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In May, I gave a talk about fair division problems in a
seminar. These are the kind of mathematical results that
you would use if, for example, you wanted to divide rent
fairly with your roommates, split a cake so that no one is
envious of another person’s piece, or distribute a stolen
necklace among your fellow thieves. I was asked if those
results could be used to “solve gerrymandering.” I was
surprised that a direct application would not help fix
this problem, but rather make it worse. In particular, one
would be able to draw extremely gerrymandered maps
without using strange shapes for the districts, which goes
against the intuition in this subject.

Gerrymandering is the practice of drawing political
maps to gain an advantage. There is evidence of gerry-
mandered maps all over the world, and it has been a
reason for heated debate in the United States for over 200
years. Suppose that you, a cartographer consulting for
the government, are tasked with dividing the country into
districts. Each district will have a representative. Every
person will choose a color, blue or red, and the color of
the representative of each district will be determined by
the majority of the votes there.

If 57 percent of the population voted blue and 43
percent voted red, it would seem fair that roughly 57
percent of the representatives are blue, and 43 percent
are red. However, a well-drawnmap can drastically change
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Figure 1. Two different divisions of the same
electoral map, where 57 percent of the votes are blue
and 43 percent are red, into seven districts. In the
first division blue wins 100 percent of the districts.
In the second division blue wins 28 percent of the
districts and red wins 72 percent.

this, as in Figure 1. The person drawing themap hasmuch
more power on the distribution of representatives than it
may seem at first sight.

An ill-intentioned cartographer has two tools at his
disposal: packing and cracking. Packing refers to concen-
trating a group in a single district where they win by
a large margin, thereby minimizing the impact of their
votes. Cracking refers to dispersing a group across many
districts, thereby diluting the impact of their votes. As
you may imagine, very biased maps often end up having
districts with unusual shapes to make the most of these
tools. Indeed, this is where the name gerrymandering
comes from, as one of the districts drawn in the redis-
tricting map of Massachusetts signed by Elbridge Gerry in
1812 was said to resemble a salamander. Figure 2 shows
an example of a district with an odd shape.

There has been a lot of effort to use mathematics
to understand and detect gerrymandering. One instance
is the group led by Moon Duchin at Tufts University [3].
Many approaches rely on finding oddly shaped districts or
counting voting efficiency. It is not an easy task, especially
since it is sometimes difficult to tell apart intentional
partisan gerrymandering and accidental gerrymandering.

Let’s see what we could do if we took the job of the
biased cartographer and decided to use mathematics to
gerrymander on purpose. What is the worst we could do
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Figure 2. Maryland’s third congressional district (in
brown) has an odd shape.

without using strange shapes for the districts? We will
ask the following of our map:
• The districts will have convex shapes, up to the

boundary of the map. In other words, if two points are
inside a district, the straight segment between them
is also there. This prevents any dents or holes in the
districts. Figure 3 shows an example with the state of
Georgia.

• Each district will hold the same number of voters, in
an effort to promote “equal representation.”
With these conditions, what is the worst we could do?

If we are inclined to benefit the party that already has the
majority of the total votes, I claim that we can always get
them to win every single district.

The tool we will use for this is a generalization of
a particularly beautiful theorem in discrete geometry,
called the ham sandwich theorem. The ham sandwich
theorem was conjectured by Steinhaus and subsequently
proved by Banach in 1938. This result is one of the first
applications of equivariant algebraic topology to metric
geometry. In formal terms, equivariant topology is the
branch of mathematics that studies continuous functions
between topological spaces that preserve some kind of
symmetry; certainly something that seems far detached
from our map-drawing goals. For two dimensions, it says
the following.

Theorem 1. Given two finite sets of points in the plane,
blue and red, both with an even number of points and such
that no three colored points are collinear, there is a line
that splits simultaneously both colors in half.

The reason for the name is the interpretation where
each color represents an ingredient on a table. Then,

Figure 3. A map of the state of Georgia divided using
fourteen convex sets.

Figure 4. Two parallel lines with the same direction
splitting their colored point sets.

for our two ingredients (say, ham and cheese) we can
always find a straight line that leaves exactly half of each
ingredient on each side.

To prove this result, draw two parallel lines. One will be
red, splitting the red points in half, and one will be blue,
splitting the blue points in half, as in Figure 4. If we are
lucky, they are the same line andwe are done. If not, assign
a direction to them so that they are pointing to the same
side, and start rotating them clockwise, always keeping
them parallel. It turns out that we can move them as we
rotate in order for each line to split its corresponding
color in half all the time. Moreover, the movement can be
continuous. Once you’ve given a half-turn, you will end
up with the same two lines that you started with, but

October 2017 Notices of the AMS 1011



THE GRADUATE STUDENT SECTION

Figure 5. After two steps, we have a division into four
convex districts where the same party wins all.

pointing in the opposite direction. If at the beginning a
person walking along the red line had the blue line on his
left, at the end he has the blue line on his right. Thus, at
some point the two lines had to coincide, giving us the
desired line. If the resulting line is a degenerate case that
goes through a point, it has to go through two points of
the same color. A small perturbation fixes this problem.

Let’s see how we can use the ham sandwich theorem
to draw our map. We start with a particular case, and
suppose that the number of districtswewant toproduce is
a power of two. Then, we can find a straight line that splits
both colors in half. We can repeat the argument for each
new region. We can continue this way, and in each new
region we can split both colors in half simultaneously.
After doing this 𝑘 times, we will have 2𝑘 districts, all
convex and all with the same portion of the blue voters
and the same portion of the red voters, as in Figure 5.
Whichever color had the majority of the votes will have
the majority in each district, as we wanted.

Unfortunately, since the number of districts in most
states is not a power of two, this method of repeatedly
halving the population will not work. Fortunately, we can
find similar biased maps, regardless of the number of
congressional districts we want.
Theorem 2 (Bespamyatnikh, Kirkpatrick, Snoeyink 2000;
Sakai 2002 [1], [4]). Suppose we are given positive integers
𝑔, ℎ, 𝑛, a set of 𝑔𝑛 red points in the plane, and a set of ℎ𝑛
blue points in the plane, so that no three colored points lie
in a line. Then, we can split the plane into 𝑛 convex sets,
each with exactly 𝑔 red points and ℎ blue points.

The result above with 𝑛 = 14 would give us a con-
gressional map for Georgia, perhaps as in Figure 3, using
simple shapes that greatly benefit whichever party has
won the total vote. Let us describe the general framework
to prove a result such as Theorem 2. This is a standard
approach often called the test map scheme. One of the
best introductions to this technique remains the book by
Jiří Matoušek [2].

First, we assume that instead of red and blue points,
we are given two smooth probability measures 𝜇1, 𝜇2. The
result with point sets can be recovered via approximation
results (this is not always trivial). Once we are set with
a family of partitions of the plane into 14 parts that we
want to use, we can parametrize it with a space 𝑋. Now
we can form a function 𝑓1 ∶ 𝑋 → ℝ13, that depends on
𝜇1, as follows. Given a partition 𝑃 = (𝐴1,… ,𝐴14) ∈ 𝑋, we
define

𝑓1(𝑃) = (𝜇1(𝐴1) −
1
14,… ,𝜇1(𝐴14) −

1
14) .

A1

A2

A3

A4

f1(P ) =
(
µ1(A1)− 1

4 , µ1(A2)− 1
4 , µ1(A3)− 1

4 , µ1(A4)− 1
4

)
Figure 6. We can repeat the argument with 𝑛 = 4.
Notice that if 𝜇1(ℝ2) = 1, then image(𝑓1) ≅ ℝ3 =
{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4 ∶ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 0}.

Notice that the image is contained in a 13-dimensional
subspace of ℝ14 because the sum of the coordinates is
always zero. A similar example is shown in Figure 6.
We repeat the construction with 𝜇2, and consider 𝑓 =
(𝑓1, 𝑓2) ∶ 𝑋 → ℝ2⋅13. The conditions on the measures make
𝑓 continuous. We are looking for an partition 𝑃 such
that 𝑓(𝑃) = 0̄. If it does not exist, we can reduce the
dimension of the image and construct a function to a
(2 ⋅ 13− 1)-dimensional sphere ̃𝑓 ∶ 𝑋 → 𝑆2⋅13−1 such that
̃𝑓(𝑃)= 𝑓(𝑃)

||𝑓(𝑃)|| .
Moreover, there is a natural action of the symmetric

group 𝑆14 in both spaces, which only permutes the
names of the districts. With this action, we have that
̃𝑓 is equivariant; i.e. ̃𝑓(𝑔𝑃) = 𝑔 ̃𝑓(𝑃) for all 𝑔 ∈ 𝑆14. The

question now becomes one of equivariant topology: Prove
that there is no 𝑆14-equivariant continuous map

̃𝑓 ∶ 𝑋 →𝑆14 𝑆2⋅13−1.

Sometimes factoring arguments and other tricks re-
duce the amount of algebraic topology needed. The proof
becomes a tug of war where one side consists of the con-
struction and paramentrization of 𝑋 and factorization
tricks, and in the other side you have the topological
machinery needed to solve the resulting problem. For in-
stance, Theorem 2 and the ham-sandwich theorem can be
proven by clever applications of the mean value theorem.
They both have generalizations in higher dimensions,
where we have points of as many colors as the dimension,
whose proofs rely on stronger results from algebraic
topology, such as the Borsuk-Ulam theorem and Dold’s
theorem.

Theorem 3 (Dold 1983). Given a finite group 𝐺 with |𝐺| >
1, if 𝑋 and 𝑌 are two paracompact spaces with free ac-
tions of𝐺,𝑋 is 𝑛-connected and𝑌 is at most 𝑛-dimensional,
there is no 𝐺-equivariant map 𝑓 ∶ 𝑋 →𝐺 𝑌.

Other extensions exist if you want to divide the plane
(or a convex object) into convex pieces that are equal in a
different light. For example, let us consider partitions of
an equilateral triangle into five convex pieces. However,
instead of requiring that each set has the same number
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Figure 7. Trying to find partitions with parts of equal
area and equal perimeter breaks most factorization
tricks.

of blue and red points, is it possible for the five pieces
to have equal area and equal perimeter? An attempt is
shown in Figure 7, but it is no easy task.

This seemingly innocent question was first asked
by Nandakumar and Rao. Direct applications of Dold’s
theorem fail, so one has to dive deeper into topological
methods. The answer to this problem is positive, and
has far-reaching generalizations, best explained in an
expository article by Günter M. Ziegler [5]. Those results
point out the fact that if there is an accepted formula
to measure gerrymandering, it might still be possible to
subdivide a map into convex pieces where each part has
the same proportion of each colored set and all yield the
same result under the formula (we are no longer requiring
all districts to hold the same population).

In other words, even with strong conditions on the
shape of the districts, gerrymandering can be done. An
analysis of an electoral map should not be based solely
on the geometry of the districts. In particular, you should
be wary if the person drawing congressional maps knows
his share of algebraic topology.
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