEEEXE Y. Since this is true for any p

in F, we have FC^CF.
For F regular, yEY and U an open set of F containing y we have

the existence of an open set F of F containing y such that VEU.

Now E= VC\X is a subset of X and E = C\(VC\X) = VE U,1 with
the second equality following from the density of X in  F. Thus,

yGEcrj.

(4.2) Theorem. Given a set X and some binary relation 8 on the

power set of X, the following are equivalent:

(I) There exists a 7\ topological space Y and a mapping f of X into

Y such that fX is regularly dense in Y and

(4.3) AhBinXif and only if C\(fA) meets Cl(fB) in Y.

(II) 8 is a P,-relation satisfying the additional axiom,

(P. 6) Given A ô B in X there exists a cluster ir to which both A and B

belong.

Proof. Suppose that (I) holds and define 5 by (4.3). (P.l), (P.2),

(P.3) and (P.5) are trivial consequences of the properties of closure.

For (P.4) suppose that A ô B and b 5 C for all b in B. Then Cl(/^)

C\C\(fB)^0 and C\(fb)r\C\(fC)^0 for all b in B, which since F
is 7i, implies that fiECl(fC) for all b in B. Thus fBCCI(fC) or
C\(fB)EC\(fC) so that C\(fA)r\Cl(fC)^0 showing that ABC.
For (P.6), since Cl(fA)r\Cl(fB)^0, let cEC\(fA)nC\(fB) and
define ir to be the class of all subsets 5 of X such that cEC\(fS).

Clearly A and B are in ir and in showing that it is a cluster the

demonstrations of (C.l) and (C.2) are trivial. For (C.3) suppose that

C\(fD)f\C\(fC)^0 for every C in it but that D G*", i.e., c$C\(JD).
Thus, cE Y— Cl(fD) and since FX is regularly dense in F there exists

a subset E of X such that cGCl(/£)CF-Cl(/D). That is, there

Where Cl stands for closure.
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exists an E in ir such that C\(fD)C\C\(fE) = 0. This contradicts the

hypothesis of (C.3). Thus (II) is satisfied.

For the converse suppose that (II) holds. Given x in X the class irx

of all subsets A of X such that x 8 A is a cluster from X, by (3.1).

Thus for any subset A of X, let Ct be the set of all clusters ira deter-

mined by the points a in A. Let Ct be the set of all clusters to which A

belongs. By (P.3), AEira for each a in A and so etCft- We will de-

note 9C, the set of all clusters from X, by F.

A subset A of X absorbs a subset ß of F if and only if A belongs to

every cluster in ß, that is, if and only if a contains ß. For any subset

ß of F we define the closure, cl(|3), of ß by

(4.4) 7tGc1((3) if and only if every subset £ of A which absorbs

ß is in ir.

We next show that

(4.5) cl(a)=ä.
For if irGcl(a) then since A absorbs &, AEir so that 7rGû. On

the other hand, ii irEO, then A Eir. Now let P be in every ira in Ct, i.e.,

P 8 a for every a in A and hence A EPS- Thus, by (3.2), (2), PEir so

that 7tGcl(a).
We now show that the Kuratowski closure axioms are satisfied by

the closure defined by (4.4).

(K.l) ßEc\(ß): This is trivial since if E absorbs ß then EEir for

every 7rGj3.

(K.2) c\(0) = 0: Suppose 7rGcl(,0). Since it is vacuously true

that every subset of X absorbs 0, we then have that every subset of

X is in ir. In particular, 0 and X are in ir. Thus, 0 ô A, by (C.l),

contradicting (P.2).

(K.3) cl(cl(j3)) Ccl(/3): Suppose irEc\(c\(ß)) and that £ absorbs

ß. By (4.4), E absorbing ß implies that E absorbs cl(|3). Hence EEir

showing that irEc\(ß).

(KA) cl(j8Wj8')=cl(|8)Wcl(|8'): Suppose that irEc\(ßVß') and

that A absorbs ß and A' absorbs ß'. Then, by (3.2), (1), A ̂ JA' absorbs

jSWjS' so that AKJA'Eir. But, by (C.2), this means that either AEir

or A'Eir, that is irGcl(|8) or irEc\(ß'). Thus 7rGcl(/3)VJcl(j3') and we

have cl(0Uj3') Ccl(/3)VJcl(|8'). On the other hand, 7rGcl(j3)Wcl(/3')
implies that either irEc\(ß) or 7rGcl(|8'). Now if E absorbs ßVJß',

then E absorbs ß and also absorbs ß'. Hence, EEir showing that

irEc\(ß\Jß') and (K.4) holds.

To show that the topology is T\, suppose 7r'Gcl(7r), where ir and

ir' are clusters from X. This means that every set in ir is also in ir'.

Thus, irEir' and by (3.2), (3), 7r = ir'. Hence, cl(7r)=7r for every point

ir in the space Y.
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Now the correspondence which assigns to each point x in X the

cluster tx determined by it is a well-defined transformation mapping

X into F which we will denote by/. Note that/^4 = Q. for every subset

A of X, so in order to show that (4.3) holds we must show that, using

(4.5),

(4.6) A 8 B in X if and only if Q. meets (B in F.

So if A SB there exists, by (P.6), a cluster ir to which both A and

B belong. Thus, by definition of ct, we have irGft^CB. On the other

hand, if irEdi^S, then A and B are in 7r so that, by (Cl), A 8 B.

To show that fX = 9C is regularly dense in F suppose that a is an

open subset of F and that 7rG«. We thus have 7rG Y—a = c\(Y—a).

This means, by (4.4), that there exists some subset E of X such that

E is in every cluster of Y—a but that E is not in tt. Hence, by (C.3),

there is a C in 7r such that £ not ô C.

Since C is the set of all clusters to which C belongs we have tEQ-

And since E belongs to every cluster in Y—a and E not S C, then C

cannot belong to any cluster in Y—a, by (C.l). Hence C is contained

in a and we have shown that 9C is regularly dense in F.

The proof is now complete.

5. Symmetric Pi-spaces. A P„-space (X, 8) in which 5 satisfies the

additional axiom

(5.1) x 8 y implies x = y for all points x, y EX

is called a symmetric P\-space (see [3]). The following theorem follows

directly from (C.l) and (5.1).

(5.2) Theorem. Every cluster ir from a symmetric Pi-space (X, 8)

possesses at most one point.

(5.3) Theorem. Given a set X and some binary relation ô on the

power set of X, the following are equivalent :

(V)  There exists a T\ topological space Y in which X can be topo-

logically imbedded as a regularly dense subset so that (1.1) holds.

(IV) 8 is a symmetric Pi-relation satisfying (P.6).

Proof. The demonstration is similar to that of Theorem (4.2). To

see that (5.1) holds, note that xC\y?i0 implies that xf^y9£0, or

x = y.

To show that our imbedding is topological we note first that, be-

cause of (5.2) the correspondence between X and 9C induced by the

identification of x with the cluster ivx determined by it is one-to-one.

To see that the mapping is bicontinuous we must show that if A is a
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subset of X, xG^48 if and only if Tr^GkKtt), where kl(Ct) is the closure

of Ct in 9C relative to the space F.

So suppose xG^45 and that P absorbs Ct. Then P is a member of

every ira in Ct and it follows that a 8 P for every a in A. Thus, AEPS

and since A Eirx we have, from (3.2), (2), that PEifx- Thus, irxGkl(a).

On the other hand, suppose irxE^(Q-)- Then since A absorbs ft we

have AEiTx, i.e., A 8 x and hence xG-<45. This completes the proof.
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