
On Circulant Matrices
Irwin Kra and Santiago R. Simanca

S
ome mathematical topics—circulant ma-
trices, in particular—are pure gems that
cry out to be admired and studied with
different techniques or perspectives in
mind.

Our work on this subject was originally moti-
vated by the apparent need of the first author to
derive a specific result, in the spirit of Proposition
24, to be applied in his investigation of theta
constant identities [9]. Although progress on that
front eliminated the need for such a theorem,
the search for it continued and was stimulated
by enlightening conversations with Yum-Tong Siu
during a visit to Vietnam. Upon the first author’s
return to the U.S., a visit by Paul Fuhrmann brought
to his attention a vast literature on the subject,
including the monograph [4]. Conversations in
the Stony Brook mathematics common room at-
tracted the attention of the second author and
that of Sorin Popescu and Daryl Geller∗ to the
subject and made it apparent that circulant matri-
ces are worth studying in their own right, in part
because of the rich literature on the subject con-
necting it to diverse parts of mathematics. These
productive interchanges between the participants
resulted in [5], the basis for this article. After that
version of the paper lay dormant for a number of
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years, the authors’ interest was rekindled by the

casual discovery by S. Simanca that these matrices

are connected with algebraic geometry over the

mythical field of one element.

Circulant matrices are prevalent in many parts

of mathematics (see, for example, [8]). We point

the reader to the elegant treatment given in [4,

§5.2] and to the monograph [1] devoted to the

subject. These matrices appear naturally in areas

of mathematics where the roots of unity play a

role, and some of the reasons for this will unfurl

in our presentation. However ubiquitous they are,

many facts about these matrices can be proven

using only basic linear algebra. This makes the

area quite accessible to undergraduates looking

for research problems or mathematics teachers

searching for topics of unique interest to present

to their students.

We concentrate on the discussion of necessary

and sufficient conditions for circulant matrices to

be nonsingular and on various distinct represen-

tations they have, goals that allow us to lay out

the rich mathematical structure that surrounds

them. Our treatment, though, is by no means ex-

haustive. We expand on their connection to the

algebraic geometry over a field with one element,

to normal curves, and to Toeplitz’s operators.

The latter material illustrates the strong presence

these matrices have in various parts of modern

and classical mathematics. Additional connections

to other mathematics may be found in [11].

The paper is organized as follows. In the

section “Basic Properties” we introduce the ba-

sic definitions and present two models of the

space of circulant matrices, including that as a

finite-dimensional commutative algebra. Their de-

terminant and eigenvalues, as well as some of
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their other invariants, are computed in the section

“Determinants and Eigenvalues”. In the section

“The Space of Circulant Matrices” we discuss fur-

ther the space of such matrices and present their

third model identifying them with the space of

diagonal matrices. In the section “Roots of Poly-

nomials” we discuss their use in the solvability of

polynomial equations. All of this material is well

known. Not so readily found in the literature is

the remaining material, which is also less elemen-

tary. In the section “Singular Circulant Matrices”

we determine necessary and sufficient conditions

for classes of circulant matrices to be nonsingu-

lar. The geometry of the affine variety defined by

these matrices is discussed in the section “The

Geometry of Circ(n)”, where we also speculate on

some fascinating connections. In the section “The

Rational Normal Curves Connection” we establish

a relationship between the determinant of a cir-

culant matrix and the rational normal curve in

complex projective space and uncover their con-

nection to Hankel matrices. Finally, in the section

“Other Connections—Toeplitz Operators” we re-

late them to the much-studied Toeplitz operators

and Toeplitz matrices as we outline their use in

an elementary proof of Szegö’s theorem.

It is a pleasure for the first author to thank Yum-

Tong Siu for outlining another elementary proof of

formula (3) and for generating his interest in this

topic. He also thanks Paul Fuhrmann for bringing

to his attention a number of references on the

subject and for the helpful criticism of an earlier

draft of this manuscript. It is with equal pleasure

that the second author thanks A. Buium for many

conversations about the subject of the field with

one element and for the long list of related topics

that he brought to his attention.

Basic Properties

We fix hereafter a positive integer n ≥ 2. Our

main actors are the n-dimensional complex vector

space Cn and the ring of n × n complex matrices

Mn. We will be studying the multiplication Mv of

matricesM ∈Mn by vectors v ∈ Cn. In this regard,

we view v as a column vector. However, at times,

it is useful mathematically and more convenient

typographically to consider

v = (v0, v1, . . . , vn−1) ∈ Cn
as a row vector. We define a shift operator T : Cn →
C
n by

T(v0, v1, . . . , vn−1) = (vn−1, v0, . . . , vn−2).

We start with the basic and key definition.

Definition 1. The circulant matrix V = circ{v} as-

sociated to the vector v ∈ C
n is the n × n matrix

whose rows are given by iterations of the shift

operator acting on v ; its kth row is T k−1v , k =
1, . . . , n:

V =




v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2

...
...

. . .
...

...
v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0



.

We denote by Circ(n) ⊂ Mn the set of all n × n
complex circulant matrices.

It is obvious that Circ(n) is an n-dimensional

complex vector space (the matrix V is identified

with its first row) under the usual operations of

matrix addition and multiplication of matrices

by scalars; hence our first model for circulant

matrices is provided by the C-linear isomorphism

(FIRST MODEL) I : Circ(n)→ C
n,

where I sends a matrix to its first row. Matrices

can, of course, be multiplied, and one can easily

check that the product of two circulant matrices

is again circulant and that for this set of matrices,

multiplication is commutative. However, we will

shortly see much more and conclude that we are

dealing with a mathematical gem. Before that we

record some basic facts about complex Euclidean

space that we will use.

The ordered n-tuples of complex numbers can

be viewed as the elements of the inner product

spaceCn with its Euclidean (L2-norm) and standard

orthonormal basis

ei = (δi,0, . . . , δi,n−1) , i = 0, . . . , n− 1,

where δi,j is the Kronecker delta (= 1 for i = j and

0 for i ≠ j). We will denote this basis by e and

remind the reader that in the usual representation

v = (v0, v1, . . . , vn−1) =
∑n−1
i=0 viei , the vi ’s are the

components of v with respect to the basis e.

To explore another basis, we fix once and for

all a choice of a primitive nth root of unity

ǫ = e 2πı
n ,

define for l = 0,1, . . . , n− 1,

xl =
1√
n
(1, ǫl , ǫ2l , . . . , ǫ(n−1)l) ∈ Cn,

and introduce a special case of the Vandermonde

matrix

E= 1√
n




1 1 · · · 1 1
1 ǫ · · · ǫn−2 ǫn−1

...
...

. . .
...

...

1 ǫn−2 · · · ǫ(n−2)2 ǫ(n−2)(n−1)

1 ǫn−1 · · · ǫ(n−1)(n−2) ǫ(n−1)2



.

It is well known and established by a calculation

that

(1) detE = n− n2
∏

0≤i<j≤n−1

(ǫj − ǫi) ≠ 0 ;
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hence E is nonsingular. In fact, E is a most

remarkable matrix: It is unitary, E−1 = Et , and it
is symmetric, Et = E, and hence E−1 = E; and its

columns and rows are the vectors {xl}.
We view E as a self-map of Cn and conclude

that Eei = E(ei) = xi . Since E is nonsingular, we
see that the {xl} are another orthonormal basis

for Cn, to be denoted by x. The C-linear self-map

of Cn defined by the matrix E depends, of course,

on the bases for the domain and target; to show

this dependence, the map should be denoted as

Ee,e. Observe that as linear maps, Ee,e = Ie,x, where

I is the n× n identity matrix.
To return to circulant matrices, we let

Wi = circ{ei} , 0 ≤ i ≤ n− 1.

It is obvious that we have a standard representation

or form of circulant matrices:

circ{(v0, v1, . . . , vn−1)} =
n−1∑
i=0

viWi .

It is less obvious, but follows by an easy calcula-

tion, that WiWj = Wi+j , where all the indices are

interpreted modn. Obviously W0 = I, and letting
W = W1, we see that W i = Wi .

Remark 2. With respect to the standard basis of

C
n, the shift operator T is represented by the

transpose W t of the matrix W . Note that (W i)t =
Wn−i .

It is useful to introduce

Definition 3. The (polynomial in the indetermi-

nate X) representer PV of the circulant matrix

V = circ{(v0, v1, . . . , vn−1)} is

(2) PV (X) =
n−1∑
i=0

viX
i .

As usual, we letC[X]denote the ring of complex

polynomials and for f (X) ∈ C[X], (f (X)), the

principal ideal generated by this polynomial. We
have established most of the following theorem

(the remaining claims are easily verified).

Theorem 4. Circ(n) is a commutative algebra that
is generated (over C) by the single matrix W . The

map that sends W to the indeterminate X extends

by linearity and multiplicativity to an isomorphism

of C-algebras

(SECOND MODEL) J : Circ(n)→ C[X]/(Xn − 1).

The map that sends a circulant matrix V to its

transpose V t is an involution of Circ(n) and

corresponds under J to the automorphism of

C[X]/(Xn − 1) induced by X ֏ Xn−1.

Proof. The only nontrivial observation is that

multiplication of circulant matrices in stan-

dard form corresponds to the multiplication in

C[X]/(Xn − 1). �

Remark 5. The algebra C[X]/(Xn−1) can be iden-
tified with the space Pn−1 of complex polynomials
of degree ≤ (n− 1) with appropriate definition of
multiplication of its elements. Under this identifi-
cation, for V ∈ Circ(n),

J(V) = PV (X).

Determinants and Eigenvalues
The Basic Theorem

Many results about circulants follow from direct
calculations; in particular, the next theorem.

Theorem 6. If v = (v0, v1, . . . , vn−1) ∈ Cn and V =
circ{v}, then

(3) detV =
n−1∏

l=0



n−1∑
j=0

ǫjlvj


 =

n−1∏

l=0

PV (ǫ
l).

Proof. We view the matrix V as a self-map Ve,e of
C
n. For each integer l, 0 ≤ l ≤ n− 1, let∗

λl = v0 + ǫlv1 + · · · + ǫ(n−1)lvn−1 = PV (ǫl).
A calculation shows that Vxl = λlxl . Thus λl is
an eigenvalue of V with normalized eigenvector
xl . Since, by (1), {x0, x1, . . . , xn−1} is a linearly inde-
pendent set of vectors in Cn, the diagonal matrix
with the corresponding eigenvalues is conjugate

to V , and we conclude that detV =∏n−1
l=0 λl . �

Corollary 7. All circulant matrices have the same
ordered set of orthonormal eigenvectors {xl}.
Corollary 8. The characteristic polynomial pV of
V is given by
(4)

pV (X)=det (XI − V)=
n−1∏

l=0

(X−λl)=Xn+
0∑

i=n−1

biX
i .

(Here we let the last equality define the bi ’s as func-
tions of theλl ’s. They are the elementary symmetric
functions of the λl ’s.)

Corollary 9. The nullity of V ∈ Circ(n) is the num-
ber of zero eigenvalues λl .

We use similar symbols for the characteristic
polynomial pV of a circulant matrix V and its
representer PV . They exhibit, however, different
relations to V .

If we let ν(V) denote the nullity of V , the last
corollary can be restated as

For all V ∈ Circ(n), ν(V) = deg gcd(pV (X), X
n).

Corollary 10. Let V be a circulant matrix with rep-
resenter PV . The following are equivalent:

(a) The matrix V is singular.
(b) PV

(
ǫl
)
= 0 for some l ∈ Z.

(c) The polynomials PV (X) and Xn −1 are not
relatively prime.

∗Throughout this paper the symbols λl and xl are re-

served for the eigenvalue and eigenvectors we introduce

here.
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Again, we have a reformulation of part of the

last corollary as

For all V ∈ Circ(n), ν(V) = deg gcd(PV (X),X
n−1).

Remark 11. The shift operator T acts on Circ(n).

If V → T ·V denotes this action, then the traces of

T k ·V , k = 0, . . . , n−1, uniquely determine V . The

representer PV of a circulant matrix V uniquely

determines and is uniquely determined by the ma-

trix. Similarly, the characteristic polynomial and

eigenvalues of a circulant matrix uniquely deter-

mine each other. From a given set of ordered eigen-

values, we recover the circulant matrix by the next

theorem. However, a given set of distinct eigenval-

ues determines n! circulant matrices.

Determinants of Circulant Matrices

It is easy to see that

det circ{(v0, v1, . . . , vn−1)}
= (−1)n−1 det circ{(v1, v2, . . . , vn−1, v0)}
= (−1)n−1 det circ{(vn−1, vn−2, . . . , v1, v0)} ,

and iterations of these yield that detV =
(−1)k(n−1) detT k · V for each integer 0 ≤ k < n.

However, there is no obvious general relation

between

det circ{(v0, v1, . . . , vn−1)}
and

det circ{(vσ(0), vσ(1), . . . , vσ(n−1))}
for σ ∈ Sn, the permutation group on n letters.

For example,

(5) det circ{(v0, v1, v2)} = v3
0 +v3

1 +v3
2 −3v0v1v2,

a function that is invariant under the permutation

group S3, while

(6)

det circ{(v0, v1, v2, v3)}
= (v0 + v1 + v2 + v3)(v0 − v1 + v2 − v3)

× ((v0 − v2)
2 + (v1 − v3)

2),

which, though admitting some symmetries, fails

to be invariant under the action of the entire

group S4; for instance, it is not invariant under

the transposition that exchanges v0 and v1.

The action of C× on Circ(n) by dilations can be

used to understand further the singular circulant

matrices. For given a ∈ C×, we have that

det circ{(av0, av1, . . . , avn−1)}
= an det circ{(v0, v1, . . . , vn−1)},

and we may cast these matrices as the projective

variety in Pn−1(C) given by the locus of det on

Circ(n). The decomposition of this variety into its

irreducible components yields a geometric inter-

pretation of the zeroes of various multiplicities of

this function on Circ(n).

The Space of Circulant Matrices
To obtain our third model for Circ(n), we start
by defining Dn to be the space of n × n diagonal
matrices. This space is clearly linearly isomorphic
to Cn.

Theorem 12. All elements of Circ(n) are simulta-
neously diagonalized by the unitary matrix E; that
is, for V in Circ(n),

(7) E−1VE = DV
is a diagonal matrix and the resulting map

(THIRD MODEL) D : Circ(n)→ Dn

is a C-algebra isomorphism.

Proof. The n × n matrix E represents the linear
automorphism of Cn that sends the unit vector
el to the unit vector xl . If V is a circulant ma-
trix and DV is the diagonal matrix with diagonal
entries given by the ordered eigenvalues of V :
λ0, λ1, . . . , λn−2, λn−1, then (7) holds. The map
D is onto, because for all D ∈ Dn, EDE

−1 is
circulant. �

Corollary 13. The inverse of an invertible element
of Circ(n) also belongs to Circ(n).

Proof. If V is a nonsingular circulant matrix, then
DV is invertible and D−1

V = DV−1 . �

Corollary 14. The characteristic polynomial of
V ∈ Circ(n) is given by

pV (X) = det (XI − V) = det(XI −DV ).

Remark 15. The last corollary encodes several
facts that can be established by other methods:

• Let p ∈ Pn−1. If p(X) = ∑
aiX

i and
λl = p(ǫl), then the elementary symmetric
functions of the λl ’s belong to the ring
generated (over Z) by the ai ’s.

• Given an ordered set {λl}, the unique poly-
nomial p satisfying λl = p(ǫl) is det(XI −
DV ).

Roots of Polynomials
Each n×n circulant matrix V has two polynomials
naturally associated to it: its representer PV and
its characteristic polynomial pV . These are both
described explicitly in terms of the eigenvalues λl
ofV . The characteristicpolynomialpV is the unique
monic polynomial of degreen that vanishes at each
λl . The representer PV is the unique polynomial of
degree ≤ n− 1 whose value at ǫl is λl .

The roots of the characteristic polynomial of
an arbitrary n × n matrix V (these are the eigen-
values of the matrix V ) are obtained by solving a
monic degree n polynomial equation. In the case
of circulant matrices, the roots of pV are easily
calculated using the representer polynomial PV .
Thus, if a given polynomial p is known to be
the characteristic polynomial of a known circulant
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matrix V , its zeroes can be readily found. This

remark is the basis of [8] and of the section “Poly-
nomials of Degree≤ 4”. Every monic polynomial p

is the characteristic polynomial of some circulant
matrix V , and so a very natural problem ensues:
If we are given that p = pV for a collection of

circulant matrices V , can we determine one such
V or, equivalently its representer PV directly from

p? If so, then the n roots of p are the values of PV
at the n nth roots of unity.

The General Case

The vector space Pn−1 of polynomials of degree
≤ n− 1 is canonically isomorphic to Circ(n) (both

are canonically isomorphic as vector spaces to Cn).
Let M be the affine space of monic polynomials of

degree n (again identifiable with Cn). We define a
map

Λ : Pn−1 →M

as follows. For eachp ∈ Pn−1, there exists a unique

V ∈ Circ(n) such that p = PV . Send p to pV . The
map Λ is holomorphic; in fact, it is algebraic.

We have already remarked that it is generically
n! to 1. We define three subspaces:

(1) P
0
n−1 consisting of those

{p ∈ Pn−1 with p(ǫi) 6= p(ǫj)
for all integers 0 ≤ i < j ≤ n− 1} .

(2) Circ0(n) consisting of those

{V ∈ Circ(n) with distinct eigenvalues} .
(3) M0 consisting of those

{p ∈M with distinct roots}.
Each of the subspaces defined is open and dense
in its respective ambient spaces. It is quite obvious

that

Λ : P0
n−1 →M0

is a complex analytic bijection. An explicit form

for the inverse to this map would provide an
algorithm for solving equations of all degrees.

Remark 16. We know that

P0
n−1 ≅ Circ0(n) ≅M0 .

Each of these spaces is defined analytically. How-
ever, the last one has an alternate algebraic char-
acterization. Let p′ denote the derivative of p. The

set M0 can be described as

{p ∈M : deg gcd(p, p′) = 0}.
Thus, solving general equations can be reduced by
an algebraic procedure to solving equations with

distinct roots, for the calculation of p′ is quite al-
gebraic, and so is the calculation of d = gcd(p, p′)
via the division algorithm. The polynomial

p

d
has

no multiple roots.
The problem encountered above is of funda-

mental importance and quite difficult in general.

We now turn our attention to the cases of low
degree.

Polynomials of Degree ≤ 4

Circulant matrices provide a unified approach to
solving equations of degree ≤ 4; we will illustrate
this for degrees 3 and 4. As is quite common, we
start with a definition.

Definition 17. Given a monic polynomial p
of degree n, a circulant n × n matrix V =
circ{(v0, . . . , vn−1)} is said to adhere to p if
the characteristic polynomial pV of V is equal
to p.

We learned at a quite early age that to solve the
equation

p(X) = Xn +αn−1X
n−1 +αn−2X

n−2

+ · · · +α1X +α0 = 0,

we should use the change of variable Y = X +
1

n
αn−1, which eliminates the monomial of degree

n− 1 in p and leads to the equation

q(Y) = Y n + γn−2Y
n−2 + · · · + γ1Y + γ0 = 0

to be solved. If V = circ{(v0, v1, . . . , vn−1)} adheres
to p, then the traceless matrix V − v0I adheres to
q.

A reasonable program for solving polynomial
equations p of degree n can thus consist of
changing variables to reduce to an equation q
with zero coefficient monomial of degree n − 1
and then finding a traceless circulant matrix V
that adheres to q. The eigenvalues of V are the
roots of pV = q and can be readily computed
using the representer PV of V . In this program
we seem to be replacing the difficult problem of
solving a monic polynomial equation of degree
n by the more difficult problem of solving n − 1
nonlinear equations in n − 1 variables. However,
because of the symmetries present in the latter
set of equations, they may be easier to handle.

Cubics. We illustrate how this works for cubics
by finding a circulant matrix V = circ{(0, a, b)} of
zero trace that adheres to

q(Y) = Y 3 +αY + β.
We need to find any traceless 3×3 circulant matrix
V that adheres to q. Evaluating the representer

PV (Y) = aY +bY 2 at y = ej 2πı
3 , j = 0,1,2, will then

yield the roots of q.
By formula (5) for det circ{(0, a, b)}, we see that

pV (Y) = det (YI − V) = Y 3 − 3abY − (a3 + b3),

and so
3ab = −α,

a3 + b3 = −β.
It then follows that

a=

−β±

√
β2 + 4α3

27

2




1
3

, b=

−β∓

√
β2 + 4α3

27

2




1
3
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(we are free to choose any consistent set of values

since we need only one representer), and the roots

of q are given by (the values of PV at the three

cube roots of unity)

r1 = a+ b,
r2 = ae

2πı
3 + be2

2πı
3 ,

r3 = ae2
2πı
3 + be 2πı

3 .

Quartics. In order to find the roots of the polyno-

mial

q(Y) = Y 4 + βY 2 + γY + δ,
we search for a V = circ{(0, b, c, d)} such that

pV (Y) = det (YI − V) = q(Y). By (6),

pV (Y) = Y 4 − (4bd + 2c2)Y 2 − 4c(b2 + d2)Y

+ (c4 − b4 − d4 − 4bc2d + 2b2d2) ,

and so

4bd + 2c2 = −β,
4c(b2 + d2) = −γ,

c4 − b4 − d4 − 4bc2d + 2b2d2 = δ,

a system in the unknowns a,b, c.

It suffices to say that this system admits solu-

tions. We leave the details of the argument to the

reader. We encourage the reader to explore two

sets of additional symmetries: the first consisting

of solutions of the system with c = 0, and the

second, solutions with b = d.

Singular Circulant Matrices

The eigenvalues of a circulant matrix tell us when

it is singular. We develop a number of criteria for

singularity relying on this basic fact.

Proposition 18. If for some k, |vk| >
∑
j 6=k |vj|,

then the circulant matrix V = circ{(v0, . . . , vn−1)}
is nonsingular. The result is sharp in the sense that

> cannot be replaced by ≥.

Proof. Let PV be the representer of V . If PV
(
ǫl
)
= 0

for some l ∈ Z, then for λ = ǫl ,

vkλ
k = −

∑

j 6=k
vjλ

j .

In particular,

|vk| ≤
∑

j 6=k
|vj|,

which contradicts the hypothesis. �

Proposition 19. Let d | n, 1 ≤ d < n, and assume

that the vector v ∈ Cn consists of
n

d
identical blocks

(that is, vi+d = vi for all i, where indices are cal-

culated modn). Then λl = 0 whenever dl is not a

multiple of n, and V = circ{v} is singular of nullity

≥ n− d.

Proof. Compute for 0 ≤ l < n,

λl =
n−1∑
i=0

ǫlivi =
n
d −1∑
j=0



d−1∑
i=0

ǫl(dj+i)vdj+i




=
n
d −1∑
j=0

ǫldj
d−1∑
i=0

ǫlivi

= 1− ǫnl
1− edl

d−1∑
i=0

ǫlivi ,

provided dl is not a multiple of n. In particular,
λl = 0 for 1 ≤ l <

n

d
. In general there are n −

d integers l such that 0 < l < n and dl is not a
multiple of n. �

Remark 20. In this case,

PV (X) =


d−1∑
i=0

viX
i



(
Xn − 1

Xd − 1

)
,

and the polynomial
Xn−1

Xd−1
of degree n − d divides

both PV (X) and Xn − 1 (see Corollary 10).

Proposition 21. Let d | n, 2 ≤ d < n, and assume
that the vector v ∈ C

n consists of
n

d
consecutive

constant blocks of lengthd (that is to say, vid+j = vid
for i = 0,1, . . . ,

n

d
− 1 and j = 0,1, . . . , d − 1). Then

λl = 0 whenever l ≠ 0 and l ≡ 0 mod
n

d
, and V is

singular of nullity ≥ d − 1.

Proof. In this case

λl =
n−1∑
i=0

ǫlivi =
n
d −1∑
j=0

ǫldjvdj

d−1∑
i=0

ǫli

= 1− ǫld
1− ǫl

n
d−1∑
j=0

ǫldjvdj ,

provided l > 0. In particular, λl = 0 for all l = kn
d
,

with k = 1,2, . . . , d − 1. �

Remark 22. In the above situation,

PV (X) =




n
d −1∑
i=0

viX
id



(
Xd − 1

X − 1

)
,

and the polynomial
Xd−1

X−1
of degree d − 1 divides

both PV (X) and Xn − 1 (see Corollary 10).

Proposition 23. Let n ∈ Z>0 be a prime. If V =
circ{(v0, . . . , vn−1)} has entries inQ, then detV = 0

if and only if either λ0 =
∑n−1
j=0 vj = 0 or all the vj ’s

are equal.

Proof. If all the vi ’s are equal, then all the eigen-
values λl of V , except possibly λ0, are equal to
zero. We already know that the vanishing of one
λl implies that detV = 0. Conversely, assume that
detV = 0 and that λ0 6= 0. Then λl = 0 for some
positive integer l < n. Consider the field exten-
sion Q[ǫ] and the automorphism A of this field
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induced by sending ǫ ֏ ǫ2 (A fixes Q, of course).

Since n is prime, A generates a cyclic group of

automorphisms of Q[ǫ] of order n − 1 that acts
transitively on the primitive nth roots of unity:

{ǫ, ǫ2, . . . , ǫn−1}. Hence λl = 0 implies that λk = 0

for all integers k with 1 ≤ k ≤ n − 1. It remains
to show that all the vi’s are equal. Consider the

(n− 1)× n matrix



1 ǫ ǫ2 · · · ǫn−1

1 ǫ2 ǫ4 · · · ǫ2(n−1)

...
...

...
. . .

...

1 ǫn−1 ǫ2(n−1) · · · ǫ(n−1)2




(essentially the matrix E in the section “Determi-

nants and Eigenvalues” with the first row deleted).

Since it has rank n − 1, this matrix, when viewed
as a linear map from C

n to Cn−1, must have a one-

dimensional kernel. This kernel is spanned by the

vector (1,1, . . . ,1). The conclusion follows. �

Proposition 24. If {vj}0≤j≤n−1 is a weakly mono-
tone sequence (that is, a nondecreasing or non-

increasing sequence) of nonnegative or nonpos-

itive real numbers, then the matrix V = circ
{(v0, v1, . . . , vn−1)} is singular if and only if for

some integer d | n, d ≥ 2, the vector v =
(v0, v1, . . . , vn−1) consists of

n

d
consecutive con-

stant blocks of length d. In particular, if the

sequence {vj}0≤j≤n−1 is strictly monotone and
nonpositive or nonnegative, then V is nonsingular.

Proof. If the matrixV were singular, then its repre-

senter PV would vanish at an nth root of unity, say

λ. It is sufficient to prove the theorem in the case

when {vj}0≤j≤n−1 is a nonincreasing sequence of
nonnegative real numbers; all other cases reduce

to this one by replacing λ with
1

λ
or by appropri-

ately changing the signs of all the vi ’s (see also the

symmetries discussed at the beginning of the sec-
tion “Polynomials of Degree ≤ 4”). We may thus

assume in the sequel that

v0 ≥ v1 ≥ · · · ≥ vn−1 ≥ 0.

Now PV (λ) = 0 means that

v0 + v1λ+ · · · + vn−1λ
n−1 = 0,

and hence also that

v0λ+ v1λ
2 + · · · + vn−1λ

n = 0,

which yields

v0 − vn−1 = (v0 − v1)λ+ (v1 − v2)λ
2

+ · · · + (vn−2 − vn−1)λ
n−1.

(8)

Observe that if z1, . . . , zm are complex numbers

such that

(9)

m∑
i=1

zi =
∣∣∣∣∣∣
m∑
i=1

zi

∣∣∣∣∣∣ =
m∑
i=1

| zi | ,

then zi ∈ R and zi ≥ 0 for all i = 1, . . . ,m. Since

|λ| = 1, it follows from (8) that the zk = (vk−1 −
vk)λ

k, k = 1, . . . , n − 1, satisfy (9), and thus for

each k either vk−1 = vk or λk = 1. The latter holds

only if λ is actually a dth root of unity, for some

divisor d ≥ 2 of n, while k is a multiple of d, and

the conclusions of the theorem now follow easily,

for we may choose the smallest positive integer d

such that λd = 1. Then d ≥ 2, d | n and λk = 1 for

1 ≤ k ≤ n if and only if k = d,2d, . . . or n = n

d
d. It

follows that vk = vk−1 = · · · = vk−(d−1). �

The next result deals with circulant matrices

whose entries are ± the same nonzero complex

number.

Proposition 25. If V = circ{(v0, . . . , vn−1)} ∈
Circ(n) has entries in {±1}, and 0 < k = |{j | vj =
1}| ≤ n− k, then

(a) λ0 = 0 if and only if k = n

2
.

(b) For 0 < l < n, λl = 0 if and only if
∑

{j|vj=1}
elj = 0.

(c) Assume that λ0 6= 0. V is nonsingular

provided that k is not of the form
∑
mipi ,

where the pi run over the distinct positive

prime factors of n and the mi are positive

integers. In particular, V is nonsingular if

k is less than the smallest positive prime

dividing n.

Proof. If 0 ≤ l ≤ n, the formula for the eigenvalues

of V in terms of the representer PV yields that

λl =
∑

{j|vj=1}
ǫlj −

∑

{j|vj=−1}
ǫlj .

This establishes part (a). We now observe that

∑

{j|vj=1}
ǫlj +

∑

{j|vj=−1}
ǫlj =

n−1∑
j=0

ǫlj = 1− ǫln
1− ǫl = 0,

for 0 < l < n. Thus part (b) follows. For part (c),

we observe that for 0 < l < n we have that λl 6= 0

by (b) and the characterization of vanishing sums

of n-roots of unity of weight k proven in [10]. �

We end this section (see also [15]) with the

following.

Proposition 26. If

V = circ

{(
1,

(
n
1

)
. . .

(
n

n− 1

))}
,

then the following hold:

(a) λl = (1+ ǫl)n − 1.

(b) λl = 0 if and only if
l

n
= 1

3
or

l

n
= 2

3
.

(c) V is singular if and only if n ≡ 0 mod 6, in

which case the nullity of V is 2.
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Proof. By Theorem 6, we have that

λl =
n−1∑
j=0

(
n
j

)
ǫlj ,

and the binomial expansion yields (a). We obtain

that λl = 0 if and only if (1 + ǫl)n = 1, and so

|1 + ǫl| = 1 if and only if cos
2πl

n
= − 1

2
, a state-

ment equivalent to the condition
l

n
= 1

3
or

l

n
= 2

3
.

This proves (b). Part (c) follows readily since the

conditions making λl = 0 are equivalent to n be-

ing divisible by 2 and 3, respectively, and λl being

zero exactly for the two values of l satisfying the

condition in (b). �

The Geometry of Circ(n)
Let k be a positive integer. The affine k-space over

C is Ck, often denoted by AkC. The maximal ideals

in the polynomial ring C[x1, . . . , xk] correspond

to elements of Ck, with a = (a1, . . . , ak) ∈ Ck

corresponding to the ideal in C[x1, . . . , xk] given

by the kernel of the evaluation homomorphism

p ֏ p(a). An affine variety V ⊂ Ck is an irreduc-

ible component of the zero locus of a collection

of polynomials p1, . . . , pl in C[x1, . . . , xk]. The ideal

IV = (p1, . . . , pl) ⊂ C[x1, . . . , xk] of functions van-

ishing on V is prime, and under the above

identification the points of V are in one-to-one

correspondence with the set of maximal ideals of

the ring O(V) = C[x1, . . . , xk]/IV, a ring without

zero divisors. We say that V is cut out by p1, . . . , pl ,

has ideal IV, and ring of global functions O(V).

Theorem 4 realizes Circ(n) as the ring of global

functions of the variety given by the nth roots of

unity in C.

Complex projective k-space Pk = PkC is the set

of one-dimensional subspaces of Ck+1. A point

x ∈ Pk is usually written as a homogeneous vector

[x0 : . . . : xk], by which is meant the complex line

spanned by (x0, . . . , xk) ∈ Ck+1 \ {0}.
A nonconstant polynomial f ∈ C[x0, . . . , xk]

does not descend to a function on Pk. However, if

f is a homogeneous polynomial of degree d, we

can talk about the zeroes of f in Pk because we

have the relation f (λx0, . . . , λxk) = λdf (x0, . . . , xk),

for all λ ∈ C \ {0}. A projective variety V ⊂ Pk is

an irreducible component of the zero locus of a

finite collection of homogeneous polynomials.

If we replace the role of C in the above discus-

sion by an arbitrary fieldF, we obtain the notions of

k-dimensional affine space AkF and k-dimensional

projective space PkF over F, respectively. Polyno-

mials in F[x1, . . . , xk] define affine varieties in AkF,

while homogeneous polynomials define projective

varieties in PkF. These spaces are usually stud-

ied for algebraically closed F, but the definitions

are valid for more general fields, and we work

in this extended context. Let V be an affine or

projective variety over F, the zero locus of a set

of polynomials in F[x1, . . . , xk]. Given any field
extension E of F, we can talk about the locus of
these polynomials in the affine or projective space
over the extension field E. These will define the
E-points of the variety V, a set which we denote by
V(E). This brings about some additional structure
to the F-varieties V, which we can think of as a
functor from the category of field extensions of
F and their morphisms to a suitable category of
sets and morphisms, with the functor mapping an
extension E of F to the set V(E) of E-points of the
variety. Using restrictions when possible, we may
also use this idea in the opposite direction and
find the points of a variety with coordinates in a
subring of Fwhen the variety in question is defined
by polynomials whose coefficients are elements of
the subring. This idea applied to Circ(n) takes us
to a rather interesting situation.

Given a variety over C cut out by polynomi-
als with coefficients in Z, we can use the natural
inclusion Z ֓ C to look at the Z-points of the
variety and the restricted ring of global functions.
In the case of Circ(n), the restricted ring of global
functions is Z[X]/(Xn − 1), and, remarkably, the
set of prime ideals, or spectrum, of this latter ring
is related to a variety defined over a field with one
element, a mythical object denoted in the literature
by F1. We elaborate on this connection. It derives
from analogies between regular combinatorial ar-
guments and combinatorics over the finite field Fq
with q elements (q a power of a prime).

The number of bases of the Fq-vector space

Fkq is given by q
k(k−1)

2 (q − 1)k[k]q !, where [k]q =
1+q+q2+· · ·+qk−1, and where the q-factorial is
defined by [k]q ! = [1]q ·[2]q · · · [k]q . Similarly, the
number of linearly independent j-element subsets

is equal to q
j(j−1)

2 (q − 1)k[k]q !/[k − j]q !, and for

j ≤ k, the number of subspaces of Fkq of dimension

j is given by (
k
j

)

q

= [k]q !

[k− j]q ![j]q
,

an expression that makes perfect sense when
q = 1, in which case we obtain the usual binomial.
The idea of the mysterious one element field F1

emerges [12], and we see that the number of
F1-points of projective space—that is to say, the
number of 1-dimensional subspaces of Fn1—must
be equal to n. Speculating on this basis, we are led
to define a vector space over F1 simply as a set, a
subspace simply as a subset, and the dimensions
of these simply as the cardinality of the said sets.

Some relationships between properties of
Circ(n) and that of algebraic geometry over F1

now follow. We think of the group of points
of SL(n,F1) as the symmetric group Sn on n
letters and that these n-letters are the F1-points
of the projective space Pn−1

F1
. A “variety X over

F1” should have as extension to the scalars Z, a

March 2012 Notices of the AMS 375



scheme XZ of finite type over Z, and the points of

X should be a finite subset of the set of points

in XZ. Going further, in developing algebraic

geometry over F1, some [13] propose replacing the

notion played by an ordinary commutative ring

by that of a commutative, associative, and unitary

monoid M to obtain Spec (M ⊗F1 Z) = SpecZ[M].

In particular, they define the finite extension F1n

of degree n as the monoid Z/nZ, and its spectrum

after lifting it to Z becomes

Spec (F1n ⊗F1 Z) = Spec (Z[X]/(Xn − 1)) .

Thus, the algebra of circulant matrices with integer

coefficients is the ring of global functions of the

spectrum of the field extension F1n of degree n

after lifting it to Z.

The Rational Normal Curves Connection
Theorem 6 has an elaborate proof that is more

geometric in nature and longer than the proof by

calculation given above. We outline its details.

The rational normal curve Cd ⊂ Pd of degree d

is defined to be the image of the map P
1 → P

d

given by

[z0 : z1]֏ [zd0 : zd−1
0 z1 : · · · : z0z

d−1
1 : zd1 ]

= [Z0 : · · · : Zd] .

It is the common zero locus of the polynomials

pij = ZiZj−Zi−1Zj+1 for 1 ≤ i ≤ j ≤ d−1. The ideal

of Cd , I(Cd) = {f ∈ C[Z0, . . . , Zd] | f ≡ 0 on Cd} is

generated by this set of polynomials.

We view {v0, . . . , vn−1, . . . , v2n−2} as a set of

2n − 1 independent variables and consider the

matrix with constant antidiagonals given by

M =




v0 v1 · · · vn−2 vn−1

v1 v2 · · · vn−1 vn
...

...
. . .

...
...

vn−2 vn−1 · · · v2n−4 v2n−3

vn−1 vn · · · v2n−3 v2n−2




as an n×n catalecticant or Hankel matrix. Its 2×2-

minors define the ideal of the rational normal curve

C = C2n−2 ⊂ P2n−2 of degree 2n− 2.

The other ideals of minors of M also have geo-

metric significance. Since the sum of m matrices

of rank one has rank at most m, the ideal Ik of

k × k-minors of M , k ∈ {2, . . . , n}, vanishes on

the union of the (k − 1)-secant (k − 2)-planes to

the rational normal curve C ⊂ P2n−2. The ideal Ik
defines the (reduced) locus of these (k−1)-secant

(k − 2)-planes to C [14] (see [2] for a modern

proof).

The restriction of M to the (n−1)-dimensional

linear subspace

Λ = {vn − v0 = vn+1 − v1 = · · · = v2n−2 − vn−2 = 0}
⊂ P2n−2

coincides, up to row permutations, with the
arbitrary circulant matrix

V = circ{(v0, v1, . . . , vn−1)}.
The intersection Λ∩C is the image in P2n−2 of the

points whose coordinates [z0 : z1] ∈ P1 satisfy the
equations (zn−2

0 , zn−3
0 z1, . . . , z

n−2
1 )·(zn0 −zn1 ) = 0 or,

equivalently, zn0 − zn1 = 0. The point [1 : ǫi] ∈ P1

gets mapped to the point

pi = [1 : ǫi : ǫ2i : · · · : ǫ(n−1)i], 0 ≤ i ≤ n− 1,

and so the restriction of Ik to Λ vanishes on⋃

i1,i2 ,...,ik−1∈{0,...,n−1}
span(pi1 , pi2 , . . . , pik−1

).

In particular, the determinant of the circulant
matrix V vanishes on the union of the n distinct
hyperplanes⋃

i∈{0,...,n−1}
span(p0, p1, . . . , p̂i , . . . , pn−1),

where the symbol p̂i indicates that pi does not

appear. The union of these n hyperplanes in P2n−2

is a degree n subvariety of codimension 1, and
thus any degree n polynomial vanishing on it
must be its defining equation, up to a scalar factor
(because for any hypersurface, its defining ideal is
generated by one element and the degree of the
hypersurface is the degree of this element). We
deduce that det(V) factors as in the statement of
Theorem 6.

Similarly, though the argument is slightly more
involved, we can show also that for all k ∈
{2, . . . , n}, the ideal of k× k-minors of the generic
circulant matrix V defines the (reduced) union of
(k− 2)-planes⋃

i1 ,i2 ,...,ik−1∈{0,...,n−1}
span(pi1 , pi2 , . . . , pik−1

)

(in contrast with the case of the generic catalec-
ticant matrix, where all ideals of minors are
prime).

Other Connections—Toeplitz Operators
We end by discussing briefly a relation between
circulant and Toeplitz matrices. The interested
reader may consult [6] for more information about
the connection.

Let {t−n+1, . . . , t0, . . . , tn−1} be a collection of
2n−1 complex numbers. An n×nmatrix T = [tkj]
is said to be Toeplitz if tkj = tk−j . Thus, a Toeplitz
matrix T is a square matrix of the form

T = Tn =




t0 t−1 · · · t−(n−2) t−(n−1)

t1 t0 · · · t−(n−3) t−(n−2)

...
...

. . .
...

...
tn−2 tn−3 · · · t0 t−1

tn−1 tn−2 · · · t1 t0



.

These matrices have a rich theory, and they relate
naturally to the circulant ones we study here. If
we have tk = t−(n−k) = tk−n, then as a special case
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Tn is circulant. We use both classes of matrices in

a proof of a celebrated spectral theorem to show
the depth of their interconnection.

Let ϕ be a smooth real-valued function on
the unit circle with Fourier coefficients ϕ̂j =∫ 2π

0 e−ıjθϕ(θ)dθ, and consider the Toeplitz matrix

Tn(ϕ) = (ϕ̂i−j), 0 ≤ i, j ≤ n − 1. The renowned
Szegö theorem [7] asserts that if f is a continuous
function on C, then

(10) lim
n→∞

1

n

∑

λ∈specTn(ϕ)

f (λ) = 1

2π

∫

S1
f (ϕ(eiθ))dθ.

We sketch a classical argument leading to its proof.
Given a double sequence {tk}+∞k=−∞ ⊂ C in l1

(and hence also in l2), let ϕ be the L1-function
whose Fourier coefficients are the tj ’s. We form the
sequence of Toeplitz matrices {Tn(ϕ) = Tn}+∞n=1,
where Tn is defined, as above, by {t−n+1, . . . , tn−1},
and denote by τ

(n)
l , l = 0,1, . . . , n− 1 its eigenval-

ues. The Tn’s are Hermitian if and only if ϕ is
real-valued. We study the asymptotic distribution

(11) lim
n→+∞

1

n

n−1∑

l=0

τ
(n)
l ,

the case of f (x) = x in Szegö’s identity (10).
We introduce the circulant matrix Vn(ϕ) =

circ{(v(n)0 , . . . , v
(n)
n−1)}, where

(12) v
(n)
k = 1

n

n−1∑
j=0

ϕ

(
2πj

n

)
e

2πjk
n i .

For fixed k, this is the truncated Riemann sum
approximation to the integral yielding t−k, and

sinceϕ ∈ L1, we have v
(n)
k → t−k. By Theorem 6, the

ordered eigenvalues of Vn(ϕ) are λ
(n)
l =ϕ

(
2π

l

n

)
,

l = 0, . . . , n − 1, and so, using Riemann sums to
approximate the integral of the mth power of ϕ,
m ∈ N, we conclude that

(13) lim
n→∞

1

n

n−1∑

l=0

(λ
(n)
l )

m = 1

2π

∫ 1π

0

ϕ(θ)mdθ .

This relates the average of ϕ to the asymptotic
distributions of the eigenvalues of Vn. The special
case of Szegö’s theorem above is now within reach.

If we can prove that the two sequences of n×n
matrices {Tn} and {Vn} are asymptotically equiv-
alent in the sense that limn→+∞ ||Tn − Vn|| = 0,
where ‖V‖ is the Hilbert-Schmidt norm of the op-
erator V , then their eigenvalues are asymptotically

equivalent in the sense that

lim
n→+∞

1

n

n−1∑

l=0

(τ
(n)
l − λ(n)l ) = 0,

and so (11) equals (13) for m = 1. It is convenient
to do this by introducing the auxiliary circu-

lant matrix Vn(πnϕ) = circ{(ṽ(n)0 , . . . , ṽ
(n)
n−1)} of

the truncated Fourier series πnϕ =∑n+1
j=−n+1 tje

ijθ ,

where ṽ
(n)
k is given by (12) with the role ofϕ played

by πnϕ. The matrix Vn(πnϕ) is also Toeplitz, and
its Toeplitz’s coefficients are determined solely by
{t−n+1, . . . , tn−1}. The matrices Vn(ϕ) and Vn(πnϕ)
are asymptotically equivalent, and a simple L2-
argument of Fourier series shows that the latter
is asymptotically equivalent to Tn(ϕ), and so also
the former.

Arbitrary powers of Tn and Vn have asymp-
totically equivalent eigenvalues, and the general
Szegö’s theorem follows by applying Weierstrass’s
polynomial approximation to f .

It is of practical significance that Vn(πnϕ)
encodes finite-dimensional information of the
Fourier expansion of ϕ and spectral information
on the zeroth order pseudodifferential operator
πnMϕπn, where Mϕ is the multiplication by ϕ
operator.
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