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Introduction. Model reduction is ubiquitous in computa-
tional science and engineering. It plays a key role in mak-
ing computationally tractable outer-loop applications that
require simulating systems for many scenarios with dif-
ferent parameters and inputs. Typical outer-loop applica-
tions are control, uncertainty quantification, inverse prob-
lems, and optimal design [RHP08,BGW15]. With reduced
models, one numerically solves the differential equations,
which describe the physical system of interest, in problem-
dependent, low-dimensional reduced spaces, in contrast
to traditional, full models that are formulated in generic,
high-dimensional full spaces with, e.g., finite-element/
-volume methods. Reduced spaces are constructed in a
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one-time high-cost training (offline) phase from data and
then are leveraged in an online phase to provide approxi-
mate solutions often in a fraction of the computation time
required for full models, which can greatly speed up the
repeated simulations of systems at different scenarios in
outer-loop applications.

Model reduction hasmany attributes of what today is re-
ferred to as physics-informed machine learning and scien-
tific machine learning because model reduction simulates
physical systems by combining learning from data to con-
struct reduced spaces with traditional numerical methods
to solve equations from first principles and physical laws
in the learned reduced spaces.

Much progress has been made on deriving reduced
models for diffusion-dominated problems governed by
specific elliptic/parabolic equations that induce smooth
solution manifolds [RHP08, BGW15]. Smooth means
that the Kolmogorov 𝑛-width decays rapidly so that so-
lutions can be approximated well in low-dimensional
spaces [CD16]. However, the important class of prob-
lems given by hyperbolic equations, conservation laws,
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and transport-dominated phenomena—where a coherent
structure such as a wave or a phase transition travels
through the domain—typically induces rough solution
manifolds with slowly decaying Kolmogorov 𝑛-widths
[OR16, GU19]. Even though lower bounds of the decay
of the Kolmogorov 𝑛-width are available only for solution
manifolds of a limited number of equations, empirical
evidence of slowly decaying Kolmogorov 𝑛-widths is ob-
served in many applications in science and engineering
from pattern formation in biology to storm-surge forecast-
ing in weather modeling to solidification in additive man-
ufacturing to combustion processes in fluid mechanics.

Over the last several years, nonlinear model reduc-
tion has started to emerge that seeks nonlinear re-
duced approximations on manifolds rather than linear
approximations in reduced spaces as in classical lin-
ear model reduction. The goal of nonlinear model
reduction is breaking the Kolmogorov barrier which
means achieving a fast error decay even if solution
manifolds are not smooth and the Kolmogorov 𝑛-
width decays slowly as in transport-dominated prob-
lems [OR13,PW15,TPQ15,GU19,Peh20,ELMV20,LC20].
There are nonlinear methods that adapt the reduced space
explicitly, such as dynamic decompositions [SL09] and the
adaptive empirical interpolation method [PW15, Peh20]
that will be described in more detail below. Other non-
linear model reduction methods apply transformations to
recover (linear) low-rank structures. Examples of such ap-
proaches are the method of freezing [OR13] and shifted
POD [RSSM18] as well as methods motivated by machine
learning such as the approach introduced in [ELMV20]
based on Wasserstein spaces and the method proposed in
[LC20] that builds on deep autoencoders.

This note describes the Kolmogorov barrier of linear
model reduction and then outlines how nonlinear meth-
ods can overcome the barrier. A numerical example of
simulating combustion instabilities in a single-injector el-
ement of a rocket engine demonstrates adaptive empirical
interpolation [PW15, Peh20] as one example of a nonlin-
ear model reduction method.
Outer-loop applications. Consider a parametrized par-
tial differential equation (PDE)

𝜕𝑡𝑞(𝑥; 𝑡, 𝜇) +𝒩(𝑞; 𝜇) = 0 (1)

with operator𝒩 and appropriate initial and boundary con-
ditions. The function 𝑞 ∶ Ω × 𝒯 × 𝒟 → ℝ depends on
the spatial coordinate 𝑥 ∈ Ω ⊂ ℝ𝑑, time 𝑡 ∈ 𝒯 = [0, 𝑇]
and a parameter 𝜇 ∈ 𝒟. The parameter 𝜇 describes
properties such as conductivity in heat-transfer problems
and viscosity and Reynolds number in fluid-mechanics
problems. Traditional numerical methods such as finite-
difference, finite-element, and finite-volume methods

numerically solve (1) by approximating the solution1 𝑞 of
(1) in finite-dimensional vector spaces 𝒰. Let the space 𝒰
be 𝑁-dimensional. Further, let 𝜑1, … , 𝜑𝑁 be a basis of 𝒰,
which means that the solution function 𝑞 is approximated
as

𝑞𝑁(𝑥; 𝑡, 𝜇) = ∑𝑁
𝑖=1 𝛽𝑖(𝑡, 𝜇)𝜑𝑖(𝑥) ,

with 𝑁 coefficients 𝛽1(𝑡, 𝜇), … , 𝛽𝑁(𝑡, 𝜇) ∈ ℝ. Numerically
solving the PDE (1) for a given parameter 𝜇 ∈ 𝒟 means
solving for the 𝑁 coefficients 𝛽1(𝑡, 𝜇), … , 𝛽𝑁(𝑡, 𝜇) via a sys-
tem of equations such as

𝑟(𝑞𝑁(⋅; 𝑡𝑘, 𝜇), 𝑞𝑁(⋅; 𝑡𝑘−1, 𝜇), 𝜑𝑖) = 0 , (2)

for 𝑖 = 1, … , 𝑁 and 𝑘 = 1, … , 𝐾, where 𝑟 is an appro-
priate residual function that includes the time discretiza-
tion with 𝐾 time steps 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 = 𝑇.
Thus, the computational costs of numerically solving the
PDE (1), i.e., computing the coefficient vector 𝛽(𝑡, 𝜇) =
[𝛽1(𝑡, 𝜇), … , 𝛽𝑁(𝑡, 𝜇)]𝑇 ∈ ℝ𝑁 , scale with the dimension 𝑁
of the space𝒰 and the number of time steps 𝐾. If 𝑁 and 𝐾
are large, then computing a solution even for a single pa-
rameter 𝜇 ∈ 𝒟 can already be computationally demand-
ing. Thus, it can quickly become infeasible to compute so-
lutions for a large number𝑀 ≫ 1 of parameters 𝜇1, … , 𝜇𝑀
as needed in outer-loop applications such as optimization,
control, inverse problems, and uncertainty quantification.
Model reduction via projection. Model reduction via
projection seeks reduced spaces 𝒰𝑛 of low dimension 𝑛 ≪
𝑁 so that reduced solutions in 𝒰𝑛 can be rapidly com-
puted for a larger number of parameters [RHP08,BGW15].
The computational procedures of model reduction are typ-
ically split into a training (offline) phase, in which a re-
duced space 𝒰𝑛 is constructed, and an online phase, in
which the PDE is numerically solved in the reduced space
for parameters 𝜇1, … , 𝜇𝑀 ∈ 𝒟 as part of an outer-loop ap-
plication. The training phase is a one-time, high-cost pre-
processing step that is compensated if reduced PDE solu-
tions are computed for a large number 𝑀 of parameters
in the online phase as, for example, in outer-loop applica-
tions.

Reduced spaces are problem dependent in the sense
that they are constructed to approximate well the elements
of the specific solution manifold

ℳ = {𝑞(⋅; 𝑡, 𝜇) | 𝑡 ∈ 𝒯, 𝜇 ∈ 𝒟}
corresponding to the PDE of interest. A solution manifold
ℳ is visualized in Figure 1, where the manifold ℳ is de-
picted as a spiral.

A classical method to numerically construct a reduced
space is based on the principal component analysis: first,

1Typically, one considers, e.g., the weak form of the PDE in specific, appropri-
ate spaces; however, to ease exposition and to avoid heavy notation, we refer to
𝑞 simply as the solution of the PDE in the following.
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q(·; t, µ)

M = {q(·; t, µ) | t ∈ T , µ ∈ D}

Figure 1. Classical (linear) model reduction seeks to
approximate solutions of parametrized PDEs in
low-dimensional spaces, which corresponds to a linear
approximation of the potentially nonlinear structure of the
solution manifold ℳ. In this figure, the spiral depicts a
nonlinear solution manifoldℳ, which would be approximated
by a straight line with classical model reduction methods.

snapshots are computed, which are numerical PDE solu-
tions at a few training parameters 𝜇1, … , 𝜇𝑀train

∈ 𝒟 ob-
tained with standard numerical methods that solve in 𝒰.
Then, the first 𝑛 corresponding principal components of
the snapshots are computed to span the reduced space 𝒰𝑛.
The principal components depend on a metric that has
to be chosen adequately, which leads to weighted princi-
pal components; see, e.g., [BGW15]. In model reduction,
computing basis vectors via principal component analysis
is often referred to as proper orthogonal decomposition
(POD) [BGW15].

Numerically, a basis of a POD reduced space can be
computed, for example, with the singular value decompo-
sition: For 𝑡1, … , 𝑡𝐾 and 𝜇1, … , 𝜇𝑀train

, let

𝑞𝑁(𝑡𝑖, 𝜇𝑗) = [𝛽1(𝑡𝑖, 𝜇𝑗), … , 𝛽𝑁(𝑡𝑖, 𝜇𝑗)]𝑇 ∈ ℝ𝑁 , (3)

be a snapshot and let

𝑄 = [𝑞𝑁(𝑡1, 𝜇1), … , 𝑞𝑁(𝑡𝐾 , 𝜇𝑀train
)] ∈ ℝ𝑁×𝐾𝑀train (4)

be the snapshot matrix. Computing the singular value de-
composition of𝑄 and taking the 𝑛 left-singular vectors cor-
responding to the largest singular values as columns of the
basis matrix 𝑈𝑛 leads to the reduced space 𝒰𝑛 spanned by
the columns of 𝑈𝑛. The error of projecting a snapshot, i.e.,
a column of 𝑄, onto the space 𝒰𝑛 is bounded by the sum
of the squared singular values with index greater than 𝑛

𝐾
∑
𝑖=1

𝑀train

∑
𝑗=1

‖
‖𝑞𝑁(𝑡𝑖, 𝜇𝑗) − 𝑈𝑛𝑈𝑇

𝑛𝑞𝑁(𝑡𝑖, 𝜇𝑗)
‖
‖
2

2
=

𝑟
∑

𝑖=𝑛+1
𝜎2𝑖 ,

where 𝑟 > 𝑛 is the rank of the snapshot matrix 𝑄 and 𝜎1 ≥
𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 are the singular values. Thus, the decay
of the singular values of the snapshot matrix 𝑄 indicates
how well the snapshots can be approximated in 𝒰𝑛.

There is a large number of other methods for construct-
ing reduced spaces, such as greedy methods and interpola-
tory methods; we refer to the surveys [RHP08,BGW15] for
more details. All these methods have in common that re-
duced spaces 𝒰𝑛 are constructed in the training phase and
the approximate PDE solutions are then sought in the re-
duced space for different parameters and initial conditions
in the online phase.
Two motivating numerical experiments. Let us apply
projection-based model reduction, as described above, to
a diffusion problem such as the heat equation with a forc-
ing term

𝜕𝑡𝑞(𝑥; 𝑡, 𝜇) − 𝜇𝜕2𝑥𝑞(𝑥; 𝑡, 𝜇) = 1 , 𝑥 ∈ Ω , (5)

with spatial domain Ω = (0, 1) ⊂ ℝ. We impose ho-
mogeneous Dirichlet boundary conditions on the left and
right boundary. The initial condition is 0. The parameter
𝜇 ∈ 𝒟 = [0.1, 10] ⊂ ℝ is the heat conductivity coefficient
and we set it to 𝜇 = 1 in this experiment. The equation
(5) is discretized with 𝑁 = 1024 linear finite elements in
space and implicit Euler in time with time-step size 10−3.
The numerical solution up to time 𝑇 = 0.4 is show in Fig-
ure 2a.

We collect snapshots (3) over time for parameter 𝜇 = 1
and assemble the snapshot matrix (4). Recall that the sin-
gular values of the snapshot matrix indicate how well the
snapshots can be approximated in the reduced space con-
structed with the POD procedure. Let 𝜎1 ≥ ⋯ ≥ 𝜎𝑛 be the
first 𝑛 = 150 singular values of the corresponding snapshot
matrix. Figure 2b shows the normalized singular values,
where normalized means that the first normalized singu-
lar value is one. The decay of the singular values shows
that the first 15 left-singular vectors span a reduced space in
which the snapshots can be approximated up to machine
precision, which results in a dimensionality reduction of a
factor of almost 70, namely from dimension 𝑁 = 1024 of
the finite-element approximation to 𝑛 = 15 dimensions of
the reduced model. The decay of the singular values does
not tell us anything about the approximation quality of
the space 𝒰𝑛 for solutions of the PDE at other parameters
than the ones used for creating the snapshots. However,
the decay of the singular values often serves as a useful em-
pirical heuristic for how much reduction can be achieved;
a more formal description follows in the next section.

Let us now consider a transport-dominated problem
given by the linear advection equation

𝜕𝑡𝑞(𝑥; 𝑡, 𝜇) + 𝜇𝜕𝑥𝑞(𝑥; 𝑡, 𝜇) = 0 , 𝑥 ∈ Ω , (6)

withΩ = (0, 1) and periodic boundary conditions. The pa-
rameter 𝜇 is the transport speed and fixed to 𝜇 = 0.8 in this
experiment. The initial condition is a Gaussian probabil-
ity density function with mean 0.1 and standard deviation
1.5 × 10−2. The linear advection equation propagates the
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Figure 2. For the heat equation, which describes diffusion-dominated problems, the decay of the singular values indicates that a
reduced space of dimension 𝑛 = 15 is sufficient to approximate the snapshots up to machine precision in this example. In
contrast, the singular values decay orders of magnitude slower in the case of the linear advection equation, which indicates that
classical model reduction that derives linear approximations in spaces can be inefficient for such transport-dominated problems.

initial condition to the right as shown in Figure 2c. We col-
lect snapshots for this problem and compute the normal-
ized singular values, which are shown in Figure 2d. The
decay of the singular values is orders of magnitude slower
than for the diffusion problem.

In this numerical experiment, the transport-dominated
problem requires a higher-dimensional reduced space
than the diffusion-dominated problem to achieve a com-
parable error of approximating the snapshots in the
reduced space. Thus, the experiment indicates that
projection-basedmodel reduction that computes linear ap-
proximations of solutions in a reduced space 𝒰𝑛 obtained
with POD, as described above, is less efficient for transport-
than for diffusion-dominated problems. In fact, as we
will see in the next section, this observation holds more
generally and shows that different model reduction meth-
ods are needed for diffusion-dominated than for transport-
dominated problems.
Limitations of model reduction based on linear approxi-
mations. Let us now formalize the numerical observation
of the previous section. The key is to understand the low-
est error that can be achieved when approximating ele-
ments of a PDE-solution manifold ℳ in vector spaces of
dimension 𝑛; independent of how the reduced space is
constructed. The best-approximation error is given by the
Kolmogorov 𝑛-width, see, e.g., [MPT02,CD16],

𝑑𝑛(ℳ) = inf
𝒰𝑛

dim(𝒰𝑛)=𝑛

sup
𝑞(⋅;𝑡,𝜇)∈ℳ

inf
̃𝑞∈𝒰𝑛

‖𝑞(⋅; 𝑡, 𝜇) − ̃𝑞‖ , (7)

which is the lowest error that any 𝑛-dimensional space 𝒰𝑛
can achieve over all elements in ℳ with respect to the
norm ‖⋅‖. Other types of Kolmogorov 𝑛-widths have been
proposed that look at the average error over all elements
inℳ and that are formulated directly via a metric; see, e.g.,
[MPT02,CD16,ELMV20]. If 𝑑𝑛(ℳ) decays quickly with 𝑛,
then there exist low-dimensional spaces 𝒰𝑛 that approxi-
mate well the elements ofℳ. For example, the authors of
[MPT02] have shown that the Kolmogorov 𝑛-width of the
solution manifold of a specific elliptic PDE in an appro-
priate norm decays exponentially fast in the dimension 𝑛;
more general results for elliptic problems have been de-
rived in [CD16]. In Figure 2a-b, we also observe numer-
ically an exponential decay of the projection error of the
snapshots. However, it is important to note that the singu-
lar values do not, in general, correspond to the Kolmogorov
𝑛-width, because, e.g., the singular values depend on the
snapshots and only lead to a bound on the projection er-
ror corresponding to the POD space. In contrast, the Kol-
mogorov 𝑛-width gives the best-approximation error over
all possible spaces and is not tied to a specific way of con-
structing reduced spaces. It can be exceedingly difficult to
construct spaces that achieve the best-approximation error
given by the Kolmogorov 𝑛-width; however, sequences of
spaces that obtain the same error rate can be constructed
with greedy methods in certain situations [RHP08].
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Let us now consider the linear advection equation (6)
with a Heaviside step initial condition

𝑞0(𝑥) = {1 , 𝑥 ≤ 0 ,
0 , otherwise .

It has been shown in [OR16] that the corresponding solu-
tion manifold has a Kolmogorov 𝑛-width that cannot de-
cay faster than 1/√𝑛,

𝑑𝑛(ℳ) ≥ 𝑐 1
√𝑛

,

where 𝑐 > 0 is a constant independent of 𝑛. Even though
the decay of the singular values is insufficient to draw con-
clusions about lower bounds on the Kolmogorov 𝑛-width,
see comment above, in our numerical experiments, the
projection error of the snapshots also decays slower for
the transport-dominated problem than for the diffusion-
dominated problem. In general, lower bounds on the
Kolmogorov 𝑛-width of solution manifolds of transport-
dominated problems suggest a slow decay. For example,
the authors of [GU19] show similarly slow decays for prob-
lems governed by the wave equation.

Kolmogorov barrier. A slow decay of the Kol-
mogorov 𝑛-width is sometimes referred to as the
Kolmogorov barrier because it limits the decay of the
error that can be achieved with projection-based
model reduction methods that seek linear approxi-
mations in spaces.

Nonlinear approximations and model reduction. Non-
linear model reductionmethods seek to overcome the Kol-
mogorov barrier via nonlinear approximations. Let us first
consider a linear reduced approximation ̃𝑞 ∈ 𝒰𝑛, whichwe
can write as a linear combination

̃𝑞(𝑥; �̃�(𝑡, 𝜇)) = ∑𝑛
𝑖=1

̃𝛽𝑖(𝑡, 𝜇)𝜙𝑖(𝑥) (8)

that makes the dependence on the
coefficients �̃�(𝑡, 𝜇) = [ ̃𝛽1(𝑡, 𝜇), … , ̃𝛽𝑛(𝑡, 𝜇)]𝑇 explicit. The
coefficients ̃𝛽1(𝑡, 𝜇), … , ̃𝛽𝑛(𝑡, 𝜇) enter linearly in the approx-
imation ̃𝑞. Stated differently, the space 𝒰𝑛 spanned by the
set of basis functions {𝜙𝑖}𝑛𝑖=1 is fixed independent of which
element of 𝑞(⋅; 𝑡, 𝜇) ∈ ℳ is to be approximated—changing
the coefficients �̃�(𝑡, 𝜇) based on the to-be-approximated el-
ement 𝑞(⋅; 𝑡, 𝜇) does not change the basis functions. This
means that the Kolmogorov 𝑛-width applies and it lower
bounds the best-approximation error that can be achieved
with any reduced space of dimension 𝑛.

In contrast, consider now a nonlinear approximation of
the form

̃𝑞(𝑥; �̃�(𝑡, 𝜇), �̃�(𝑡, 𝜇)) = ∑𝑛
𝑖=1

̃𝛽𝑖(𝑡, 𝜇)𝜙𝑖(𝑥; �̃�(𝑡, 𝜇)) , (9)

where �̃�(𝑡, 𝜇) enters nonlinearly in the basis functions
𝜙1, … , 𝜙𝑛. Thus, there is a nonlinear dependence of ̃𝑞 on
�̃�(𝑡, 𝜇), which is in stark contrast to the linear approxima-
tion (8) that depends on �̃�(𝑡, 𝜇) alone and where the coef-
ficients �̃�(𝑡, 𝜇) enter linearly. Stated differently, the nonlin-
ear approximation (9) is a linear combination with func-
tions {𝜙𝑖(⋅; �̃�(𝑡, 𝜇))}𝑛𝑖=1 that depend through �̃�(𝑡, 𝜇) on the
element 𝑞(⋅; 𝑡, 𝜇) ∈ ℳ that is to be approximated, which
is different from the linear approximation (8) where the
basis functions are fixed independent of which element of
ℳ is approximated.

Even though nonlinear approximations of the form (9)
have been studied from a theoretical perspective for a long
time, we want to note that they are closely related to deep
neural networks, where �̃�(𝑡, 𝜇) are typically referred to as
features, which are learned together with the coefficients
�̃�(𝑡, 𝜇). Another class of nonlinear approximation meth-
ods selects basis functions from a large dictionary based on
the to-be-approximated element. These dictionary-based
methods are typically formulated via sparse regression and
compressed sensing. In the context of model reduction,
dictionary-based methods are sometimes referred to as lo-
calizedmodel reduction because reduced spaces are locally
varied depending on time, parameters, and/or spatial co-
ordinates [BGW15].

Nonlinear approximations (9) aremore expressive than
linear approximations (8) in the sense that nonlinear
approximations can lead to lower errors than the Kol-
mogorov 𝑛-width for the same number of degrees of free-
dom; thus, nonlinear approximations can break the Kol-
mogorov barrier. To see this, consider the linear advection
problem (6). In the case of this simple example, the an-
alytic solution can be obtained with the method of char-
acteristics 𝑞(𝑥; 𝑡, 𝜇) = 𝑞0(𝑥 − 𝑡𝜇) , where 𝑞0 is the initial
condition. Building on the nonlinear approximation (9),
set 𝑛 = 1 and the function 𝜙1 to

𝜙1(𝑥; 𝜃) = 𝑞0(𝑥 − 𝜃) .
Then, the nonlinear reduced model

̃𝑞(𝑥; �̃�(𝑡, 𝜇), �̃�(𝑡, 𝜇)) = ̃𝛽1(𝑡, 𝜇)𝜙1(𝑥; �̃�1(𝑡, 𝜇)) (10)

with fixed coefficient �̃�(𝑡, 𝜇) = [ ̃𝛽1(𝑡, 𝜇)] = [1] and feature
�̃�(𝑡, 𝜇) = [�̃�1(𝑡, 𝜇)] = [𝑡𝜇] exactly represents the solution.
Thus, for this example, the nonlinear reduced model (10)
breaks the Kolmogorov barrier of linear approximations
(8), for which the error cannot decay faster than 1/√𝑛,
where 𝑛 is the number of degrees of freedom.
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Stability and online efficiency. Increasing the ex-
pressiveness by breaking the Kolmogorov barrier
with nonlinear approximations is only a first step
towards nonlinear model reduction of transport-
dominated problems. Just as in numerical analy-
sis in general, increasing expressiveness alone is in-
sufficient. Rather, nonlinear reduced models and
their underlying nonlinear approximations have to
be stable to be useful for numerical computations.
Additionally, the goal of model reduction is achiev-
ing speedups compared to solving the original, full
model, which means that the computational com-
plexity of solving the reduced model online has to
scale independently of the dimension 𝑁 of the full-
model approximation space. Thus, a truly practi-
cal nonlinearmodel reduction approach breaks the
Kolmogorov barrier in a numerically stable and on-
line efficient way.

Adaptive empirical interpolation: Nonlinear approxima-
tions via adaptive spaces. Formulation (9) of nonlinear
approximations is typically too general to work with nu-
merically; see also the previous remark on stability and
online efficiency. For example, there are no restrictions on
the basis functions and their dependence on the features
�̃�(𝑡, 𝜇). We now describe a concrete numerical method for
nonlinear model reduction: the adaptive empirical inter-
polation method (ADEIM) introduced in [PW15, Peh20],
where the basis of the reduced space is adapted with low-
rank updates.

Consider a time-discrete spatially discretized systems of
nonlinear equations

𝑞(𝑘)𝑁 = 𝑓(𝑞(𝑘+1)𝑁 ; 𝜇) , 𝑘 = 0, … , 𝐾 − 1 ,

that arises from (2) via, e.g., an implicit Euler discretiza-
tion. The state vector 𝑞(𝑘)𝑁 at time step 𝑘 is of dimen-
sion 𝑁 and the dynamics are given by the function 𝑓 ∶
ℝ𝑁 × 𝒟 → ℝ𝑁 . Recall that 𝑈𝑛 ∈ ℝ𝑁×𝑛 is a basis matrix
with columns that span the reduced space 𝒰𝑛. Consider
first linear model reduction with empirical interpolation
[BMNP04,CS10] to obtain the approximation

�̃�(�̃�; 𝜇) = (𝑃𝑇𝑈𝑛)−1𝑃𝑇𝑓(𝑈𝑛�̃�; 𝜇)

where 𝑃 = [𝑒𝑖1 , … , 𝑒𝑖𝑛] ∈ {0, 1}𝑁×𝑛 is a selection ma-
trix with 𝑁-dimensional canonical unit vectors 𝑒𝑖1 , … , 𝑒𝑖𝑛
that have 1 at components 𝑖1, … , 𝑖𝑛 ∈ {1, … , 𝑁}, respec-
tively. This means 𝑃𝑇𝑓(𝑈𝑛�̃�; 𝜇) requires evaluating only
the 𝑛 component functions of 𝑓 corresponding to the
components 𝑖1, … , 𝑖𝑛 selected by 𝑃. The selection matrix
is obtained from 𝑈𝑛 typically with greedy approaches
[BMNP04,CS10]. The corresponding linear, static reduced

model is

�̃�(𝑘) = �̃�(�̃�(𝑘+1); 𝜇) , 𝑘 = 0, … , 𝐾 − 1 . (11)

In adaptive empirical interpolation [PW15,Peh20], the
basis matrix depends on the time step 𝑘 and is adapted via
low-rank updates as

𝑈(𝑘+1)
𝑛 = 𝑈(𝑘)

𝑛 + 𝛼𝑘𝛽
𝑇
𝑘 ,

where 𝛼𝑘 ∈ ℝ𝑁×𝑧 and 𝛽𝑘 ∈ ℝ𝑛×𝑧 and 𝑧 is the rank of
the update, which is in contrast to static (linear) empirical
interpolation (11) where the space is independent of the
time step. The update 𝛼𝑘𝛽

𝑇
𝑘 is obtained via an optimiza-

tion problem

min
𝛼∈ℝ𝑁×𝑧,𝛽∈ℝ𝑛×𝑧

‖
‖𝑆

𝑇
𝑘 ((𝑈(𝑘)

𝑛 + 𝛼𝑘𝛽
𝑇
𝑘 )𝐶𝑘 − 𝐹𝑘)‖‖

2

𝐹

where 𝑆𝑘 ∈ {0, 1}𝑁×𝑚 is a sampling matrix that selects
𝑚 components, similarly to the selection matrix in static
empirical interpolation. The coefficient matrix is 𝐶𝑘 =
(𝑃𝑇𝑘𝑈(𝑘)

𝑛 )−1𝑃𝑇𝑘𝐹𝑘 and 𝐹𝑘 ∈ ℝ𝑁×𝑤 is the right-hand sidema-
trix of window size 𝑤. The update 𝛼𝑘𝛽

𝑇
𝑘 can be obtained

via a singular value decomposition of an 𝑛×𝑤matrix. The
selection matrix 𝑃𝑘 also depends on the time step 𝑘 and
is adapted by either re-running the greedy selection pro-
cedures [BMNP04,CS10] or via low-rank updates [PW15].
The right-hand side matrix 𝐹𝑘 = [�̂�(𝑘−𝑤−1), … , �̂�(𝑘)] is as-
sembled by evaluating the full-model right-hand side func-
tion 𝑓 at the𝑚 components selected by 𝑆𝑘 and approximat-
ing all other components as

𝑆𝑘�̂�(𝑘) =𝑆𝑘𝑓(𝑈(𝑘)
𝑛 �̃�(𝑘); 𝜇),

�̆�𝑘�̂�(𝑘) =�̆�𝑘𝑈(𝑘)
𝑛 (𝑃𝑇𝑘𝑈(𝑘)

𝑛 )−1𝑃𝑇𝑘𝑓(𝑈(𝑘)
𝑛 �̃�(𝑘); 𝜇) ,

where �̆�𝑘 is the complementary sampling points matrix
that selects the components not selected by 𝑆𝑘. The sam-
pling points 𝑆𝑘 are adapted via greedy strategies, for which
several strategies have been proposed, including a compu-
tationally efficient strategy in [Peh20].

In summary, the process of the adaptive empirical inter-
polation method is to adapt the space 𝒰(𝑘)

𝑛 at time step 𝑘
to the space 𝒰(𝑘+1)

𝑛 at time step 𝑘 + 1. The adaptation is
achieved by applying a low-rank update to the basis ma-
trix 𝑈(𝑘)

𝑛 to obtain the basis matrix 𝑈(𝑘+1)
𝑛 of the adapted

space 𝒰(𝑘+1)
𝑛 . The update is computed from sparse eval-

uations of the full-model right-hand side function 𝑓 at a
few selected components; we refer to [Peh20] for technical
details.
Adaptive empirical interpolation: Nonlinear model re-
duction for predicting limit cycle oscillations in a com-
bustor. We apply the adaptive empirical interpolation as a
nonlinear model reduction approach to a quasi-1Dmodel
of a single-element rocket combustor, which is described
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Figure 3. Top: Numerically predicting the growth of the amplitude of pressure oscillations at the monitoring point in the
combustor chamber helps to derive designs that prevent combustion instabilities. Bottom: Pressure field of a 2D version of the
quasi-1D model combustor considered in this experiment. Pressure waves traveling through the combustion chamber make this
problem transport dominated, which motivates the reduction with nonlinear methods such as adaptive empirical interpolation
[PW15,Peh20].

in [XD17]. The goal is to predict the growth of the ampli-
tude of pressure oscillations at a monitoring point, which
provides critical insights for designing engines that avoid
combustion instabilities that are caused by unbounded
growth of the amplitude of the pressure oscillations. The
pressure oscillations lead to waves traveling through the
combustion chamber that make this problem transport
dominated and thus linear model reduction methods fail
for this problem; cf. [XD17,Peh20].

Figure 3 shows the setup of the problem. The oxidizer
is induced and meets the fuel at the back-step, where it
reacts instantaneously. The combustion products exit the
chamber through the nozzle. The combustion follows a
one-step reaction model,

CH4 + 2O2 → CO2 + 2H2O ,
where the fuel is gaseousmethane and the oxidizer is amix-
ture of oxygen and water. The parameter 𝜇 of the problem
controls the heat release. The governing equations of the
model combustor are described in detail in [XD17]. The
following numerical results summarize the experiments
conducted in [Peh20]. Figure 4(top) shows the pressure
at a monitoring point for heat release 𝜇 = 3.0, where the
combustor enters a steady state. In contrast, for heat re-
lease parameter 𝜇 = 3.8, the system enters a limit cycle os-
cillation as shown in Figure 4(bottom). In both cases, the
adaptive reduced model faithfully approximates the full
model while achieving a speedup of a factor 6–8 over var-
ious heat-release parameters. Thus, the nonlinear reduced
model enables quickly sweeping over a large range of pa-
rameters for informing early design decisions to prevent
an unbounded growth of the pressure amplitude.

Conclusions and open questions. There is a clear need
for nonlinear model reduction methods to derive effi-
cient reduced models of transport-dominated problems
in science and engineering. This note focused on increas-
ing expressiveness compared to linear model reduction to
break the Kolmogorov barrier. However, increasing expres-
siveness alone is insufficient for truly practical nonlinear
model reduction methods. Rather, nonlinear model re-
duction methods also have to be numerically stable, just
as traditional methods in scientific computing, which has
received little attention in nonlinear model reduction. Ad-
ditionally, the purpose of model reduction is to obtain
speedups: First, constructing nonlinear reduced models in
the training phase has to be cheaper in terms of, e.g., data
volume and training time than solving the outer-loop task
with the original, full model in the first place. This can be
challenging to achieve with data-hungry machine learning
methods. Second, it is paramount that solving nonlinear
reduced models at new parameters in the online phase is
computationally cheaper than solving the full model. The
ultimate goal is to achieve online efficiency in nonlinear
model reduction in the sense that the cost complexity of
solving the nonlinear reduced model at new parameters
scales independently of the dimension of the full approxi-
mation space. An often overlooked aspect is that nonlinear
model reductionmethods have to be easy to use for achiev-
ing wide acceptance in the domain sciences and engineer-
ing communities, which is getting increasingly more atten-
tion via nonintrusive methods that learn reduced models
from data [IA14,PW16,HU18].
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Figure 4. The nonlinear reduced model based on adaptive empirical interpolation faithfully predicts the pressure oscillation in
this model combustor for low (top) and high (bottom) heat release, which enables quickly sweeping over parameters to support
decision-making in early design stages.

Nonlinear model reduction is at its early stages. It
will require considerable progress of mathematical theory
and computational methods—bringing together machine
learning and scientific computing—to advance nonlinear
model reduction into a similarly rigorous, reliable, flexible,
and ubiquitous tool of science and engineering as linear
model reduction is today.

This manuscript contains only a limited number of
references because journal rules restrict the maxi-
mum number of references to 20; additional refer-
ences to other nonlinear model reductionmethods
are cited in the manuscript [Peh20].
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