THE RADIUS OF UNIVALENCE OF CERTAIN
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1. Introduction. Suppose that f(z) =z+4a2*+ - -+ is analytlc for
Izl <ti. If Re{ (z)/z}>0 for | |<1 then f(2) is umvalent in |z|
<4/2—1 [5, Theorem 3;7]. The function f(z) = (z+2%)/(1 —3) satis-
fies the hypotheses but is univalent in no circle lzl <rforr>+/2-1
since its derivative vanishes at z=+/2—1.

In this paper we generalize the above theorem for functions whose
power series begins f(2) =z+4a,4.12"t'+ - - - . The estimate used to
obtain this result is further used to find the radius of convexity for
functions f(2) =z4a,412"t'+ - - - which are analytic and satisfy
Re f'(3) >0 for |z| <1. For n=1 this theorem is not new [5, Theorem
2; 10, p. 284]. The condition Re f'(z) >0 is known to be sufficient for
the univalency of f(2) in |2| <1 [1, p. 18].

We consider the problem of finding the radius of univalence for
functions f(z) = 2z + @2 + : - -+ which are analytic and satisfy
Re{f(z)/g(z)} >0for lzl <1,where g(z) =2+bs22+ - - -isanalyticand
univalent for Izl <1. In the case that g(z) is either starlike or convex
this problem is solved. We take particular advantage of the condi-
tion Re{zf'(2)/f(z)} >0 for | 2| <7, which is necessary and sufficient
for f(2) to be univalent and starlike in | | <r [8, p. 105, problem 109].
For arbitrary univalent functions g(z) we only obtain an estimate for
the radius of univalence for f(z).

2. LEMMA 1. Suppose that h(z)=14c,2"+ - - - is analytic and
satisfies Re h(z) >0 for |z| <1. Then
.h’(z) 2| z|»1
@~ 1 — | z|2"
Proor. Let k(z)=(1—1(2))/(1+k(2)) =d.z*+ - - - . Then k(2) is

analytic for |z| <1 and |k(z)| <1. Thus, k(z)—z”¢(z) where ¢(2) is
analytic for ] ‘ <1 and |¢(z)| <1. For such functions we have

1- | 6@
1) 1¢'@)| = ﬁ

[2, p. 18].
Expressing k(z) and k’(2) in terms of ¢(2) gives
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¥ () L w(3) + no(2)
=t T

h(z) 1 — 22¢%(3)
¥ (2) §2|z|”—1 |z| I(_l,’(z)lh‘l' nld’EZ)l )
1(z) 1— | z]] ¢(3) |

Using (1) we obtain
‘h'(z) C2lsl (2= 4@ () + 00— 29| 0@ |
h(z) | = 1— | 3] 1— | z]*| 6(2) |2

To prove the lemma it is sufficient to show that for |z| =7,
0<r<1,

(1= 9@ ) +n1 -] @] _n(1—r)
1— 12| ¢(2) |2 T -

Letting x= [¢(z)| this is equivalent to (1—x)F,(x) =0 for 0<x <1,
where

Fo(#) =a—0bx, a=n(1—173) —r(1 —1) > (1 —r)(n—nr) >0,
b=r(1—1r") —urn(1 — )
=r(L =)L+ r24+rt4 - oo 422 — yy2n-1)
=1 — ,2){(1 —rl) o (r2 — 2l L (p2m2 — ,2n—1)}
> 0.
Since F,(x)Z F,(1) we can prove F,(x)20 by showing that
F.1n(1) 2 F,.(1) and Fi(1) =0.
Fnii(1) — Fa(1)
= (1 — #2)(1 — 7201 — p2nH1l L o042 _ yp2n | yp2nt2)
=1 -1 - ,){1 Frd 24 oo ot — gl e m.zn+1}
> 0.
This inequality follows since the negative terms in the brackets can

be expressed as 2n+1 terms each of which is numerically less than a
corresponding positive term.

Finally, Fi(1)=(14r)(1—7)3>0.
One can show that the equality holds in the lemma only for the

functions h(z) = (1 —ez")/(1+€z") where |e| =1 and for appropriate
values of z.

THEOREM 1. Suppose that f(2) =2+an12"*'+ - - - is analytic and

! I would like to thank the referee of this paper for simplifying my argument for
the remaining part of the proof.
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satisfies Re{f(z) /2} >0 for |zl <1. Then f(2) is univalent and starlike
in |z <((@241)12—n)tn,

Proor. Since Re { f(2) /z} >0 we can infer that f(z) cannot vanish
in | 2| <1 except for a simple zero at z=0. Let

f(2
h(z) =—— =1+ aupz"+ ---,Reh(s) >0 for |3| <1.

z
From Lemma 1 we have
zh (2)
h(z)

< 2n] z|»

11— Izlﬁ"'

Also

zf'(2) 2k (2)
=1 )
@ e

Therefore, f(z) will be univalent and starlike if Izh’ (2)/h(2)| <1.
From the above estimate this is satisfied if (2n|z I”) /(11— ] z|“"‘) <1,
i.e., for |z| <((n24-1)1z—p)tin,

The function f(z) = (z+2"t1)/(1 —2") =242zt 4 - . . satisfies

Re{]:(;z)-} >0 for 2] <1

but is not univalent in |z| <r for r>r,=((n2+1)/2—n)!/» since
f (raeixm) =0.

THEOREM 2. Suppose that f(2) =z+a,412"t 4 - - - is analytic and
satisfies Re f'(2) >0 for |z| <1. Then f(2) is convex in | 2| <((n2+41)1/2
—n)tin,

Proor. We can apply Lemma 1 to f'(2)=14+(#+1)a,qz"+ - - -
since Re f’(z)>0. This gives &f"(z) /f'(2)| £2n|2|"1/1—|z| . The
condition Re{ (zf"(2)/f'(2))+1} >0 for |z <r is necessary and suffi-
cient for f(z) to map |z| <r onto a convex domain [8, problem 108,
p. 105]. This condition is satisfied if l 2f" (2) /1 (2) I <1. From the above
estimate we can deduce that f(2) is convex if (2n| zl »/(1— | zl ) L1,
This inequality is equivalent to |zl <((n24-1)12—p)1in,

The function

()"f‘1+md it
f() = 1 c=3 +1z

— " n

is an extremal function for Theorem 2.
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3. THEOREM 3. Suppose that f(z)=z-+a2?+ - - - and g(z)=z
+by224 - - - are analytic for |z[ <1 and g(2) is univalent and starlike
for ]zl <1. If Re {f(z)/g(z)} >0 for |z| <1 then f(2) is univalent and
starlike in | 2| <2—~/3.

Proor. The hypotheses imply that f(z) and g(z) do not vanish in
|| <1 except for the simple zero at z=0. Let

1(2)
h(z) =—=14cz+ ---,Rekh(z) >0 forlzl <1
g(2)
Applying Lemma 1 to h(z) for n =1 gives |zh'(2)/h(3)]|
<2|2|/(1—|2|?. Since g(3) is starlike Re{zg'(2)/2(2)} >0 for |2] <1.
Thus Re{zg'(2)/g(2) } = (1—|2|)/(1+]2]) [8, problem 287, p. 140].

of'(2)  2g(2) + 2k’ (2)
f(® g(2) k(z)
! / ’
Re{Zf <z>} . Re{zg (z)} REL)
f(2 g(2) h(z)
- afs] 4+ s
- 1- | z|?
Thus, Re{zf’(z)/f(z)} >0if 1—4|z| +|z] >0. The last inequality is
satisfied for |z| <2—+/3. Therefore f(2) is univalent in |3| <2—+/3
and maps that circle onto a starlike domain.

The function f(z) = (z+2?) /(1 — 2)3 satisfies the hypotheses of Theo-
rem 3 where g(z) =2/(1—2)* and k(z) = (1 +2)/(1—2). The derivative
of this function vanishes at z= v/3—2. Thus, it is univalent in no
circle |z| < r with r>2—+/3.

For a part of the next theorem we need a sharpening of Lemma 1
for m=1. This result is known but we give a short proof of it here.

LemMA 2. Suppose that h(z) =1-4ciz+ - - - is analytic and satisfies
Re h(2) >0 for |z| <1. Then |h'(2)| <2 Re h(z)/(1—|3|?).

PRrOOF.? Let ¢(2) = (1 —k(2))/(1+k(2)), | ¢(2)| <1 for | 2| <1. Using

1— | ¢
1— |32

1=z 2|z
> -
T4 s 1=z

(1) 1¢'(2)| <

gives

? The author thanks the referee for indicating that the proof of this lemma can be
obtained so readily from the estimate (1).
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I1+hE@ [P = [1-k@)[*

4 =
O =0T
The lemma follows by noting that | 14+4(2) |'~’— | 1—1(2) |2=4 Re k(z2).
THEOREM 4. Suppose that f(z) = 2 + a2 + - - - and g(z) = 2
+b22+ - - - are analytic for [z| <1 and g(2) is univalent and convex

for Izl <1. If Re{f(z)/g(z)}>0 for Izl <1 then Re{f’(z)/g’(z)}>0
for | 2| <%. Also, f(z) is univalent and starlike for |z| <3%.

Proor. The hypotheses imply that f(z), g(z) and g’(z) do not vanish
in |z| <1 except for the simple zeros of f(z) and g(z) at 2=0. Let
h(z)=f(2)/g(z)=1+cz+ - - -, Re h(z) >0 for |z| <1.

Applying Lemma 2 to h(z) gives |k'(z)| <2 Re h(z)/(1— | z|2).
Since g(z) is univalent and convex for |z| <1 we have Re{zg'(z)/g(2) }
>3 for |z[ <1 and consequently Re{zg’(z)/g(z)} g(l-l—[:zl)"1 [6;9].
This implies |g(2)/g'(2)| <|2| (1+]2]).

1) g(2)
=} —=

g ©+ g(2) ®

f’(z) g(Z) ’
Re{g) = Rk - |25 v
2 Re k(z)
= Rek(z) — | 2| 1 + |Z|)1_—|z|2
1—3]|3|

= —I—:I_;r Re i(z).

Thus, for Iz] <% Re {f’(z)/g'(z) } >0. This shows that f(z) is univalent
and close-to-convex for |z| <% [4].
Let us show that f(z) maps [z| <% onto a starlike domain.

f6) _ w6  H)

f@ g k)
7' (2) 2g'(2) zh'(2)
Ve vy iy

1 2| 3| 1—3]|z

2 — = .

T4 s t—|z]r 11— ]z)?
For |z| <} Re{zf'(2)/f(z) } >0. Thus, f(2) is starlike in | 2| <3.

Theorem 4 gives the radius of univalence for the class of functions
considered. In order to show this let f(2)=(z+22)/(1—2)2, g(2)
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=z/(1—2). Then, g(2) is univalent and convex for |z| <1. Here,
h(z)=(1+2)/(1—2) and therefore Re k(z) >0. This function f(2) is
univalent in no circle |z| <r with »>4 since f'(—3%)=0.

THEOREM 5. Suppose that f(2) = 2z + a2 + - - - and g(2) = 2
+bya?+ - - - are analytic for |z| <1 and g(2) is univalent in | 2| <1.
If Re{f(2)/g(2) } >0 for | 2| <1 then f(2) is univalent in | 2| <1/5.

Proor. Let k(z) =f(2)/g(z)=1+cz+ - - -, Re h(z) >0 for |z] <1.

To show that f(2) is univalent in |z| =<r it suffices to show that f(2)
isunivalent on ]zl =r. Let 2172, |21| = |22| =r. Then, f(z1) =f(z2) can
be written

1 g(a) —gla) 1 hz) — h(z)
g(z1) 22 — %1 h(22) 22 — %1

Thus, if
h(z2) — h(z1)
h(z2) (22 — 21)

l g(z2) — g(z1)
£(21) (22 — 21)

then f(2) is univalent in |z| <.

Let k(z)=(1—=h(2))/(1 +h(z)), ] k(z)| <1 for | z] <1 and k(0) =0.
Therefore | k'(z)| 1 for | 2| £+/2—1 [2, p. 19]. From the representa-
tion k(z) —k(z1) = [2k'(3)dz where the path of integration is the line
segment from z;to 2, theestimate on &’ (z) gives | (k(zz) — k(21))/ (2:—21) |
<1 for r<+/2—1. Expressing k() in terms of k(z) yields

k(22) — h(z1) — k(22) — k(z1) 1
h(2:) (22 — 21) g — 2 (1 + E(z0) (1 — k(z2)
h(z2) — h(z1) 2
ha)(z—2) |~ (1 — | k@) )1 — | k() |)
2 2

A= [z = |z2]) d-nt

Here we have used Schwarz's lemma Ik(z)[ = |z| .
Since g(z) =2+byz?+ - - - is analytic and univalent for |z| <1

g(z2) — g(z1)
29 — 21

1 — 72

> | g(z)g(zo) | ;
r

[3]. Using this estimate and the distortion theorem |g(s)]
glz[/(1+|z|)2weobtain



520 T. H. MacGREGOR

g(z2) — g(z1) l—r
g)(zz—2) | r(1+7)

Therefore, f(z) is univalent in |z| <7 if » £ +v2—1 and
(1—=r)/(r(147))>2/(1—r)% The last inequality is equivalent to
1—3574r2—73>0.Since the equation 1 — 57 4-72—r3=0 has one positive
root 7y, where 0.20 <r,<0.21, we can infer that f(2) is univalent in
|z| <ro. In particular, f(2) is univalent in ]zl <1/5.

The circle | z| <7, is not the circle of univalence for the functions
f(2) which satisfy the hypotheses of Theorem 5. If it were then we
must have Ig(z)[ =|z|/(1+|z|)2 for some z. This estimate holds
only for the functions g(z) =2z/(1+4e€2)? where [el =1. Since these
functions are starlike for |z| <1 Theorem 3 implies that f(z) would
be univalent |z| <2—+/3. However, 2—4/3=0.267 - - - >r.

>
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