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ON THE ENERGY OF A LARGE ATOM 

CHARLES L. FEFFERMAN AND LUIS A. SECO 

We announce a proof of an asymptotic formula for the ground-
state energy of a large atom. The early work of Thomas-Fermi, 
Hartree-Fock, Dirac, and Scott predicted that for an atomic num­
ber Z , the energy is E(Z) « -cQZ7^ + c{Z

2 - c2Z
513 for known 

c0, cx, and c2 (see [5]). Schwinger [7] observed an additional ef­
fect and set down the modified formula E(Z) « -cQZ ' +cxZ -
•yC2Z5/3. Our proof shows that Schwinger's formula is correct. 

We give the precise formulation of the problem. For a fixed 
nucleus of charge Z and quantized electrons x{, . . . , xN e R3, 
the Hamiltonian HN z is the self-adjoint operator 

^ \Xk ~ Wl) + 2 Ç \x.-x.\' 
k=\ v ' kW i^j ' l J1 

This operator acts on functions y/(x{, . . . , xN) which satisfy the 
antisymmetry condition 

y/(x{, ...,xN) = (sgia)iff(xal9 . . . , xaN) 

for permutations a . The ground-state energy E(N, Z) is defined 
as the infimum of the spectrum of Hz N, and the ground-state 
energy of an atom is defined as E(Z) = infN>0 E(N, Z). We 
have ignored electron spin, which simplifies notation, alters no 
ideas, and causes some of our coefficients to differ from those in 
the physics literature. Our main result is as follows. 

Theorem. E(Z) = -c0Z
7/3 + \Z2 - fc2Z

5/3 + 0{Z{5/3)~a) with 
a > 0, and c0, c2 to be described below. 

Hughes [1] and Siedentop-Weikard [9] recently proved the 
"Scott conjecture," i.e. E{Z) = -c0Z

1/3 + \Z2 + 0(Z2~a) with 
a = 1/24. (See also the early work of Lieb-Simon [6] on molecules, 
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the exposition of Hughes' proof in [10], and a different, shorter 
proof in [11].) 

The argument of [1] begins with a pointwise inequality of Lieb 
[4] of the form 

This implies 

k=\v 1**1 y 

and the right-hand side reduces by separation of variables to a 
problem in ordinary differential equations (ODEs). Our theorem 
is also proved by reduction to ODEs, but in place of ( 1 ) we need an 
estimate that takes account of the correlations between electrons 
on a length scale of Z~ 2 / 3 . Also, in studying ODEs, we need to 
replace the standard WKB approximation by a more precise ap­
proximation that contains the leading correction to WKB. Finally, 
to combine results for ODEs into estimates for spherically sym­
metric Schrödinger operators on R , we must use a bit of analytic 
number theory. These are the main points in our proof. A brief 
sketch of our proof is as follows. 

Let p{x), W(x) be the Thomas-Fermi density and its screened 
Coulomb potential. Thus 

W(x) = -?l+[ ^ ^ < 0 

and 6n2p(x) = \W(x)\3/2. See [5]. 
Let Ek, y/k(x), 1 < k < N, be the eigenvalues and (normal­

ized) eigenfunctions of the one-electron Hamiltonian -A+W(x) 
on L2(R3). From the y/k we make the Hartree-Fock wave func­
tion 

y/hf(x{ 9...,xN) = -j= ] T val(xx) - • y/^ix^sgna. 

Its energy Ehf= {HN zythf, y/h/) should approximate E(Z) with 
excellent precision, as every chemist and physicist knows. We 
make a rigorous comparison by proving the following estimate. 
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Lemma 1. 

é ï 2«/R3XR3 \x-y\ 

(5/3)-fl cD ƒ p4,3{x)dx-CZ{ 

JR3 

where cD is Dime's constant, and a > 0. 

This lemma is our substitute for inequality (1), and is a non-
trivial step. Comparing the definition of ELB with the textbook 
formula for Ehf, we obtain the formula 

Ehf-ELB = \( w*)-p(*m<y)-pwdxdy 
h) LB 2yR3xR3 \x-y\ 

+cJy>4x-Ut wp£éXliy+cz<»»-
JR3 Z JR3XR3 \x-y\ 

with 

and 

N 
pAx) = particle density = y ^ 1^001 

N 

S(x,y) = correlation function = ^ ^MF^Cv)-

Next, we compare p#(x) and S(x,y) with their semiclassical 
approximations, and derive the following results. 

Lemma 2. 
Wx)-p{x)][p§(y)-p<y)]dxdy < c z(5 / 3)- a_ 

^RJXRJ \ x - y \ 

Lemma 3. 

ƒ 3 ^ f dxdy > cD ƒ P*l\x)dx - CZ^-\ 
JR3XR3 \x — y\ JR3 

Putting Lemmas 2 and 3 into equation (2), we see that E, 

i 
hf 

ELB < C'Z^5'^ a. Therefore Lemma 1 yields the chain of i in­

equalities 

Ehf>E(Z)>ELB>Ehf-C
fZ{5/3) a 

so that the three energies Ehj> E(Z) and ELB all differ by 
0 ( Z ( 5 / 3 ) - a ) . Hence, the proof of our theorem reduces to the com­
putation of ELB , which evidently amounts to computing X)f=i ^k • 
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Lemma 4 
TV 

X X = - - ^ ƒ \W(x)\5l2dx+X-Z2 

+ — ^ / | ^ W | l / 2 A P F ( x ) ^ + 0(Z ( 5 / 3 ) *). 
487T 7R3 

The Thomas-Fermi equations -AW = Anp and |W| = 
6n2p let us rewrite the right-hand side here in terms of p. Sub­
stituting the result of Lemma 4 into the definition of ELB, we 
obtain Schwinger's formula for E(Z) with an error 0(Z ( 5 / 3 ) _ Ö) . 
The constants cQ and c2 are specified by the equations 

7/3 

Thomas-Fermi Energy = -c0Z 

and CD [ 
JR 

p (x)dx = c2Z . 
R3 

We close with a few comments on the proofs of Lemmas 2, 3, 
and 4. First of all, Lemma 2 is a weak substitute for a refined 
density formula, which is asserted in the physics literature but is 
easily seen to be false. Thus, we are fortunate in needing only the 
weak substitute. Lemma 3 is rather easy, since the main terms 
have size Z 5 / 3 , while the error term is 0 (Z ( 5 / 3 ) - a ) . Lemma 4 
requires the leading correction to the WKB approximation. We 
omit the precise statement, and just give the main formula. If 
V(x) is a large slowly varying potential on the line, then E closely 
approximates an eigenvalue of —{d jdx ) + V(x) when 

(3) / (E- V(x)){/2dx 

(E-V{x)) V2v"(x)dx-S l/2G(E) 
ô>V(x) 

with k an integer and G(E) uniquely specified by requiring the 
finiteness of the limit. We use (3) to control eigenvalues in the 
range [-Z ( 5 / 3 ) _ e , 0]. Eigenvalues below _ z ( 5 / 3 ) - e come from 
the region near the origin where W{x) ~ -(Z/\x\) + C and hence 
may be controlled by comparison with the elementary operator 
-A - (Z/\x\) + C . Finally, we repeat that some simple analytic 
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number theory enters when we sum over angular momenta to de­
rive Lemma 4 from results on ODEs. The issues are closely re­
lated to the standard number-theoretic problem of counting the 
lattice points in a ball. In retrospect, this should not be surpris­
ing, since the lattice point problem clearly deals with the accu­
racy of the semiclassical eigenvalue count. The number-theoretic 
part of our proof requires a condition on the potential that plays 
the role of the nonvanishing curvature of the ball. Specifically, if 
</>(w) = f™{-{w2/r2) - W(x))lJ dr, then we require that (j)\w) 
vanish at most to finite order for any w in (0, maxr r\W(r)y2). 

This condition holds for the screened Thomas-Fermi potential, 
but fails for highly degenerate eigenvalue problems such as the 
harmonic oscillator or the hydrogen atom. Thus elementary ana­
lytic number theory explains the following paradox. Schwinger's 
eigenvalue formulas [7] are derived from a careful study of the 
harmonic oscillator and the hydrogen atom, yet these formulas are 
false for the harmonic oscillator and hydrogen atom. Nevertheless, 
they are correct for generic radial potentials, including the one we 
need. Understanding the class of nonradial potentials for which 
Schwinger's formulas hold is a hard, interesting problem. 

Our results show that the ground state of an atom has two-
electron correlations on a length scale of Z~ ' equal to those of 
the Hartree-Fock wave function, modulo small corrections. 

Finally, as an application of our results, we point out the follow­
ing. In [2, 3, 8], bounds for the excess charge and ionization energy 
for large atoms were obtained. These bounds were given as a func­
tion of a parameter b , between \ and \ . The optimal bounds 
correspond to the value \ . From the work of Hughes, Siedentop, 
and Weikard, it could be seen that one could take b = | . Our 
present work shows that one can take b = \ . 

We are grateful to R. Weikard for useful discussions. 
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