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1. Introduction. Our main result is the solution of the decision

problem for algebraic fields of finite degree over the rationals. We will

give a definition of the natural numbers within the arithmetic of any

such field, thereby showing that the field is undecidable.

By the arithmetic of a field F, we mean the mathematical theory

whose statements are constructed from the logical symbols A (and),

V (or), ~~| (not), —> (if • • • then ■••),<-> (if and only if), A (for

every), V (there exists), and = (equals); the mathematical symbols

+ and •; and variables whose range is F. Similarly, the arithmetic

of a ring R or of the natural numbers N is defined by restricting the

variables either to R or to N.

An arithmetical definition of an re-ary relation p within a particular

mathematical theory is an equivalence with p(wi, • • • , un) on the

left and with an expression of the theory, having U\, ■ ■ ■ , un as its

only free variables, on the right.

We say a mathematical theory is decidable if there is an effective

method of determining the validity of each statement of the theory.

If there is no such method, the theory is undecidable. It is clear that if

there is a mechanical way of transforming each statement of an un-

decidable theory into an equivalent statement of another theory, the

second theory is also undecidable. This principle, together with the

fact that the arithmetic of natural numbers is undecidable, enables

us to solve the decision problem for fields of finite degree over the ra-

tionals.1

The relation nEN can be defined arithmetically in the ring / of

rational integers as follows:

n E N <->     V     n = x2 + y2 + z2 + w2.
x,y,z,w

Hence it is possible to transform routinely any statement of the

arithmetic of N into an equivalent statement of the arithmetic of I.

Presented to the Society, January 22, 1959; received by the editors January 29,

1959.
1 For a complete account of much more powerful arguments to deduce the un-

decidability of one theory from that of another, see Tarski, Mostowski, and Robinson

[9]. This monograph also contains a proof of the fundamental theorem that the

arithmetic of the natural numbers is undecidable. This was first proved by Rosser

extending the work of Church and Godel.
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Applying the principle stated above, we see that the ring of rational

integers is undecidable. In §2, we give a definition of the natural num-

bers within the arithmetic of the ring R of the algebraic integers of

a field of finite degree over the rationals. As before, it follows that R

is undecidable.2

Let R be any integral domain and F its quotient field. Every state-

ment of the arithmetic of F can be transformed into an equivalent

statement of the arithmetic of R by replacing each variable whose

range is F by the ratio of two variables with range R and adjoining

the condition that the denominator is not 0, then clearing the result-

ing equations of fractions. The undecidability of F thus implies the

undecidability of R. It is not known whether the converse always

holds. If R can be defined arithmetically in F, we can transform me-

chanically any sentence of the arithmetic of R into an equivalent

sentence of the arithmetic of F. Hence in this case the converse

holds.

The first field shown to be undecidable was the rational field [6].

This was done by using the theory of ternary quadratic forms to

define the ring of integers arithmetically in the rational field, and

thus reducing the decision problem for the rational field to that of the

ring of integers, which was known to be undecidable. In §3, we apply

a similar method to fields of finite degree over the rationals. We no

longer obtain an arithmetical definition of the rational integers but

instead an arithmetical definition of the algebraic integers of the field.

Combining the results of §§2 and 3, we see that the natural numbers

can be defined arithmetically in any field of finite degree over the ra-

tionals, and therefore such a field is undecidable.

2. The definability of the natural numbers in R. In this section,

we will define arithmetically the relation nEN, i.e. re is a natural

number, in the ring R of the algebraic integers of a field of finite

degree over the rationals.

Lemma 1. There are only finitely many numbers a of R such that

a+ 11/A - • Aa+l\f

where I is the degree of R and f is any number of R different from 0.

Proof. For any a in R, put Pa(x) = (x+aw) • ■ • (x+a<-l)) where

fl(1), • • ■ , a(" are the / conjugates of a. If k is a rational integer, the

2 I first proved the undecidability of R by an entirely different method. The

definition of the natural numbers given here was discovered jointly with R. M. Robin-

son. He had shown earlier that the ring of the algebraic integers of a field of finite de-

gree ever the rationals which has at most one fundamental unit is undecidable [7],



952 JULIA ROBINSON [December

norm Nia+k) is given by P„(/%). Since A/*(/) is not 0, it has only a

finite number of rational integer divisors. If a satisfies the conditions

of the lemma, Nia + k) divides Nif) for k = l, • • • , I. Only a finite

number of values can be assumed by N(a+k) =Pa(k) for those a's

which satisfy the lemma. Since Pa is of degree / and has leading coeffi-

cient 1, it is determined uniquely by P0(l), • • • , Pa(l). There can

be only a finite number of such polynomials and, since Pa( — a) =0,

only a finite number of a's satisfying the conditions of the lemma.

Theorem. Let R be the ring of the algebraic integers of a field of degree

I over the rationals. The set N of natural numbers is arithmetically de-

finable in R, and hence R is undecidable. In fact, if we let

r(a, f,g,h)^f9*0Aa+l\fA---Aa + l\fAl + ag\h,

then

»G1Vh

V   {r(0,/, g, h) A A [riaj, g, h) -* a = n V r(a + 1,/, g, A)]} .
/■B.A    \ a J

Proof. Suppose/, g, and h satisfy the right side of the equivalence

for some re. By Lemma 1, there are only finitely many numbers a

in R such that r(a, /, g, h). The inductive form of the definition in-

sures that t(0, /, g, h), t(1, /, g, h), ■ ■ ■ , terminating only for a = n.

Therefore, re must be a natural number.

Conversely, suppose that re is a natural number. We must show

that/, g, and h exist which satisfy the condition on the right side of

the definition. It will be sufficient to find/, g, and h so that

T(a) /, J, 4) <-> « = 0 V 8 = 1 V • ■ ' V « = »•

First put / = (re + I)! and define the set S by

aE S^a+ 1 |/A • • • A« + /|/.

By Lemma 1, S is finite. Now choose g a positive integer such that

a E S A b E SAa 9*b-+a-b\g

and

aES Aa9*0-+l + ag\l.

Clearly, we can choose g satisfying both conditions since the first

condition holds if g is a multiple of all the rational integers Nia — b)

with a and b in S and a9*b, and the second condition holds if g is so

large a natural number that all the conjugates of 1+ag lie outside
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the unit circle. (Since | N(l+ag) | >1, then 1+ag is not a unit.)

For this particular choice of/and g, the numbers 1+ag and 1+bg

ior a and b in S and a^b are relatively prime. Suppose this were not

the case. If a prime ideal p divided both 1+ag and 1+bg, p would

divide the difference (a — b)g and would also divide g. But p cannot

divide both g and 1 +ag.

Finally, put A = (l+g)(l+2g) • • • (1+reg). By our choice of/, g,

and h, the relation r(a, f, g, h) is satisfied for a = 0, • • • , re. If a is in

Sand not equal to 0, 1, • • • , re, then 1+ag is not a unit and is prime

to A. Therefore, l+ag\h and r(a,f, g, h) does not hold.

3. The arithmetical definability of R in F. In this section, we give

a definition of the ring R within the arithmetic of F. Here, as before,

R is the ring of the algebraic integers of a given field F of finite degree

over the rationals.

Let p be a valuation of Fand F9 be the completion of F with respect

to p. Since non-Archimedean valuations of F are p-adic valuations

with respect to some prime ideal p of F, we will use the same letter

p for both the valuation and the prime ideal.

Two nonzero numbers a and b oi F are said to be in the same

p-adic class if a/b is the square of a number in FP. There are only a

finite number of p-adic classes for any valuation p. For an Archi-

medean valuation p, Ff is either the field of complex numbers, which

consists of just one p-adic class, or the field of real numbers, which

consists of two p-adic classes. Corresponding to a prime ideal p which

does not divide 2, there are four p-adic classes. In the case of a prime

ideal p which divides 2, the number of classes is even—the exact num-

ber depending on the power to which p divides 2.

We will use the Hilbert symbol (a, b)v, which is defined for all non-

zero numbers a and b in F and any valuation p as follows:

|+1    if ax2 + by2 = 1 is solvable in Fp,

I — 1    otherwise.

Lemma 2. Let a and b belong to R,pbea prime ideal, and mbea posi-

tive integer such that pm|2. If a^O (mod p2) and a=b (mod p2m), then

a and b are in the same p-adic class.

This lemma follows easily from Hensel's lemma as given by Artin

[1, pp. 44-51].
It is clear that (a, b)v depends only on the p-adic classes to which

a and b belong. Hasse [3; 4] gives formulas for evaluating the Hilbert

symbol. Although we will not use these directly, we will need the

following two lemmas which are immediate consequences of them.
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Lemma 3. If a and b are nonzero numbers of R, then (a, b)x,= —1

implies that either p is an Archimedean valuation or the prime ideal p

divides 2ab; hence, there are only a finite number of valuations p for

which (a, b)9= —1.

Lemma 4. If a belongs to R and contains p to exactly the first power,

then there exists a number b in R with p\b such that (a, b)$ = — 1.

Our next lemma was first proved by Furtwangler [2, p. 427].

Lemma 5. If a and b are nonzero numbers of F, then (a, b)f = — 1 for

an even number of valuations.

Both Lemma 6 and Lemma 7 are special cases of a theorem given

by Hasse [S, p. 32].

Lemma 6. There are infinitely many prime ideals in every ideal class.

Lemma 7. If a is a number of R which is prime to an ideal m, there

are infinitely many totally positive prime numbers p in R such that

p =a (mod m).

The next lemma is due to Hasse [4, p. 127]. Another proof is

given by Witt [10, pp. 41-42].

Lemma 8. A nonzero number h of F can be represented by the ternary

quadratic form x2 — ay2 — bz2 in F if and only if h does not belong to the

same p-adic class as —ab for any valuation p with (a, b)$= — 1.

Lemma 9. Given any prime ideal pi, there exist relatively prime num-

bers a and b in R such that (a) = pi ■ ■ ■ p2k, where pi, • • • , p2k are dis-

tinct prime ideals which include every prime ideal which divides 2, and

b is a totally positive prime number such that (a, b)9= — 1 */ and only if

p\a.

Proof. Let pi, • • • , pu-i he a set of distinct prime ideals which

includes every prime ideal dividing 2. Let A he the ideal class which

contains the product pi • • • ptk-i- By Lemma 6, we can choose a prime

ideal p2k in the ideal class A-1 with p2k9*pi for i= 1, • • • , 2k — 1. Then

pi • • • p2* will be a principal ideal and we can take a so that (a)

= pi ■ • ■ ptk-

For i= 1, • • • , 2k, by Lemma 4 we can choose bi in R and prime

to p, so that (a, b,)9i = — 1. Let m he a positive integer so that p™|2 for

every prime ideal p. By Lemma 2, if

x = bt (mod pi ) for i = 1, • • • , 2k,

then (a, x7v = — 1 for i = l, • • • , 2k. By the analog of the Chinese

Remainder Theorem, we can replace these 2k congruences by a single

congruence:
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Im Im

x = c (mod px    • • ■ p2k)

where c is prime to the modulus. By Lemma 7, we can find a totally

positive prime number b satisfying this congruence. Since c is prime

to a, b will also be prime to a.

By our construction (a, b)p(=—l for i=l, ■ • ■ , 2k. Since b is

totally positive & is a square in Fs for all Archimedean valuations p,

and hence (a, b)v= +1 ior all Archimedean valuations. By Lemma 3,

the only other valuation for which (a, b)v= —1 could hold would be

p = (b); but, by Lemma 5, there are an even number of valuations p

such that (a, b)p= —1. Therefore, in our case (a, b)p= —1 if and only

if p = pi for i =1, • • • , or 2k.

Lemma 10. If a and b satisfy Lemma 9 and m is a positive integer

such that pm|2 for all prime ideals p, then there exist x, y, and z in F

such that 1 — abc2m = x2 — ay2 — bz2 if and only if c is a p-adic integer for

every prime ideal p dividing a.

Proof. We can express c = u/v with u and v in R and with no pi

dividing both u and v. We then need to show that if u and v (v^O)

are in R and no p< divides both u and v, v2m — abu2m = x2 — ay2 — bz2 is

solvable for x, y, and z in F if and only if v is prime to a.

Let h = v2m — abu2m. By Lemma 8, A can be represented by x2 — ay2

— bz2 if and only if A does not lie in the same p»-adic class as — ab ior

*=1, • • • , 2k.

Case I. Suppose p;| v. Since p.-does not divide u or b,h ^0 (mod p2)

and h=—abu2m (mod p2m). By Lemma 2, h is in the same pt-adic

class as —abu2m. But this class is the same as the class of — ab;

therefore, h cannot be represented by x2 — ay2 — bz2.

Case II. Suppose v is prime to a. Then A is prime to a and cannot

be in the same p,-adic class as — ab for any p,-, since pj divides ab to

exactly the first power. Therefore h can be represented by x2 — ay2

— bz2 and the lemma follows.

Theorem. Let m be a positive integer such that p"*|2 for every prime

ideal p and let <p(a, b, c) be defined by the equivalence,

<b(a, b,c)<->  V   1 - abc2m = x2 - ay2 - bz2.

If \p(t) is defined by

*(0 <-► A  j A [<b(a, b, c) -> <j>(a, b, c + 1)] -»<b(a, b, t)\ ,
a.b    \   c J

then tEI^(t) and \p(t)^>tER.
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Proof. Since ip(a, b, 0) holds for every a and b, the inductive form

of \j/ insures that every natural number satisfies \p. Since tp(a, b, c)

<->tp(a, b, —c), we see that every rational integer also satisfies \p.

Suppose that t does not belong to R. Then there is some prime ideal

pi such that t is not a pi-adic integer. We choose a and b by Lemma 9.

By Lemma 10, qj(a, b, c) holds if and only if c is a p-adic integer for

every prime ideal p which divides a. Clearly, for this a and b, ip(a, b, c)

—>d>(a, b, c + 1); but ip(a, b, t) does not hold. Thus, if t is not in R,

\p(t) does not hold.

It is not known whether \p(t)—>tET, however, we can give an arith-

metical definition of R with the help of \f/. Let oi, • ■ • , ai he an in-

tegral basis for R. (Here / is the degree of Fover the rationals.) Then,

/ E R <->   V   b = fli*i + • • • + am A iK*i) A • • • A 4> (*«)]•
x„---.xi

It would be sufficient for the x,- to range over /; but if the x,- range

over R, no additional values of t are introduced. However, in general,

ai, ■ ■ ■ , ai will not themselves be arithmetically definable.3

Let Pi be a polynomial with integer coefficients and leading coeffi-

cient equal to 1 such that P,(a.) = 0. Since every root of P, = 0 which

is in F is also in R, we obtain

/ E R <-> V [l = xiyi + ■ ■ ■ + xiyi A Piiyi) = 0
■li ■ • •■■liWli • • -,Vl

A • • • A Piiyi) = 0 A *(*i) A • • • A *(*i)].

Since this formula gives a suitable arithmetical definition of R within

the arithmetic of F, we have proved the following:

Theorem. If R is the ring of the algebraic integers of a field F of

finite degree over the rationals, then R is arithmetically definable in F.

This theorem with the final theorem of §2 gives us:

Theorem. If F is an algebraic field of finite degree over the rationals,

the natural numbers are arithmetically definable in F and hence F is

undecidable.
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CONCERNING LOCAL SEPARABILITY IN LOCALLY
PERIPHERALLY SEPARABLE SPACES

L. B. TREYBIG

Alexandroff [l ] has shown that a connected metric space is com-

pletely separable if it is locally completely separable. In the previous

statement "completely separable" may be replaced with "separable,"

since these are equivalent conditions in a metric space. In his dis-

sertation (Texas, 1958) the author has shown an example of a con-

nected, locally peripherally separable [2], metric space which is not

separable, but which has the property that the set of all points at

which it is not locally separable is separable. The purpose of this

paper is to give a further result in this direction.

Theorem. If 2 is any connected, locally peripherally separable,

metric space which is not separable, then the set of all points at which 2

is not locally separable is uncountable.

Proof. On the contrary, suppose that there exists such a space 2

where the set M of all points at which 2 is not locally separable is

countable. Let M he denoted by Px+P2+Ps+ • • • , where, if ij^j,

PiT^Pj. For each positive integer re let Gn be the collection of all

locally peripherally separable domains having diameter less than 1/re.

Let d denote a positive integer and gx, g2, gs, • • • denote a sequence

such that for each re, Pn and gn are elements of gn and Gn+a, respec-

tively. Let H be a collection to which x belongs if and only if x is g,-

for some i. For each positive integer re, let Gn' be the collection of all
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