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Christine Heitsch
Strings, Trees, and RNA Folding
We highlight some challenges and opportunities at the
interface of discrete mathematics and molecular biology,
illustrating that this interaction motivates new com-
binatorial theorems as well as advancing biomedical
applications.

High school teaches us that RNA’s role is to mediate
the production of proteins from DNA. Closer inspection,
however, reveals a vast complexity of structure and
diversity of function. As illustrated in Figures 1 and 2,
RNAmolecules are essential to cellular processes ranging
from bacterial communication to viral capsid assembly.
It goes almost without saying that advancing knowledge
of how RNA functions in these diverse roles has the
potential for tremendous scientific impact.

Figure 1. How do bacteria communicate? Four RNA
molecules (diagrammed here through marine bio-
luminescence) are essential to the quorum sensing
process by which bacteria regulate collective behav-
ior, ranging from this benign light display to cholera
toxicity. Despite high sequence similarity and known
functional redundancy [1], the branching of the four
possible RNA structures can vary significantly. New
results in combinatorics and its applications provide
insight into this important, yet difficult-to-determine,
molecular characteristic.

A basic biological principle is that “function follows
form”; that is, to understand what a molecule does, one

Christine Heitsch is professor of mathematics at the Georgia
Institute of Technology. Her e-mail address is heitsch@math
.gatech.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1567

Figure 2. How do viral capsids assemble? The RNA
genome (gold) is partially visible inside the quasi-
icosahedral protein capsid (purple). The resolution
of this detailed crystal structure [2] is such that the
number and approximate length of many runs of
stacked base pairs are known, but the composition
and connectivity of these helices are not. New knowl-
edge of RNA branching configurations is needed to
understand how this viral sequence folds into its
dodecahedral cage.

must first know how it is structured. Generically, an RNA
molecule is a single nucleotide sequencewhich folds into a
3D conformation via a set of noncrossing, intrasequence
base pairings known as a secondary structure. Given
that the goal of 3D experimental determination remains
inaccessible for most RNA structures, computational
predictions of possible base pairing configurations, such
as the fouroutlined in Figure1, are essential for generating
functional hypotheses.

Yet accurate prediction of the branching of these
structures remains a fundamental open question. Given
the combinatorial nature of the problem, this is an
opportunity for discrete models, methods, and analyses
to provide insights into a complex biomolecular process.

To begin to appreciate the challenge, first consider the
model sequence g6a4c6 = gggggg aaaa cccccc. Under
the Watson-Crick association of g and c, it folds into a
structure with one helix (run of 6 stacked base pairs) and
one loop (single-stranded region) known as a “hairpin.”
Thus, the lower left structure in Figure 1 has 3 hairpins,
1 internal loop, and the central loop from which branch
3 helical arms.

To analyze this coding of 2D branching information in
a linear biochemical chain, we model an RNA structure
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Figure 3. How do branching configurations relate? Five arrangements of loops and helices for the RNA se-
quence A4 (G6 A4 C6 A4)3, determined by the pairing of G (labeled 1, 3, 5) and C (labeled 2, 4, 6) segments.
Arrows indicate movement between structures under allowable pairing exchanges. Two configurations with
a graph geodesic of length 2 comprise a meander; the corresponding noncrossing perfect matchings form a
single closed loop when drawn on the same endpoints, one above and the other below, as illustrated in the in-
set figure. Although these closed meanders arise in various mathematical settings, their exact enumeration
problem remains open.

as a plane tree—that is, a rooted tree whose subtrees
are linearly ordered, by mapping loops to vertices and
helices to edges. In Figures 1 or 3 this would correspond
to collapsing each circular region to a point and merging
two parallel lines into one. This abstraction preserves
the basic structural arrangement, including information
about the sequence ordering and the energetic types of
different loop structures.

Mathematics is a
vital source of new
structural insights.

We then generalize
our toy example from
above to consider sat-
urated (fully paired,
hence the lowest free
energy) structures for
𝑅 = a4 (g6a4c6a4)𝑛
and their correspond-

ing plane trees. This highlights one of the critical issues:
there can be exponentially many different possible low-
energy branching configurations for an arbitrary RNA
sequence.

Hence, even in a situation, as in Figure 2, where
some experimental information about the 3D structure is
known, mathematics is a vital source of new structural
insights. As we will discuss, by using strings and trees as
a combinatorial model of RNA folding, we can analyze dif-
ferent possible branching configurations at viral genome
length scales. We prove theorems, using methods from
enumerative, probabilistic, and geometric combinatorics,
which address questions such as: What are the trade-offs

among different types of loop structures? Is there a typical
degree of loop branching? What is the dependence on the
thermodynamic optimization parameters? Since the accu-
racy of computational base pairing predictions decays
rapidly with sequence length, these theoretical results
help separate structural signals from thermodynamic
noise, thereby supporting alternative hypotheses in viral
capsid assembly.1

Conversely, under a suitable abstraction, the space
of branching configurations reveals significant combi-
natorial structure. The challenge of understanding the
different possible low-energy secondary structures for
an RNA sequence motivates a new local move on plane
trees/noncrossing perfect matchings. This yields graphs,
as in Figure 3, isomorphic to the Hasse diagram for the
lattice of noncrossing partitions. By recapitulating this
well-known combinatorial structure, we gain insights that
now allow us to count and characterize the orbits under
the Kreweras complementation operator. This result then
naturally leads to considering some new approaches to
the challenging open problem of meander enumeration.
In this way, we illustrate that the interaction of the two
disciplines is fruitful formathematics as well as beneficial
for biology.

1For more on the mathematics of molecular machines, see “Build-
ing Polyhedra by Self-Assembly” by Govind Menon in this issue
(page 822).
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Jonathan R. Kujawa

Realizing the Spectrum of Tensor Categories
The usefulness of attaching geometry to algebraic objects
goes back at least to Descartes. Using geometry we can
obtain qualitative information about our original algebraic
object. Given a polynomial with real coefficients, 𝑝(𝑥), we
teach schoolchildren to look at the graph of 𝑦 = 𝑝(𝑥) in
ℝ2. By examining the x-intercepts, y-intercepts, and end
behavior they can say things about the degree, leading
coefficient, the constant term, and so on.

A more modern example is the prime ideal spectrum,
Spec(𝑅), of a commutative ring 𝑅. More generally, given a
finitely generated 𝑅-module𝑀, we can define the support
of 𝑀, supp(𝑀), to be the subset of Spec(𝑅) consisting
of all prime ideals 𝑃 such that 𝑀 localized at 𝑃 does
not vanish. The geometry of the spectrum and support
again captures algebraic information. For example, for
two modules the support of a direct sum is the union of
the supports, and the support of the tensor product is
the intersection of the supports.

Now suppose𝒞 is a category which admits both a direct
sum and a tensor product. We also assume the tensor
product is “commutative” in that there are canonical
isomorphisms 𝑋⊗𝑌 ≅ 𝑌⊗𝑋 for all pairs of objects 𝑋
and𝑌. For example,𝒞 couldbe𝑘-vec, the category of finite-
dimensional 𝑘-vector spaces over a fixed ground field 𝑘
with the usual direct sum and tensor product operations.
In this case the canonical isomorphism 𝑉⊗𝑊 → 𝑊⊗𝑉 is
given by the “flip” map 𝑣⊗𝑤 ↦ 𝑤⊗𝑣. The ground field
acts as the identity for the tensor product in that there
are canonical isomorphisms 𝑘 ⊗ 𝑉 ≅ 𝑉 ≅ 𝑉 ⊗ 𝑘. Such
tensor categories are common throughout mathematics.
Another elementary example is the category of closed,
orientable surfaces with direct sum given by disjoint
union and tensor product given by connected sum.

Such a category can be thought of as a categorical
analogue of a commutative ring, with the direct sum as the
“addition” and the tensor product as the “multiplication.”
With this in mind it is natural to ask for the notion of
an ideal. A tensor ideal of 𝒞 is a full subcategory 𝐼 which
has the property that (1) if 𝑀 is an object of 𝐼 and 𝑁 an

Jonathan R. Kujawa is professor of mathematics at the University
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object of 𝒞, then 𝑀⊗𝑁 is an object of 𝐼, and (2) 𝐴⊕ 𝐵
is an object of 𝐼 if and only if both 𝐴 and 𝐵 are objects
of 𝐼. The second condition is the requirement that 𝐼 be
a “thick” subcategory. Thinking of the kernels of ring
homomorphisms, the thick condition becomes plausible
once we notice that for any functor of tensor categories,
𝐹 ∶ 𝒞 → 𝒟, we have 𝐹(𝐴⊕ 𝐵) ≅ 0 if and only if 𝐹(𝐴) ≅ 0
and 𝐹(𝐵) ≅ 0. Finite-dimensional 𝑘-vector spaces is a
categorical version of a field in that it has no proper
ideals. Namely, if 𝑉 is a nonzero vector space in 𝐼, then by
writing it as a direct sum of one-dimensional subspaces
and using the thick condition, it follows that 𝑘 lies in 𝐼.
Therefore every vector space 𝑊 ≅ 𝑊⊗𝑘 lies in the tensor
ideal 𝐼.

Things become more interesting when the category is
not semisimple. In this case the structure of the category
can be quite complicated. Just classifying the objects is
already a hopeless task in all but the easiest examples.
A more reasonable goal is to describe the tensor ideals.
Doing so gives us an idea of the coarse structure of the
category and, in particular, gives information about when
one object can be obtained from another by direct sums,
direct summands, and tensor products.

In easy cases, the tensor ideals can be described by
hand. For example, let 𝑘 be a fixed ground field which
is algebraically closed and of characteristic 𝑝 > 0. Let
𝐶𝑝 be the cyclic group of order 𝑝 and let 𝐶𝑝-mod be
the category of finite-dimensional 𝐶𝑝-modules, that is,
finite-dimensional 𝑘-vector spaces with a linear action by
the elements of 𝐶𝑝. Then 𝐶𝑝-mod again admits a tensor
product. Namely, given 𝐶𝑝-modules 𝑀 and 𝑁, define
𝑀⊗𝑁 to be the tensor product as vector spaces with 𝐶𝑝
action given by the formula 𝑔.(𝑚 ⊗ 𝑛) = (𝑔.𝑚) ⊗ (𝑔.𝑛)
for 𝑔 ∈ 𝐶𝑝. There are 𝑝 nonisomorphic 𝐶𝑝-modules,
𝑄1,… ,𝑄𝑝, which cannot be written as a direct sum of
smaller modules. The dimension of𝑄𝑑 as a 𝑘-vector space
is 𝑑. In particular, 𝑄1 is the unique simple 𝐶𝑝-module,
and 𝑄𝑝 is the unique projective indecomposable module.
In this case, direct calculations show that there are two
tensor ideals: the entire category and the full subcategory
consisting of projective modules. A more general and
much more difficult problem is to classify the tensor
ideals of 𝐺-mod when 𝐺 is any finite group in which 𝑝
divides the order of 𝐺.

Now let𝒦 be a tensor triangulated category consisting
of compact objects. That is, 𝒦 is a triangulated category
with a compatible tensor product and subject to suitable
finiteness assumptions. Approximately ten years ago Paul
Balmer introduced geometry by defining the spectrum of
𝒦 in the spirit of commutative ring theory. In this setting
a tensor ideal is taken to be a full triangulated subcategory
with properties (1) and (2) as above. A tensor ideal 𝐼 is
called prime if it is a proper ideal and if whenever 𝐴⊗𝐵 is
an object of 𝐼, either𝐴 or 𝐵 is an object of 𝐼. The spectrum
of 𝒦, Spc(𝒦), is then the collection of all prime tensor
ideals with the Zariski topology. Balmer also defined the
support of any object 𝑀 in 𝒦 as the set of all prime
tensor ideals which do not contain 𝑀.
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Tensor triangular
geometry is a
beautiful and

powerful theory.

Balmer proved that
the spectrum and
support for 𝒦 are
universal in a precise
sense among support
theories for𝒦. He also
proved that it provides
a classification of the
thick tensor ideals of
𝒦 and, hence, that it provides a geometric answer to our
earlier question. Balmer, collaborators, and others have
gone on to show that tensor triangular geometry is a rich
theory which brings valuable new tools and insights to
a variety of settings. Those who are able to attend the
November Western Sectional Meeting at the University of
California, Riverside, will have the opportunity to hear
this story in person at Balmer’s Invited Address “An
invitation to tensor-triangular geometry.”

Tensor triangular geometry is a beautiful and powerful
theory. However, for tensor triangular categories of inter-
est it is desirable to have a concrete description of the
spectrum. Such a realization is both useful for applica-
tions and to connect it to existing theories. For example,
when he introduced tensor triangular geometry, Balmer
proved that if 𝒦 is the homotopy category of bounded
complexes of finitely generated projective 𝑅-modules,
then the spectrum and support recover Spec(𝑅) and its
support. He also showed that if 𝒦 is the stable module
category for 𝐺-mod when 𝐺 is a finite group, then the
spectrum and support match the long-studied spectrum
of the cohomology ring of 𝐺 and cohomological support
varieties for 𝐺-modules. In particular, this recovers the
classification of thick tensor ideals in this setting first
obtained by Benson-Carlson-Rickard twenty years ago.
This shows that tensor triangular geometry encompasses
known theories. Additional examples have since been
computed. Nevertheless, it remains a challenging prob-
lem to give an explicit realization of the spectrum and
support for tensor triangulated categories of interest.

In joint work with Brian Boe and Daniel Nakano, we
provide a description of the spectrum for several tensor
triangulated categories which appear in nature. We give
explicit, down-to-earth descriptions of the spectrum for
the stable category of finite-dimensional modules for
the complex Lie superalgebra 𝔤𝔩(𝑚|𝑛) and for the stable
category of finite-dimensional modules for quantized
enveloping algebras at a root of unity. The goal of the
talk will be to describe these results through a gentle
introduction involving plenty of examples.

Photo Credit
Photo of Jonathan Kujawa by Anne Dunn, courtesy

of Jonathan Kujawa.
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Govind Menon

Building Polyhedra by Self-Assembly
Gromov begins an interesting—and speculative—recent
article [2] with the question, “Is there mathematics in
biology?” The answer, I think, is yes, but this is not
immediately apparent, since the real underlying question
is whether modern biology can inspire new forms of
mathematics in a way that compares to the deep ties
that bind mathematics and physics. If we believe that
an essential aspect of mathematics lies in the discovery
of abstract principles from empirical knowledge, there
is little doubt that biology today presents us with an
abundance of the “raw stuff.” What seems much harder
is to process this raw stuff into beautiful mathematics,
especially if one begins with the genetic code and the
theory of evolution.

The topic of my talk is not true biology, but an
instance of “synthetic biology.” All biological organisms
build themselves or “self-assemble.” This is, of course,
familiar to us from our everyday experience, but my
talk will be about much smaller organisms. For the
past twenty years, nanotechnologists have been trying
to manufacture devices by mimicking biological self-
assembly and the exquisite design of molecular machines.
The goal ofmy talk is to advertise one aspect of this rapidly
growing field and to explain how an important biological
example—the self-assembly of viruses with icosahedral
symmetry—can inspire and guide the development of
self-assembly in technology.

Viruses are biological organisms that lack the cellu-
lar machinery necessary for independent existence. The
simplest viruses consist of genomes contained within a
protein shield (the capsid). The capsid disassembles when
the virus attacks a host cell; the virus genome then hijacks
the host cell and uses it to make many more copies of
virus genome andproteins, which then rapidly reassemble
into new copies of the virus. The natural design of viruses
has two elegant features that should appeal to all math-
ematicians: genetic economy and structural symmetry.
The genetic sequences of primitive viruses are very short.
For example, the genome of MS2, a well-studied virus, has
only 3,569 nucleotides that code for four proteins (lysis,
replicase, maturation, and coat protein), each of which
has a very specific function. The lysis enzyme degrades
the cell wall of the host, and the replicase catalyzes the
reproduction of the virus. The other two proteins are used
to build the MS2 capsid: it consists of 180 copies of the
coat protein, pinned at one end by the maturation protein,
in a beautiful arrangement of dimers with icosahedral
symmetry (Figure 1). While the genome of MS2 has been

Govind Menon is professor of applied mathematics at Brown Uni-
versity. His e-mail address is govind_menon@brown.edu.
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Figure 1. A ribbon-diagram showing the structure
of the bacteriophage MS2. The coat protein exists
in three distinct conformations (A, B, and C), which
merge in pairs into A/B dimers (blue/green) and C/C
dimers (maroon). A/B dimers cluster into pentamers
around the 5-fold axes of an icosahedron, three alter-
nating A/B and C/C clusters form at the 3-fold axes,
and the C/C dimers sit as axes of 2-fold symmetry.

known since the mid-1970s, it is only recently that the
intricate combinatorial structure of the co-assembly of
the capsid with RNA folding was deciphered by Reidun
Twarock and her colleagues [1].1

The self-assembly of viruses has inspired many exam-
ples of synthetic self-assembly. My work has mainly been
in collaboration with David Gracias, an experimentalist
at Johns Hopkins University. Over the past fifteen years,
David has used photolithography to design many devices
and containers that fold themselves into a final shape
once they are released from a substrate. The devices built
in his lab are small (a hair’s width and smaller), but much
larger than viruses such as MS2. This allows us to observe
the pathways of self-folding, unlike the process of self-
assembly of viruses, which must be inferred indirectly
(Figure 2).

The unfolding of a polyhedron into a planar net is a
classical problem in discrete geometry, and our collabora-
tion began when David askedme what the best net should
be for a self-folding dodecahedron. The issue here is a
combinatorial explosion. The cube has only 11 nets, each

1For more on connections between combinatorics and molecu-
lar biology, see “Strings, Trees, and RNA Folding” by Christine
Heitsch in this issue (page 817).
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Figure 2. Optical microscope images of surface-
tension-driven self-assembly of a dodecahedron from
a net. The sides of each face of the dodecahedron are
300 μm.

of which may be tested in the lab. However, the dodeca-
hedron has 43,380 nets, and, to my surprise and delight,
simple heuristics along with our computations revealed
the best nets in the lab [4]. Since then ourwork has evolved
into a study of the pathways of self-assembly [3]. This
has required some surprisingly sophisticated mathemat-
ics. My current goal is to understand the conformational
diffusion of polyhedral linkages. More formally, this in-
volves a rigorous formulation for Brownian motion on
algebraic varieties defined by polyhedral linkages, along
with effective algorithms for simulation.
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Kevin M. Pilgrim

Semigroups of Branched Mapping Classes:
Dynamics and Geometry
A rational function of a single complex variable defines
a continuous map of the Riemann sphere to itself. In the
early 1980s, W. Thurston gave a topological characteriza-
tion of certain rational functions among the much larger
set of self-branched coverings of the sphere. Implicit in
his development are generalizations of mapping class
groups. These generalizations will be the focus of my
talk.

Mapping Class Groups
The simplest mapping class group is that of the torus.
The mapping class group of the torus 𝑇2 is the group
Mod(𝑇2) of orientation-preserving self-homeomorphisms
of the torus, where two such maps are identified if they
are isotopic, i.e. connected by a continuous path of
homeomorphisms.

Matrices provide lots of examples. Let 𝑇2 = ℝ2/ℤ2 be
the usual presentation of the torus as a quotient of the
plane. Suppose 𝐴 = [ 𝑎 𝑏

𝑐 𝑑 ]. The linear map ℝ2 → ℝ2 given
by [ 𝑥

𝑦] ↦ 𝐴[ 𝑥
𝑦 ]descends toahomeomorphism𝑓 ∶ 𝑇2 → 𝑇2

that preserves orientation if and only if it sends ℤ2 onto
itself and det(𝐴) > 0. Equivalently, 𝑎,𝑏, 𝑐, 𝑑 ∈ ℤ and
det(𝐴) = 1, i.e. 𝐴 ∈ SL2(ℤ). For example:

• 𝐴 = [ 0 −1
1 1 ]. A calculation shows 𝐴 has order 6.

The map 𝑓 is periodic.
• 𝐴 = [ 1 1

0 1 ]. Since 𝐴𝑛 = [ 1 𝑛
0 1 ], 𝑓 has infinite order.

The 𝑥-axis is an eigenspace of 𝐴. Its image under
projection to𝑇2 gives a simple closed curve which
is preserved by 𝑓. Infinite order maps for which
some iterate preserves a curve are called aperiodic
reducible.

• 𝐴 = [ 2 1
1 1 ]. Again 𝐴 has infinite order. The

eigenspaces have irrational slopes and project
to dense subsets of 𝑇2. If we use suitable local
coordinates (𝑢, 𝑣) given by the eigenspaces, 𝑓
looks like (𝑢, 𝑣) ↦ (𝜆𝑢,𝜆−1𝑣) where 𝜆 = 3+√5

2 is
the larger eigenvalue. No iterate of 𝑓 fixes a curve.
Such 𝑓 are called irreducible.

It turns out that every element of Mod(𝑇2) arises in
this way: the mapping class group Mod(𝑇2) is naturally
isomorphic to SL2(ℤ). Put another way, mapping classes
of the torus are determined by their induced action on
the fundamental group ℤ2 of 𝑇2.

Kevin Pilgrim is professor of mathematics at Indiana University.
His research is partially supported by the Simons Foundation. His
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Figure 1. Shown are two fundamental domains for
the torus ℂ/⟨1,𝜏⟩ where 𝜏 = 𝑒2𝜋𝑖/6. The ℝ-linear map
induced by 1 ↦ 𝜏 and 𝜏 ↦ −1 + 𝜏 is a rotation of
order 6 and descends to an isometry on the torus.

Conjugacy
Two elements 𝑓, 𝑔 ∈ Mod(𝑇2) are conjugate if 𝑔 = ℎ−1𝑓ℎ
for some ℎ ∈ Mod(𝑇2). When does this happen? Thinking
dynamically, two maps 𝑓, 𝑔 are conjugate if they coincide
after a change of coordinates via an element ℎ of Mod(𝑇2).
Properties like being periodic, reducible, or irreducible are
thus invariant under conjugacy. The conjugacy problem
asks, given 𝑓, 𝑔, can you tell if 𝑓 and 𝑔 are conjugate? And
if the answer is “yes,” can you produce such an element
ℎ? For Mod(𝑇2) the answer is “yes”; the classification of
conjugacy classes goes back to Gauss.

Geometrization
There is another way to think about the classification
of conjugacy classes, via geometrization. Roughly, ge-
ometrization is theproblemoffindinga “nice”or “optimal”
geometric structure for some topological object. Think
about the (surface of the) bagel you ate this morning.
It inherits a metric from usual Euclidean 3-space. That
metric has variable curvature. In contrast, the Euclidean
metric on the planeℝ2 descends to ametric on𝑇2 which is
flat: the curvature is zero everywhere. The map 𝑓 induced
by 𝐴 = [ 0 −1

1 1 ] seems simple enough, but it distorts this
Euclidean metric! There are, however, lots of flat metrics
on 𝑇2. They can be fruitfully organized by points in the
upper-half-plane ℍ ⊂ ℂ. Given 𝜏 ∈ ℍ, we can identify ℝ2

as a real vector space with ℂ via (1, 0) ↦ 1 and (0, 1) ↦ 𝜏,
and transport the Euclidean metric on ℂ to one on ℝ2

via this identification. If we take the Euclidean metric
on ℂ and take 𝜏 = exp(2𝜋𝑖/6), 𝑓 becomes an isometric
rotation of order 6; see Figure 1.

In general, if 𝑓 ∈ Mod(𝑇2) and if we equip 𝑇2 with
a Euclidean metric corresponding to a point 𝜏 ∈ ℍ in
this way, then we can transport this metric via 𝑓 to
get another metric on 𝑇2. This leads to an action of
Mod(𝑇2) on the space of metrics ℍ. The action is given
by [𝑎 𝑏

𝑐 𝑑].𝜏=↦ 𝑎𝜏+𝑏
𝑐𝜏+𝑑 .

Given 𝜏1, 𝜏2 ∈ ℍ, there is a natural notion of distance
𝑑(𝜏1, 𝜏2) between the corresponding flat metrics on 𝑇2

that turns out to be the hyperbolic metric on ℍ; its
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infinitesimal form is given by 𝑑𝑠 = 2|𝑑𝜏|
ℑ(𝜏) . This yields

a natural invariant of 𝑓 ∈ Mod(𝑇2) via its minimum
displacement inf{𝑑(𝜏,𝐴.𝜏) ∶ 𝜏 ∈ ℍ}. This can be (1) zero
and realized by some fixed-point 𝜏, (2) zero and not
realized by any point, or (3) positive and realized by
points 𝜏 lying along some geodesic that is preserved
by the action of 𝑓. These correspond to the three cases
above. The first and third cases are called geometrizable:
an optimal metric exists. For reducible cases, we can get
close to optimal, but we cannot achieve it.
General Mapping Class Groups
Now suppose 𝑆 is an arbitrary closed orientable surface
and 𝑃 ⊂ 𝑆 is finite. The mapping class group Mod(𝑆,𝑃) is
the group of orientation-preserving homeomorphisms 𝑓 ∶
𝑆 → 𝑆 for which 𝑓(𝑃) = 𝑃, where again two are identified
if they are isotopic. Roughly summarizing thousands of
pages of hard work by many mathematicians: the flavor
of the results for the torus outlined above extend to
arbitrarymapping class groups. Elements ofMod(𝑆,𝑃) are
determined by their action on the fundamental group. A
geometrizable element is either periodic and represented
by an isometry or irreducible and represented by a map
which in (mildly singular local) Euclidean coordinates
looks again like (𝑥, 𝑦) ↦ (𝜆𝑥, 𝜆−1𝑦). A class that is not
geometrizable reduces canonically into geometrizable
pieces by cutting along some finite invariant collection
of pairwise disjoint curves. The conjugacy problem is
significantly harder but solvable.
Branched Mappings
We now drop the assumption that 𝑓 is a homeomorphism
and require only that it is a finite branched covering
unramified away from 𝑃. Equivalently, 𝑓 ∶ 𝑆 − 𝑓−1(𝑃) →
𝑆−𝑃 is a covering map of some degree 𝑑 ≥ 1; we require
still that 𝑓(𝑃) ⊂ 𝑃. The Riemann-Hurwitz formula implies
that if 𝑑 ≥ 2, then the surface 𝑆 is either the torus 𝑇2

or the sphere 𝑆2 and that if 𝑆 is the torus, the map 𝑓 is
unramified. Composition descends to a well-defined map
on isotopy classes, and we obtain a countable semigroup
BrMod(𝑆,𝑃).

Again the case of the torus is instructive. The conjugacy
problem in this semigroup boils down to the question:
Given a pair of 2 by 2 integral matrices 𝐴,𝐵 of common
determinant larger than one, when is 𝐵 = 𝑃−1𝐴𝑃 for
some 𝑃 ∈ SL2(ℤ)? This question is equivalent to the
classification of real quadratic fields and is still unsolved.

So I’ll focus on the case 𝑆 = 𝑆2. It turns out the case
#𝑃 = 4 is already interesting.
Complex Dynamics
Complexdynamicsprovides anatural sourceof geometriz-
able elements of BrMod(𝑆2, 𝑃). Let’s identify the Riemann
sphere ℂ̂ with 𝑆2 in the usual way via stereographic
projection. For a parameter 𝑐 ∈ ℂ let 𝑝𝑐 ∶ ℂ̂ → ℂ̂ be given
by 𝑝𝑐(𝑧) = 𝑧2 + 𝑐. Dynamics is concerned with iteration.
We study sequences like {𝑧, 𝑝𝑐(𝑧), 𝑝𝑐(𝑝𝑐(𝑧)),…}, called
the orbit of 𝑧. On the one hand, an easy exercise shows

that if |𝑧| > max{2, |𝑐|}, then this sequence converges
to infinity. On the other hand, the quadratic formula
shows that there are fixed points. So there is a nonempty
compact subset 𝐾𝑐 consisting of points 𝑧 for which the
orbit of 𝑧 is bounded. The boundary 𝐽𝑐 of this locus is
the typically fractal Julia set and is the locus of chaotic
behavior. We have 𝑧 ∈ 𝐽𝑐 if and only if the orbit of 𝑧 is
bounded, but there are arbitrarily small perturbations of
𝑧 for which the orbit becomes unbounded.

Looking at the polynomials 𝑝∘𝑛
𝑐 (0) − 𝑝∘𝑚

𝑐 (0), 𝑛,𝑚 =
0, 1, 2,…, we find there is a countably infinite set of
parameter values 𝑐 for which the forward orbit of the
branch point at the origin is finite. These critically finite
parameters play a crucial role in complex dynamics
and provide a rich source of examples of semigroups
BrMod(𝑆2, 𝑃).
An Example
Let 𝑔(𝑧) = 𝑧2+𝑖. There are branch points at the origin and
the point at infinity where 𝑔 is locally 2-to-1. The point at
infinity ∞ is fixed by 𝑔, and 0 ↦ 𝑖 ↦ 𝑖 − 1 ↦ −𝑖 ↦ 𝑖 − 1.
Let’s take 𝑃 ∶= {𝑖, 𝑖 − 1,−𝑖,∞}; note that 𝑔(𝑃) ⊂ 𝑃. We
have just constructed an element of BrMod(𝑆2, 𝑃).

How might we get other elements? We can do so by
twisting via pre- and post-composition with elements of
Mod(𝑆2, 𝑃). Let’s look at all such elements:
ℋ𝑔 ∶= {[ℎ0∘𝑔∘ℎ1] ∶ ℎ0, ℎ1 ∈ Mod(𝑆2, 𝑃)} ⊂ BrMod(𝑆2, 𝑃).
This set decomposes into conjugacy classes. How many
are there? As shown in a groundbreaking paper by L.
Bartholdi and V. Nekrashevych, the set of conjugacy
classes in ℋ𝑔 consists of two geometrizable elements
classified by polynomials 𝑧2±𝑖 and a ℤ’s worth of classes
represented by reducible elements that fix a curve in a
way that provides an obstruction to geometrization.

What if we use a different polynomial? Now let 𝑓(𝑧) =
𝑧2+𝑐where 𝑐 is the unique parameter for which ℑ(𝑐) > 0
and the origin is periodic of least period 3; now put
𝑃 = {0, 𝑐, 𝑐2 + 𝑐,∞}. The polynomial 𝑓 is called the
Douady Rabbit polynomial, since its Julia set (shown in
the left-hand side of Figure 4) looks a bit like a rabbit.
Now the corresponding set of conjugacy classes consists
of just three geometrizable elements, classified by the
three values of 𝑐 for which the origin has period 3 under
iteration of 𝑧2 + 𝑐.

G. Kelsey and R. Lodge have just announced an
extension of these results to all quadratics with #𝑃 = 4.
Highlights
There are several results about the semigroup
BrMod(𝑆2, 𝑃) that mirror results for the mapping
class group Mod(𝑆,𝑃).

A first point—one exploited by L. Bartholdi and V.
Nekrashevych—is that branched mapping classes are
faithfully encoded by algebraic data known as wreath
recursions; like induced maps on fundamental groups,
they are well defined up to conjugacy. As an illustration,
equation (1) gives wreath recursion data for the Rabbit
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Figure 2. A computer program reads the group-
theoretic data faithfully encoding Douady’s Rabbit.
It produces a numerical approximation for the poly-
nomial map. It then draws an approximation to its
fractal Julia set on the sphere.

polynomial 𝑓(𝑧); here 𝑎, 𝑏, 𝑐 are free generators for the
fundamental group of 𝑆2 −𝑃. The upshot is that we can
represent and compute with elements of BrMod(𝑆2, 𝑃). A
program by L. Bartholdi takes this algebraic data as input
and returns a numerical approximation for the rational
geometrization (if it exists) and an approximation of its
associated Julia set; see Figure 2:

(1)
𝑎 = ⟨𝑎−1𝑏−1, 𝑐𝑏𝑎⟩(12),
𝑏 = ⟨𝑎, 1⟩,
𝑐 = ⟨𝑏, 1⟩.

A second point is that our understanding of the
corresponding geometrization questions is advancing
rapidly. In our setting, typical geometrizable elements of
degree larger than one are represented bymaps which are
expanding in a suitable sense. Critically finite polynomials
and rational maps in this sense are expanding. However,
there do exist nonrational expanding maps. L. Bartholdi
andD. Dudko give a characterization of expanding classes.
Recently N. Selinger andM. Yampolsky and independently
L. Bartholdi and D. Dudko have shown that a general map
decomposes algorithmically into geometrizable pieces.

A third point is that the semigroup BrMod(𝑆2, 𝑃) acts
naturally on the space of conformal structures on (𝑆2, 𝑃).
When #𝑃 = 4 this is again the hyperbolic planeℍ. Figure 3
shows the limit set of the action of the subsemigroup of

Figure 3. The limit set of the subsemigroup of
BrMod(𝑆2, 𝑃) generated by Mod(𝑆2, 𝑃) and the
Douady Rabbit polynomial 𝑓(𝑧) = 𝑧2 + 𝑐, drawn in
the disk model.

BrMod(𝑆2, 𝑃) generated by the Rabbit polynomial 𝑓 and
the group Mod(𝑆2, 𝑃).

Finally, the subject is immensely rich. In joint workwith
W.Floyd,G.Kelsey, S.Koch,R. Lodge,W. Parry, andE. Saenz,
we systematically study elements of BrMod(𝑆2, 𝑃), #𝑃 = 4,
for which the branch points are simple. Such maps turn
out to be closely related to affine torus maps, and
this observation leads to them being computationally
tractable. A database of tens of thousands of examples
is now online at www.math.vt.edu/netmaps/index.php.
Figure 4 illustrates the circle of ideas. The first two figures
(top left) show respectively the fractal Julia set for the
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Figure 4. Follow the Rabbit from its fractal Julia set
to its induced action on the upper-half-plane.
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Rabbit polynomial 𝑓 and a diagram encoding the relation
between 𝑓 and an affine torus map. The (right top) figure
deals with the geometry of the induced map 𝜎𝑓 ∶ ℍ → ℍ:
there is a unique fixed point in the white region. The final
pair (bottom) illustrates that 𝜎𝑓 maps an ideal triangle to
a Schwarz triangle and is extended by reflection.
Image Credits
Figure 1 courtesy of Kevin M. Pilgrim.
Figure 2 courtesy of L. Bartholdi.
Figure 3 courtesy of S. Koch.
Figure 4 courtesy of W. Floyd et al.
Photo of Kevin M. Pilgrim courtesy of Indiana University

College of Arts and Sciences.
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Bruce Sagan
The Protean Chromatic Polynomial
I am very excited to have the opportunity to share some
of the ideas surrounding one of my favorite objects
in combinatorics, the chromatic polynomial, during my
Invited Address. Let me start by defining each of the
terms in my title.

The Merriam-Webster Dictionary defines “protean” as
“of or resembling Proteus in having a varied nature or
ability to assume different forms.” In Greek mythology,
Proteus was one of the gods of the sea and thus was
associatedwith its constantly changing nature. In a similar
manner, the chromatic polynomial gives one information
about many things which, a priori, have nothing to do
with its original purpose, as described below.

𝐺 =

𝑥 𝑤

𝑢 𝑣

𝐺 =

𝑥 𝑤

𝑢 𝑣

𝐺 =

𝑥 𝑤

𝑢 𝑣

Figure 1. A graph and two colorings

“Chromatic” refers to color, and our general topic is
the coloring of the vertices of a graph. A (combinatorial)
graph, 𝐺, consists of a set of vertices 𝑉 and a set of edges
𝐸 which connect pairs of vertices. For example, the graph
in the upper left in Figure 1 has vertex set 𝑉 = {𝑢,𝑣,𝑤, 𝑥}
and edge set 𝐸 = {𝑢𝑣,𝑢𝑥, 𝑣𝑥, 𝑣𝑤}. A coloring of 𝐺 is a
function 𝑐 ∶ 𝑉 → 𝑆 where 𝑆 is called the color set. The
coloring is proper if the endpoints of every edge have
different colors. The coloring in the upper right of Figure 1
is proper, while the one on the bottom is not because the
edge 𝑒 = 𝑣𝑤 has the same color on both endpoints. The
chromatic number, 𝜒(𝐺), is the smallest number of colors
needed to properly color 𝐺. The graph in Figure 1 has
𝜒(𝐺) = 3 since the upper right image exhibits a proper
coloring with three colors, and the triangle 𝑢𝑣𝑥 cannot
be colored with fewer colors. Maybe the most famous
theorem in graph theory is the Four Color Theorem,
which states that if a graph is planar (can be drawn in
the plane without edge crossings), then 𝜒(𝐺) ≤ 4. This
statement was a conjecture for over a hundred years until
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it was finally proved by Wolfgang Haken and Kenneth
Appel in 1976. Their proof caused quite a stir in the
mathematical community, because it was the first to use
a substantial amount of computing time, and the large
number of cases could not all be checked by hand.

The chromatic polynomial was introduced in 1912 by
George Birkhoff as a possible tool for proving the then
Four Color Conjecture. Although it did not turn out to be
useful for the eventual proof, it has more than justified
its existence through its many other applications. Let 𝑡 be
a nonnegative integer. The chromatic polynomial, 𝑃(𝐺; 𝑡),
is the number of proper colorings 𝑐 ∶ 𝑉 → {1, 2… , 𝑡}. It
is not apparent at first blush why this cardinality should
be called a polynomial. However, this will become clearer
if we compute 𝑃(𝐺; 𝑡) for the graph in Figure 1. Suppose
we color the vertices in the order 𝑢,𝑣,𝑤, 𝑥. Then there
are 𝑡 choices for the color of 𝑢 since it is the first vertex
to be colored. After that, there will be 𝑡 − 1 choices for
the color of 𝑣, since it cannot be the same color as 𝑢.
Similar reasoning shows that there are 𝑡 − 1 choices for
𝑤. Finally, 𝑥 is adjacent to both 𝑢 and 𝑣, and these two
vertices have different colors, so we can color 𝑥 in 𝑡 − 2
ways. The net result is that

𝑃(𝐺; 𝑡) = 𝑡(𝑡 − 1)2(𝑡 − 2) = 𝑡4 − 4𝑡3 +5𝑡2 − 2𝑡,
which is a polynomial in 𝑡, the number of colors!

One can show that 𝑃(𝐺; 𝑡) is always a polynomial in 𝑡
and give nice characterizations of its degree, coefficients,
andotherproperties. Furthermore, it has connectionswith
manyother objects of study, including acyclic orientations
of graphs, hyperplane arrangements, and even Chern
classes in algebraic geometry. I will explain these during
my lecture, as well as present some recent work with
Joshua Hallam and Jeremy Martin relating 𝑃(𝐺; 𝑡) to yet
another graphical concept, increasing spanning forests. If
you are at the Buffalo AMS Sectional Meeting in September,
I hope to see you at my talk.

Image Credits
Figure 1 courtesy of Bruce Sagan.
Photo of Bruce Sagan by Robert Chandler, courtesy

of Bruce Sagan.
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