
Conway’s Mathematics
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and Louis H. Kauffman
Mathematicians always queued to hear John Conway
speak and delved into his writing. They expected to be en-
tertained by beautiful mathematics and believed that they
would emerge with valuable enlightenment. John wel-
comed this attention and considered it his duty to make
his mathematics elegant. What really made his mathemat-
ics valuable was his wealth of insight. Wherever heworked,
he opened up avenues for us to follow.

John challenged and inspired us in many different ways.
His Game of Life has been investigated by thousands,
while his river method provides a novel approach to the
classical subject of quadratic forms. His orbifold notation
was devised in collaboration with Bill Thurston. It gives
a new way to describe symmetry patterns like those in
the opening images above. The images are taken from
the beautiful book, The Symmetries of Things, coauthored
by John, Heidi Burgiel, and Chaim Goodman-Strauss.
Group theorists, like me, are drawn to his paper “Mon-
strous Moonshine,” written with his friend Simon Nor-
ton. John and Simon filled the paper with what were out-
landish examples and provocative conjectures about the
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Monster group. Mathematicians immediately realized that
the group was much more than a sporadic curiosity, as yet
unconstructed. Richard Borcherds created his new theory
of Vertex Algebras to prove the conjectures in John’s pa-
per. McKay and Sebbar aptly call Moonshine “21st century
mathematics in the 20th century” [15]. John’s influence
can be seen across so many areas of mathematics that a
complete account would fill many volumes, which would
continue to expand forever. The three papers that follow
present very different parts of mathematics where modern
approaches are built on foundations laid by John.

The theory of surreal numbers was invented by John in
the early 1970s. He expected this to become his most in-
fluential creation andwas convinced that the theory would
continue to evolve long into the future. Philip Ehrlich ex-
plains how this theory has progressed in the half century
since its introduction.

John’s algebraic approach to certain tiling problems is
explained by Richard Kenyon, Jeffrey Lagarias, and James
Propp. These tiling problems are mathematical questions.
However, they used to be viewed as recreational because
each required its own special trick. John’s novel and very
general approach showed that the problems belong to the
field of Combinatorial Group Theory. John’s vision across
the whole breadth of mathematics allowed him to make
many similar unexpected connections between fields.
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Knot theory was John’s first research interest in math-
ematics. He was still in high school when he started to
develop his Skein Theory. Louis Kauffman explains that
the monumental 1983 paper of Vaughan Jones showed
that the Jones polynomial satisfies a Conway type skein
relation. A number of mathematicians were inspired to
extend the Conway skein ideas to produce the Homflypt
and Kauffman polynomials. This led directly to explosive
progress in modern Knot Theory.

John saw himself as a link in a chain that stretched back
through the mathematicians who created the fields where
he worked and played. He particularly admired Georg
Cantor, whose ordinals were uppermost in his mind when
he worked on the surreal numbers. John, in turn, laid out
new areas for others to cultivate after him. His legacy will
be owned and continued by themathematicians for whom
he sowed so many seeds.

The Surreal Numbers
and Their Aftermath

Philip Ehrlich
In 1970, as an outgrowth of his work on combinato-
rial games, J. H. Conway introduced a real-closed field,
dubbed 𝐍𝐨, containing the reals and the ordinals, the
arithmetic of the latter being the natural sums and prod-
ucts due to Hessenberg and Hausdorff rather than the
usual non-commutative, non-associative sums and prod-
ucts of Cantor. Being a real-closed field containing the re-
als and the ordinals, 𝐍𝐨 also contains a great many less
familiar numbers including −𝜔, 𝜔/2, 1/𝜔, √𝜔 and 𝜔 − 𝜋
to name only a few, where 𝜔 is the least infinite ordi-
nal. Indeed, as Conway aptly quips, this particular real-
closed field is so remarkably inclusive that it may be said
to contain “All Numbers Great and Small” ([5, p. 3]). In
this regard, 𝐍𝐨 bears much the same relation to ordered
fields that the ordered field ℝ of real numbers bears to
Archimedean ordered fields. Following D. E. Knuth, the
members of 𝐍𝐨 have come to be called surreal numbers.

While each surreal is an ordinary set, 𝐍𝐨 is not.
To address this, Conway formalizes his theory in NBG
(Von Neumann-Bernays-Gödel set theory). Unlike standard
Zermelo-Fraenkel set theory (ZF), whose sole entities are sets,
NBG contains classes that are sets, as well as classes such
as 𝐍𝐨 and the class 𝐎𝐧 of ordinals that are larger than any
set, called proper classes.

Philip Ehrlich is a professor emeritus of philosophy at the Ohio University. His
email address is ehrlich@ohio.edu.

Against this set-theoretic backdrop, the relation be-
tween the inclusiveness of ℝ and 𝐍𝐨may be made precise
by the following result collectively due to Conway [5, pp.
42-43] and Ehrlich [7]: whereas ℝ is (up to isomorphism) the
unique universally embedding Archimedean ordered field,𝐍𝐨 is
(up to isomorphism) the unique universally embedding ordered
field, where an ordered field (Archimedean ordered field)𝐴
is said to be universally embedding if for each ordered sub-
field (Archimedean ordered subfield) 𝐵 of 𝐴, whose uni-
verse is a set, and every ordered field (Archimedean or-
dered field) 𝐵′ extending 𝐵, there is an embedding 𝑓 ∶
𝐵′ → 𝐴 that is the identity on 𝐵. Thus, starting with a
categorical characterization of the inclusiveness of ℝ that
makes use of the Archimedean axiom, one obtains a cate-
gorical characterization of the inclusiveness of 𝐍𝐨 by sim-
ply deleting the Archimedean condition. On the basis of
this observation, that Conway initially thought “too good
to be true,” Ehrlich (e.g., [7,9]) has suggested that whereas
ℝ should merely be regarded as the arithmetic continuum
(modulo the Archimedean axiom), 𝐍𝐨 may be regarded
as the absolute arithmetic continuum (modulo NBG).

Like the ordered set of reals, the ordered class of surreals
may be constructed in a variety of ways (e.g., [2, 5, 9, 11]).
In Conway’s construction, which generalizes aspects of
Dedekind’s cut construction ofℝ and von Neumann’s con-
struction of 𝐎𝐧, the members of 𝐍𝐨 (or, more property
speaking, their vast array of equivalent representations) are ex-
tracted from an antecedently, inductively defined partially
ordered class of games vis-à-vis the following inductive def-
inition.

𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐒𝐮𝐫𝐫𝐞𝐚𝐥𝐍𝐮𝐦𝐛𝐞𝐫𝐬
If 𝐿 and 𝑅 are two sets of surreal numbers such that no

member of 𝐿 is greater than or equal to any member of 𝑅,
then there is a surreal number {𝐿|𝑅}. All surreal numbers
are constructed in this way.

In accordance with his convention for games, which
likewise are equivalence classes of representatives of the
form {𝐿|𝑅}, Conway denotes each surreal 𝑥 = {𝐿|𝑅} by
‘𝑥 = {𝑥𝐿|𝑥𝑅}’ where the 𝑥𝐿’s and 𝑥𝑅 ’s—the left and right
options of 𝑥—are understood to range over the members of
𝐿 and the members of 𝑅, respectively. Using this conven-
tion, Conway’s construction of the surreal numbers, which
is carried out in stages (called “days”) indexed over the or-
dinals, can be informally described as follows.

On the 0th day, beginning with the empty set ∅ (of sur-
real numbers), Conway constructs the surreal number

0 = {|};
and on the 1st day, the surreal numbers

−1 = {|0} 1 = {0|};
and then on the 2nd day, the surreal numbers

−2 = {|0, 1} − 1/2 = {−1|0} 1/2 = {0|1} 2 = {0, 1|},
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Figure 1. Some of the earliest created surreals.

and so on, each newly created surreal filling a cut in the
ordered set of previously constructed surreal numbers. As
is evident from the above, unlike Dedekind’s cuts, the left
and right sides of Conway’s cuts may be empty. In fact,
those surreal numbers having no right options, beginning
with 0, 1, and 2, turn out to be 𝐍𝐨’s ordinals and those
having no left options, beginning with 0, −1 and −2, are
the additive inverses of the ordinals, a surreal number and
its additive inverse always being created on the same day.
The surreal numbers other than the integers that emerge
on finite days are the remainder of 𝐍𝐨’s dyadic rationals
and those emerging on the 𝜔th day are the non-dyadic
real numbers as well as a host of other numbers includ-
ing −𝜔 = {|..., −𝑛, ..., −1, 0}, 𝜔 = {0, 1, ..., 𝑛, ...|}, −1/𝜔 =
{−1,−1/2, ... − 1/2𝑛, ...|0} and 1/𝜔 = {0|..., 1/2𝑛, ..., 1/2, 1}, to
name a few. For a slightly broader glimpse of some of the
earliest created surreal numbers, see Figure 1, which is es-
sentially taken from [5].

As the above description of Conway’s construction sug-
gests, the system of surreal numbers has a rich algebraico-
tree-theoretic structure that emerges from combining Con-
way’s field operations with 𝐍𝐨’s structure as a tree. It is
the marriage of these two components, which we now con-
sider in turn, from which the appellations for surreal num-
bers as well as a host of other distinctive features of 𝐍𝐨
accrue.

Using the familiar definitions of = and < in terms of
the partial ordering ≥ that is anteriorly defined on games,
Conway shows that𝐍𝐨 is an ordered field when+,−, and ⋅
are defined by the following inductive stipulations, where
𝑥𝐿, 𝑦𝐿, 𝑥𝑅, and 𝑦𝑅 are understood to range over the left and
right options of 𝑥 and 𝑦.
Definition of 𝑥 + 𝑦.

𝑥 + 𝑦 = {𝑥𝐿 + 𝑦, 𝑥 + 𝑦𝐿|𝑥𝑅 + 𝑦, 𝑥 + 𝑦𝑅} .

Definition of −𝑥.

−𝑥 = {−𝑥𝑅| − 𝑥𝐿} .

Definition of 𝑥𝑦.

𝑥𝑦 = {𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦 + 𝑥𝑦𝑅 − 𝑥𝑅𝑦𝑅|
𝑥𝐿𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿𝑦𝑅, 𝑥𝑅𝑦 + 𝑥𝑦𝐿 − 𝑥𝑅𝑦𝐿}.

Conway shows that for each surreal 𝑥 = {𝐿|𝑅}, 𝑥 is the
earliest created surreal number lying between the members
of 𝐿 and themembers of 𝑅, i.e., 𝑥 is the earliest constructed
𝑧 ∈ 𝐍𝐨 such that 𝐿 < {𝑧} < 𝑅. Appealing to this result a
significant portion of the theoretical underpinnings of the
above definitions of + and ⋅may be brought to the fore by
the following variations on observations due to Conway.
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Since 𝑥 = {𝑥𝐿|𝑥𝑅} and 𝑦 = {𝑦𝐿|𝑦𝑅}, it follows that for all
𝑥𝐿, 𝑥𝑅, 𝑦𝐿 and 𝑦𝑅:

(∗) 𝑥𝐿 < 𝑥 < 𝑥𝑅 and 𝑦𝐿 < 𝑦 < 𝑦𝑅.

Accordingly, for 𝐍𝐨 to be an ordered additive group, it
must be the case that

(∗∗) 𝑥𝐿 + 𝑦, 𝑥 + 𝑦𝐿 < 𝑥 + 𝑦 < 𝑥𝑅 + 𝑦, 𝑥 + 𝑦𝑅,

for all 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, and 𝑦𝑅. Therefore, since 𝑥+𝑦must lie be-
tween the two sets of inductively defined members of 𝐍𝐨
specified in (∗∗) if𝐍𝐨 is to be an ordered group, the above
definition of 𝑥+𝑦 deems 𝑥+𝑦 to be the earliest created sur-
real number consistent with that intended outcome. Sim-
ilarly, for 𝐍𝐨 to be an ordered field, it follows from (∗)
that each of the differences 𝑥 − 𝑥𝐿, 𝑥𝑅 − 𝑥, 𝑦 − 𝑦𝐿, 𝑦𝑅 − 𝑦
must be positive and, hence, likewise each of the products
(𝑥 − 𝑥𝐿) (𝑦 − 𝑦𝐿), (𝑥𝑅 − 𝑥) (𝑦𝑅 − 𝑦), (𝑥 − 𝑥𝐿) (𝑦𝑅 − 𝑦) and
(𝑥𝑅 − 𝑥) (𝑦 − 𝑦𝐿). And so by applying the routine algebra
of ordered fields to each of these products one obtains for
all 𝑥𝐿, 𝑥𝑅, 𝑦𝐿 and 𝑦𝑅:

(∗ ∗ ∗) 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦 + 𝑥𝑦𝑅 − 𝑥𝑅𝑦𝑅 <
𝑥𝑦 < 𝑥𝐿𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿𝑦𝑅, 𝑥𝑅𝑦 + 𝑥𝑦𝐿 − 𝑥𝑅𝑦𝐿.

Consequently, since 𝑥𝑦must lie between the sets of induc-
tively defined members of𝐍𝐨 specified in (∗∗∗) if𝐍𝐨 is to
be an ordered field, the above definition of 𝑥𝑦 requires 𝑥𝑦
to be the earliest constructed surreal compatible with that
desired end.

While the above observations reveal the incisive nature
of Conway’s cryptic-seeming inductive definitions, there
is no a priori reason to believe that these definitions, how-
ever cleverly motivated, would lead to the existence of an
ordered field, let alone one having the rich structure of𝐍𝐨.
That they do is one of Conway’s most remarkable surreal
discoveries.

As we mentioned above, in addition to its inclusive
structure as an ordered field, 𝐍𝐨 has a rich tree-theoretic
structure, a tree being a partially ordered class (𝐴, <𝐴) such
that for each 𝑥 ∈ 𝐴 the class {𝑦 ∈ 𝐴 ∶ 𝑦 <𝐴 𝑥} of prede-
cessors of 𝑥 is a well-ordered set. This simplicity hierarchi-
cal (or 𝑠-hierarchical) structure, as it is sometimes called, is
introduced by Conway by associating each surreal with a
unique sequence of +’s and −’s indexed over an ordinal,
called it’s sign-expansion, but can be introduced more con-
cisely as follows using the canonical representation of sur-
real numbers employed in Conway’s treatment.

Each surreal 𝑥 has a unique representation {𝐿𝑥|𝑅𝑥},
where (𝐿𝑥, 𝑅𝑥) is a pair of (possibly empty) collectively
exhaustive subsets of the set of all surreal numbers con-
structed at earlier stages of the construction. Using this
representation, the surreal number tree (𝐍𝐨, <𝑠) is obtained
by stipulating that for all 𝑥, 𝑦 ∈ 𝐍𝐨, 𝑥 <𝑠 𝑦 (read “𝑥 is

simpler than 𝑦) if and only if 𝐿𝑥 < {𝑦} < 𝑅𝑥 and 𝑥 ≠ 𝑦.1
(𝐍𝐨, <𝑠) is in fact a full binary tree, that is, every member
of 𝐍𝐨 has two immediate successors and every chain in
(𝐍𝐨, <𝑠) of limit length (including the empty chain) has a
unique immediate successor. In particular, for each surreal
number 𝑥, {𝐿𝑥| {𝑥} ∪ 𝑅𝑥} and {𝐿𝑥 ∪ {𝑥} |𝑅𝑥} are the immedi-
ate successors of 𝑥, and if (𝑥𝛼)𝛼<𝛽 is a chain in (𝐍𝐨, <𝑠)
indexed over a limit ordinal 𝛽, then {⋃𝛼<𝛽 𝐿𝑥𝛼 |⋃𝛼<𝛽 𝑅𝑥𝛼 }
is the immediate successor of the chain, {∅|∅} being the im-
mediate successor of the empty chain.

As we alluded to above, among the striking 𝑠-
hierarchical features of𝐍𝐨 is that every surreal number can
be assigned a canonical “proper name” that is a reflection
of its characteristic 𝑠-hierarchical properties. These Conway
names, or normal forms as Conway calls them, are expressed
as formal sums of the form

∑
𝛼<𝛽

𝑟𝛼𝜔𝑦𝛼 ,

where 𝛽 is an ordinal, (𝑦𝛼)𝛼<𝛽 is a strictly decreasing se-
quence of surreals, and (𝑟𝛼)𝛼<𝛽 is a sequence of nonzero
real numbers. Every such formal sum is in fact the Con-
way name of a surreal number, the Conway name of an
ordinal being just its Cantor normal form.

In light of the above, we see that Figure 1 in fact of-
fers a glimpse of the some of the earliest created mem-
bers of (𝐍𝐨, <𝑠) expressed in terms of their Conway names,
where, for example, 𝜔 is the least infinite ordinal as well
as the simplest positive infinite number, −𝜔 is the additive
inverse of 𝜔 as well as the simplest negative infinite num-
ber and 1/𝜔 is the multiplicative inverse of 𝜔 as well as
the simplest positive infinitesimal number. It is worth noting,
that being a real-closed field, the Conway names for 𝐍𝐨’s
real algebraic numbers are determined solely by 𝐍𝐨’s alge-
braic structure, whereas the Conway names for the remain-
ing surreals are fixed by algebraico-tree-theoretic consider-
ations (e.g., [8, pp. 1244–1248]).

Conway observed that when the surreals are expressed
in terms of their normal forms, 𝐍𝐨 assumes the structure

1As we mentioned above, Conway shows that each surreal number {𝐿|𝑅} is the
earliest created surreal number lying between its left and right options, the lat-
ter being a special case of his result for games, where, however, one cannot in
general say “a game lies between its left and right options.” In [5, p. 23], Con-
way dubs the earliest created such game (surreal number), the simplest such
game (surreal number), naturally suggesting that for surreal numbers, as for
games, “𝑥 is simpler than 𝑦” should be interpreted as 𝑥 is constructed prior to
𝑦. In 1985 Conway agreed with the author that the simpler than relation for
the surreals should be defined in terms of the predecessor relation in the tree
rather than in terms of the created earlier than relation. This understanding
was brought to the fore in [8] and has since emerged as the dominant interpre-
tation of the simpler than relation in research on surreal numbers. Whereas a
surreal number {𝐿|𝑅} continues to be both the simplest and the earliest created
surreal number lying between its left and right options, the meaning of “simpler
than” has changed. For example, whereas 1/2 is created earlier than 𝜔, 1/2 is
not simpler than 𝜔 in the tree-theoretic sense (see Figure 1).
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of an ordered field of generalized formal power series with
sums and products defined like polynomials and order de-
fined lexicographically. In addition to making the surreals
more tractable from an algebraic point of view, this per-
mitted Conway to apply to 𝐍𝐨 insights about such struc-
tures that accrue from the classical works of Hans Hahn
(1907) and B. H. Neumann (1949) on the number sys-
tems and generalizations thereof that emerged from non-
Archimedean geometry, and thereby relate the surreals to
one of the roots of non-Archimedean mathematics.

Making use of Conway names, Conway also character-
ized the notion of integer appropriate to 𝐍𝐨. The discrete
ring Oz of omnific integers, which extends On, consists of
the surreal numbers whose Conway names have nonnega-
tive exponents and integer coefficients when the exponent
is 0. Every surreal number is distant at most 1 from some
omnific integer, and 𝐍𝐨 is Oz’s field of fractions.

Another striking s-hierarchical feature of 𝐍𝐨 is that,
much as the surreal numbers emerge from the empty set
of surreal numbers by means of a transfinite induction
that generates the entire spectrum of “numbers great and
small,” the inductive process of defining 𝐍𝐨’s arithmetic
in turn generates the entire spectrum of ordered fields
(ordered abelian groups) in such a way that an isomor-
phic copy of every such system either emerges as an initial
substructure of 𝐍𝐨 — a substructure 𝐴 in which the tree-
theoretic predecessors in𝐴 of each of its elements coincide
with its predecessors in𝐍𝐨— or is contained in a theoreti-
cally distinguished instance of such a system that does. In
particular, as Ehrlich [8] showed, every real-closed ordered
field (divisible ordered abelian group) is isomorphic to an ini-
tial subfield (subgroup) of 𝐍𝐨.

Since every real-closed field is isomorphic to an initial
subfield of 𝐍𝐨, the underlying ordered field of every hyper-
real number system — the nonstandand models of analysis
employed in Robinsonian or nonstandard analysis — is iso-
morphic to an initial subfield of𝐍𝐨. In fact, as Ehrlich [9]
observed,𝐍𝐨 is isomorphic to the underlying ordered field
of the richest hyperreal number system in NBG. On the
other hand,“𝐍𝐨 is really irrelevant to nonstandard analy-
sis,” as Conway [5, p. 44] noted; and, vice versa. After all,
whereas the transfer property of hyperreal number systems,
a property not possessed by 𝐍𝐨, is central to the develop-
ment of nonstandard analysis, the s-hierarchical structure
of 𝐍𝐨, which is absent from hyperreal number systems, is
central to the theory of surreal numbers. Of course, this
does not preclude that down the line there might be cross-
fertilization between the two theories.

However, while surrealists have thus far shown little in-
terest in applying surreal numbers to nonstandard analy-
sis or in providing an infinitesimalist approach to classi-
cal analysis based on surreal numbers more generally, a
number of surrealists beginningwithNorton, Kruskal, and

Conway have fostered the idea of extending analysis to the
entire surreal domain.

Building on work of B. H. Neumann, Conway observed
that there is a notion of convergence in 𝐍𝐨 for power se-
ries of infinitesimal surreals that can be expressed using
Conway names, and that the various analytic functions
could be defined on bounded portions of 𝐍𝐨 using such
power series whenever they converge in the appropriate
sense. On the other hand, Conway originally expressed
doubt that “reasonable” global definitions of exponentia-
tion, logarithm, sine, and cosine could be defined on 𝐍𝐨
[5, First Edition, p. 43]. Through the collective efforts of
Kruskal, Norton, Gonshor, van den Dries, Ehrlich, and
Kaplan, however, this doubt has been put to rest. Van
den Dries and Ehrlich (2001) showed that 𝐍𝐨 together
with the Kruskal-Gonshor exponential function exp de-
fined thereon [11] has the same elementary properties of
the ordered field of real numbers with real exponentia-
tion, and Ehrlich and Kaplan [10] have further shown that
𝐍𝐨 has canonical sine and cosine functions which in turn
lead to a canonical exponential function on 𝐍𝐨’s surcom-
plex counterpart 𝐍𝐨[𝑖] that extends exp.

Additional rudiments of analysis on the surreals have
also been developed by Alling, Fornasiero, Rubinstein-
Salzedo and Swaminathan, and Costin, Ehrlich and Fried-
man. Costin and Ehrlich, in particular, have developed
a theory of integration (and differentiation) that extends
the range of analysis from the reals to the surreals for a
large subclass of resurgent functions that arise in applied
analysis. The resurgent functions, which generalize the
analytic functions, were introduced by Écalle in the early
1980s in connection with work related to Hilbert’s 16th
problem. Unlike nonstandard analysis, which provides an
infinitesimalist approach to integration on the extended
reals (ℝ ∪ {±∞}), surreal integration deals with integrals
whose bounds and values need not be extended reals at
all. For example, in the surreal theory (setting 𝑒𝑥 = exp 𝑥)
we have

∫
𝜔

0
𝑒𝑥𝑑𝑥 = 𝑒𝜔 − 1 = 𝜔𝜔 − 1.

This work makes contributions towards realizing some of
the analytic goals expressed by Kruskal andNorton in their
unsuccessful early attempts to establish a theory of surreal
integration as described by Conway in the Epilogue of [5,
Second Edition].

Elements of asymptotic differential algebra — the sub-
ject that aims at understanding the asymptotics of solu-
tions to differential equations from an algebraic point of
view — have also been developed for the surreals. An or-
dered differential field is an ordered field 𝐾 together with
a derivation on 𝐾, i.e., a map 𝜕 ∶ 𝐾 → 𝐾 such that
𝜕(𝑎 + 𝑏) = 𝜕(𝑎) + 𝜕(𝑏) and 𝜕(𝑎𝑏) = 𝜕(𝑎)𝑏 + 𝑎𝜕(𝑏) for all
𝑎, 𝑏 ∈ 𝐾. Berarducci and Mantova (2018) constructed a
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derivation 𝜕𝐵𝑀 on𝐍𝐨which has proven to have a number
of desirable features, including (𝐍𝐨, 𝜕𝐵𝑀) being universal
with respect to a broad class of distinguished ordered dif-
ferential fields. In their ICM talk [3], Aschenbrenner, van
den Dries, and van der Hoeven outline the program they
(along with Berarducci, Mantova, Bagayoko, and Kaplan)
are engaged in for developing an ambitious theory of as-
ymptotic differential algebra for all of𝐍𝐨, though one that
would require a derivation on 𝐍𝐨 having compositional
properties not enjoyed by 𝜕𝐵𝑀 . Such a program, if success-
ful, would provide the most dramatic advance towards in-
terpreting growth rates as numbers since the pioneering
work of Paul du Bois-Reymond, G. H. Hardy, and Felix
Hausdorff on “orders of infinity” in the decades bracket-
ing the turn of the 20th century.

Work on the rates of growth of real functions, non-
Archimedean geometry and Cantor’s theory of the infi-
nite are the primary sources of late nineteenth- and early
twentieth-century non-Archimedean number systems. As
the above remarks suggest, with his creation of the sur-
real numbers, Conway constructed a remarkable and pro-
foundly original canonical framework for unifying not
only these number systems but the reals and the under-
lying ordered fields of the hyperreal number systems to
boot. With this, Conway joined the likes of Cantor,
Dedekind, Hahn, and Robinson as one the foremost cre-
ators of systems of numbers great and small the world has
ever known.

Conway’s Tiling Groups

Richard Kenyon, Jeffrey Lagarias,
and James Propp
John Conway was fascinated by tilings of the plane, from
periodic tilings (the Conway criterion, orbifold notation
for wallpaper groups) to aperiodic tilings (Penrose tilings,
pinwheel tilings). Some of this work was described by
Doris Schattschneider in her article “John Conway, Tilings,
and Me” in the Summer 2021 special issue of the Intel-
ligencer devoted to Conway’s legacy. Less well-known is
John’s work on applying combinatorial group theory, a fa-
vorite tool of his, to the study of tiling problems in finite
subregions of the plane. Conway and Lagarias’ 1990 ar-
ticle “Tiling with Polyominoes and Combinatorial Group

Richard Kenyon is Erastus L. DeForest Professor of Mathematics at Yale Univer-
sity. His email address is richard.kenyon@yale.edu.
Jeffrey Lagarias is a professor of mathematics at the University of Michigan. His
email address is lagarias@umich.edu.
James Propp is a professor of mathematics at the University of Massachusetts,
Lowell. His email address is jamespropp@gmail.com.

Theory” [6] opened a new door to the study of such prob-
lems. Thurston’s 1990 article “Conway’s tiling groups”
added a geometric viewpoint on such invariants, introduc-
ing height functions, which we define below.

A polyomino is a connected union of a finite set of
squares in an infinite square grid. We say that a collec-
tion of simply-connected polyominoes 𝑇1, … , 𝑇𝑟 (called
prototiles) tiles a region 𝑅 if we can write 𝑅 as a union
of polyominoes with disjoint interiors, each of which is
a translate of one of the 𝑇𝑖. Recreational mathematics
abounds in problems of the form “Do these prototiles tile
this region?”; the classic problem of the genre is the Muti-
lated Checkerboard Problem, in which the prototiles are a
1-by-2 and a 2-by-1 rectangle (called dominos) and the
region to be tiled is an 8-by-8 square from which two
opposite 1-by-1 corner squares have been removed. The
classic solution comes from a coloring argument, exploit-
ing an alternating black-white coloring of the board: each
domino covers one white square and one black square,
but the mutilated checkerboard has unequal numbers of
black and white squares, so no tiling exists. This argu-
ment was presented in Solomon Golomb’s 1954 paper
“Checker boards and polyominoes” which introduced the
term “polyomino.”

A more complicated problem of this kind, due to de
Bruijn, calls for tiling a 6-by-6 square (or more generally
a (4𝑚 + 2)-by-(4𝑛 + 2) rectangle) with 1-by-4 and 4-by-1
prototiles; as in the case of the mutilated checkerboard, a
naive area argument fails to solve the problem but a more
sophisticated coloring argument (which the reader is in-
vited to find) shows that no tiling exists.

Prior to 1990, the main ways to prove that a given tiling
problem was unsolvable were to give a coloring argument,
to conduct brute force examination of all possibilities, or
to employ ad hoc methods that varied from problem to
problem. The hope that a general method for solving
such problems could be found was dashed by the work of
Robert Berger, who in his 1966 article “The undecidability
of the domino problem” showed that infinite tileability
problems could be undecidable. For finite tilings, Leonid
Levin showed in the 1973 paper “Universal search prob-
lems” that the class of finite tileability problems is NP-
complete. Conway and Lagarias presented a new frame-
work for tackling tiling problems that, while necessarily
subject to the limitations imposed by these hardness re-
sults, went beyond what coloring arguments could do.

The basic idea, due to Conway, is to interpret paths in
the square grid starting from the origin as elements of the
free group 𝐹2 on two generators 𝐴,𝑈, where 𝐴 (“across”)
represents a step to the right, 𝐴−1 a step left, 𝑈 (“up”) a
step up, and 𝑈−1 a step down (backtracks naturally cancel
under this correspondence). The free group product cor-
responds to concatenation of paths, translating one path
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to the end of the other. For simply-connected regions 𝑅,
the counterclockwise boundary 𝜕𝑅 of 𝑅 is described by a
word 𝑤 in 𝐹2, unambiguous up to a choice of base point
for the loop (or, equivalently, unique up to conjugation).
Likewise, the boundary of each prototile 𝑇𝑖 corresponds to
a word 𝑢𝑖. The main insight is that if a simply-connected
𝑅 can be tiled by simply-connected prototiles 𝑇𝑖, then the
word 𝑤 can be expressed as a product of conjugates of the
words 𝑢𝑖; in other words, if 𝑅 can be tiled, then 𝑤 is triv-
ial in the quotient group 𝐺 = 𝐹2/𝑁, where 𝑁 is the normal
subgroup of 𝐹2 generated by conjugates of the tiles. Follow-
ing Thurston we call 𝐺 the Conway tiling group associated
to the given prototile set, and the associated necessary con-
dition (“boundary criterion”) for 𝑅 to have a tiling is that
the boundary word 𝑤 for 𝜕𝑅 belong to 𝑁.

A simple example (see Figure 2) illustrates the boundary
criterion.

Figure 2. Composing boundary words, with conjugation.

Take 𝑅 to be the 2-by-2 square [0, 2]×[0, 2], tiled by two
2-by-1 rectangles. We find that

𝑤 = 𝐴2𝑈2𝐴−2𝑈−2 = (𝐴2𝑈𝐴−2𝑈−1) 𝑈(𝐴2𝑈𝐴−2𝑈−1)𝑈−1

where the right side is the product of the boundary-words
of the two constituent 2-by-1 rectangles, in which the sec-
ond is conjugated by 𝑈.

It is not immediately clear that this algebraic criterion
on tilings will be useful, since theword problem for groups
is undecidable in general; however, there are many groups
of geometric origin for which there are fast algorithms for
decidability. The paper of Conway and Lagarias applied
the group-theoretic condition to a tiling problem in the
hexagonal lattice. Define a 𝑇𝑛-triangle as a polygon in a
honeycomb grid composed of 𝑛 rows of hexagons inwhich
the 𝑖th row contains 𝑖 hexagons (1 ≤ 𝑖 ≤ 𝑛); for instance,
Figure 3 shows 𝑇𝑛 for the case 𝑛 = 9.

The problem is to determine for which values of 𝑛 the
𝑇𝑛-triangle can be tiled by copies of the 𝑇2-triangle and the
inverted 𝑇2-triangle (as illustrated in Figure 3). The paper
recast this as a problem in the square grid and then, us-
ing various algebraic and geometric arguments (including
an invocation of the concept of winding number) showed

Figure 3. The 𝑇9-triangle tiled by copies of the 𝑇2-triangle and
the inverted 𝑇2-triangle.

that the values of 𝑛 for which a tiling exists are the positive
integers congruent to 0, 2, 9, or 11 (mod 12).

The paper also showed that no possible coloring argument
can prove this congruence criterion. Coloring arguments that
prove the nonexistence of a solution to a tiling problem
will also prove nonexistence of a solution to the associated
“signed tiling” problem. But the signed version of the trian-
gle tiling problem has a different answer: it can be solved
whenever 𝑛 is congruent to 0 or 2 (mod 3).

The paper more generally described a connection be-
tween the coloring approach to tiling problems and the
boundary invariants approach, observing that coloring ar-
guments are covertly group-theoretic. They can be phrased
in terms of quotient groups of the commutator subgroup
𝐶 = [𝐹2, 𝐹2]. The group 𝐶 contains 𝑁 as a normal sub-
group, and 𝐶/𝑁 is analogous to a homotopy group. The
abelianization of 𝐶/𝑁 is then analogous to a homology
group, and coloring invariants are homology invariants.

Thurston’s article “Conway’s tiling groups” [17] takes
a more geometric viewpoint, introducing the idea of as-
sociating to each tiling of 𝑅 a function from the set of
lattice-points inside 𝑅 that lie on the boundaries of tiles
to the Conway tiling group. In the case where the Con-
way tiling group is an extension of ℤ2 by ℤ (as holds for
domino tilings) these functions are called height functions.
Thurston uses height functions to obtain a necessary and
sufficient condition for a (simply-connected) region 𝑅 in
the square lattice to have a domino tiling. The notion of
height functions played a crucial role in the study of ran-
dom tilings that exploded in the 1990s. The third author
reported on these developments in the Conway memorial
issue of the Mathematical Intelligencer (Summer 2021).
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Skein Theory and More

Louis H. Kauffman
Here we discuss two key contributions of John Conway to
knot theory: rational tangles for knots and links, and skein
theory for knots and links. Conway’s Tangle Theorem as-
sociates a tangle to each rational number; two of these will
have the same topological type if and only if the rational
numbers are equal. The knots we obtain by closing these
tangles have the same topological type if the continued
fraction expansions of the two rational numbers differ by
a reversal of order.

In Figure 4, we illustrate some of the features of the the-
ory of tangles. You will see tangles 𝑇 and 𝑆, one labeled
with the continued fraction [2, 3, 4] = 2 + 1/(3 + 1/4) =
2+4/13 = 30/13 and the other labeled with the continued
fraction [4, 3, 2] = 4 + 1/(3 + 1/2) = 4 + 2/7 = 30/7. It
turns out by Conway’s Tangle Theorem [4] that these frac-
tions classify the topological type of the tangles. For tangle-
type we keep the ends fixed and let the tangles move about.
Thus these two tangles are not topologically equivalent.
But, as the figure shows, they are related. They both close
to the same rational knot, labeled 𝑁(𝑇) = 𝑁(𝑆) in the fig-
ure. Now notice that both of these fractions have the same
numerator (30) and as for the denominators, we have that
7 × 13 = 91, a number that leaves a remainder of 1 on divi-
sion by 30. These are not accidents. If [𝑎1, 𝑎2,⋯ , 𝑎𝑛] is the
continued fraction for the tangle 𝑇 and [𝑎𝑛, 𝑎𝑛−1,⋯ , 𝑎1]
(obtained by reversing the order of the terms) is the con-
tinued fraction for the tangle 𝑆, then both 𝑇 and 𝑆 close to
form the same rational knot or link.

There is a beautiful way to classify rational knots (clo-
sures of rational tangles) from their continued fractions.
We can take the symbol (4, 3, 2), up to such reversal, as
an indicator of the rational knot in the figure. (There is
a futher technicality to the classification. See [14].) In this
way Conway developed a simple notation to indicate ratio-
nal knots and then used it along with insertion in certain
graphs to make a very efficient notation for knots that lets
us indicate thousands of knots in the knot tables with great
elegance.

Here is a quick introduction to the skein theory of John
Conway [4]. In Figure 5, I indicate one knot or link di-
agram 𝐾+ and another diagram 𝐾−, where it is under-
stood that these two diagrams differ only by the switch
that is illustrated for a single crossing. The same figure in-
dicates another diagram 𝐾0 where the crossing has been
replaced by two parallel arcs. This is called a smoothing of
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 T = [2] + 1/( [3] + 1/[4] ) S = [4] + 1/( [3] + 1/[2] )

N(T) = N(S)

~

Figure 4. Continued Fractions and Rational Knots.

the crossing. The three diagrams 𝐾+, 𝐾−, 𝐾0 taken together
are called a skein triple and here is the key relationship for
the Alexander-Conway Polynomial ∇𝐾(𝑧) that is assigned to
any oriented link diagram:

∇𝐾+ − ∇𝐾− = 𝑧∇𝐾0 .

Along with this skein relation, one has that

∇𝑂 = 1

where 𝑂 denotes an unknotted circle. If 𝐾 and 𝐾′ are topo-
logically equivalent knots or links, then

∇𝐾 = ∇𝐾′ .

This is the complete set of rules for finding the invariant
∇𝐾(𝑧) for any oriented link 𝐾.

In Figure 6, we illustrate the simplest consequence of
these axioms. The basic skein triple consists of 𝑈, 𝑈′, 𝑉 ,
where 𝑈 and 𝑈′ are unknots and 𝑉 is a pair of unlinked
circles. Each of 𝑈 and 𝑈′ evaluates to 1 and so their differ-
ence is 0. Thus we conclude that 𝑧∇𝑉 = 0 and so ∇𝑉 = 0.
In this way, an unlink 𝑉 (of any number of components
greater than 1) can be seen to receive the value 0 for its
Alexander-Conway polynomial ∇𝑉 (𝑧).

In Figure 7, we indicate this situation. There𝑇 is a trefoil
knot diagram and 𝑈 is the result of switching one crossing
in the diagram 𝑇. We can let 𝐾+ = 𝑇, 𝐾− = 𝑈 and 𝐾0 = 𝐿,
the link of two components illustrated in the top line of
the figure. Thus we have

∇𝑇 − ∇𝑈 = 𝑧∇𝐿

and

∇𝐿 − ∇𝑉 = 𝑧∇𝑊 .

K+ K_ K0
Figure 5. A SkeinTriple - three diagrams differing at one local
site.
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Figure 6. SkeinTriple for the UnLink.
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Figure 7. Trefoil Skein.

But we have that𝑈 is unknotted and 𝑉 is unlinked, and
𝑊 is unknotted. Furthermore we have checked that an un-
link receives a zero polynomial. Thus we calculate that

∇𝑇 − 1 = 𝑧∇𝐿

and

∇𝐿 = 𝑧,
and so

∇𝑇 = 1 + 𝑧2.
Any knot or link diagram can be unknotted and un-

linked by switching some of its crossings, just as we have
done for the trefoil knot 𝑇 and the Hopf link 𝐿. As a re-
sult, the Conway skein relation can be used to calculate the
Alexander-Conway polynomial ∇𝐾(𝑧) for any knot or link
𝐾. The remarkable fact is that, while there can be many dif-
ferent intermediate choices in this calculation, the answer
is always unique and is a topological invariant of the link
𝐾.

One of the consequences of tangle theory and skein
theory is that Conway was able to calculate invariants of
knots and links very quickly. In Figure 8 we illustrate the
well-known “Conway Knot” 𝐶𝐾. This is an eleven crossing
diagram of a non-trivial knot that has Alexander-Conway
polynomial equal to 1. It is a smallest knot with this prop-
erty. Is this knot the boundary of a disk embedded in four
dimensional space? One says that a knot with this four di-
mensional property is slice. It was an open problem since

Figure 8. The Conway Knot of Alexander-Conway polynomial
one.

Conway’s work circa 1970 to determine whether the Con-
way knot is slice. This problem was recently resolved by
Lisa Picarillo [16] in a stunning application of new invari-
ants whose origins can be traced toConway’s original work.
The knot is not slice.

Conway had a much more general notion of skein the-
ory than the consequence of the one basic skein relation
that we have quoted above. In this generalization, a knot
or link 𝐾 is placed in a “skein room” {𝐾} that represents its
embedding in three dimensional space. Non-associative
operations ⊕,⊖ between skein rooms are defined so that

{𝐾+} = {𝐾−} ⊕ {𝐾0}
and

{𝐾−} = {𝐾+} ⊖ {𝐾0}.
Within a given room {𝐾}, the knot or link𝐾 diagram can be
deformed by ambient isotopy. When we examine a skein
triple we take three representatives 𝐾+, 𝐾−, 𝐾0 one from
each of the rooms so that the representatives are exactly
the same except in the places where they are switched or
smoothed. We say that the {𝐾+} room is skein equivalent to
the concatenation {𝐾−}⊕{𝐾0}. In this way, one can produce
a skein decompositon of a knot or link. Refer to Figure 7 to
see that we have

{𝑇} = {𝑈} ⊕ {𝐿},
{𝐿} = {𝑉} ⊕ {𝑊},

so that

{𝑇} = {𝑈} ⊕ ({𝑉} ⊕ {𝑊}).
This final skein decomposition of 𝑇 expresses the trefoil
knot in the skein as a composition of two unknots and an
unlink. Every knot has such skein decomposition into un-
knots and unlinks. The non-associativity of the skein op-
erations is crucial. Two knots or links are said to be skein
equivalent if they have identical decompositions into un-
knots and unlinks. It is an open problem to this day to un-
derstand fully the skein equivalence classes of knots and
links. In defining the skein, Conway opened a new area of
topology.
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In the context of the skein theory, the Alexander-
Conway polynomial becomes a particular way to write
down invariants of the skein so that

∇(𝐴 ⊕ 𝐵) = ∇(𝐴) + 𝑧∇(𝐵)

and

∇(𝐴 ⊖ 𝐵) = ∇(𝐴) − 𝑧∇(𝐵).
What was not obvious in the 1970s was the fact that
there were other linear skein invariants than the Alexander-
Conway polynomial and its multi-variable relatives. The
most striking such invariant came in the wake of the Jones
polynomial and is often called the Homflypt polynomial
after its authors (in independent groups) Hoste, Ocneanu,
Millett, Freyd, Lickorish, Yetter, Przytycki and Trawczk.
The linear relation for Homflypt is

𝑎𝑃𝐾+ − 𝑎−1𝑃𝐾− = 𝑧𝑃𝐾0 ,

associating a Laurent polynomial 𝑃𝐾(𝑎, 𝑧) to an oriented
knot or link 𝐾 so that 𝑃𝐾(𝑎, 𝑧) is an invariant of the topo-
logical type of the knot. The Jones polynomial is a special
case of the Homflypt polynomial. A key property of the
Homflypt polynomial and the Jones polynomial is their
ability to distinguishmany knots from their mirror images.
The background mathematical contexts that support these
new skein polynomials involvemany aspects ofmathemat-
ical physics, Lie algebras and Hopf algebras. They are the
background to more recent developments in Vassiliev in-
variants and link homology.

Certain aspects of skein theory came to light in relation
to my own work. One was a model for the Alexander-
Conway polynomial that used the work of Seifert from the
1930s [13]. Another is a state summation model for the
Alexander-Conway Polynomial that is related to the origi-
nal paper of J. W. Alexander [1, 12]. The state summation
model is related to a state summation model (the Kauff-
man bracket state sum [13]) that I later discovered for the
Jones polynomial. This state summation has a particularly
simple form and a related unoriented skein expansion in
the pattern shown below. The bracket can be seen as a
special case of the so-called Kauffman two-variable poly-
nomial denoted 𝐿𝐾(𝑎, 𝑧) with skein relation

𝐿 + 𝐿 = 𝑧(𝐿 + 𝐿 )

and

𝐿 = 𝑎𝐿 ,

𝐿 = 𝑎−1𝐿 .

The bracket polynomial [13] model for the Jones poly-
nomial can be described by an unoriented skein expansion

of crossings into 𝐴-smoothings and 𝐵-smoothings
on a link diagram 𝐷 via:

⟨ ⟩ = 𝐴⟨ ⟩ + 𝐴−1⟨ ⟩ (1)

with

⟨𝐷○⟩ = (−𝐴2 − 𝐴−2)⟨𝐷⟩ (2)

⟨ ⟩ = (−𝐴3)⟨ ⟩ (3)

⟨ ⟩ = (−𝐴−3)⟨ ⟩. (4)

In the sense of the Conway Skein Theory we have an
unoriented skein with basic equation

{ } = { } ⊕ { }.

Byworking with the equation at each crossing of a diagram
for the knot, we obtain an unoriented skein decomposi-
tionwhere it is nowunderstood that the operation⊕ is nei-
ther commutative nor associative. Then the bracket poly-
nomial becomes an evaluation on this unoriented skein
satisfying the equation

⟨{𝑋} ⊕ {𝑌}⟩ = 𝐴⟨{𝑋}⟩ + 𝐴−1⟨{𝑌}⟩.

Just as in the case of the oriented skein, this unoriented
skein holds untapped mysteries that are slowly being re-
vealed. It is a conjecture that the bracket polynomial de-
tects the unknot, but it has been proved that the general-
ization of the bracket to a homology theory by Mikhail
Khovanov does detect the unknot by work of Kronheimer
and Mrowka. What else lies hidden in the oriented and
the unoriented skeins for knots and links?

In Figure 9, we give a hint about the Khovanov homol-
ogy. In that figure we illustrate all the states for the bracket
state summation. This can also be construed as the full
skein decomposition for the trefoil knot. Each diagram
contributes a term to the bracket polynomial and the sum
of these terms is the bracket polynomial. Khovanov ex-
amines this diagram of states and sees that it is a category.
The objects of the category are the states themselves. The
generating morphisms of the category are the arrows in
the figure. Each arrow connects two states that differ by
a smoothing at exactly one site, with the arrow going from
the state with fewer B-smoothings to the state with one
more B-smoothing. Khovanov defines his homology the-
ory for knots by taking an appropriate homology theory
for this category. Here we contact the roots of algebraic
topology where the nerve of a category yields a simplicial
structure and an appropriate functor from the category to
a category of modules will send up rich possibilities of ho-
mological algebra. None of this would have come to pass
if Conway had not found the skein.
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Figure 9. Bracket states and Khovanov Category - A category
made from the states.
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