ENERGY DECAYS LOCALLY EVEN IF TOTAL ENERGY GROWS ALGEBRAICALLY WITH TIME

BY CLIFFORD O. BLOOM AND NICHOLAS D. KAZARINOFF
Communicated by Cathleen Morawetz, February 13, 1973

0 . Introduction. In this note we announce energy decays locally like $t^{-2+\kappa}$ for solutions of hyperbolic equations, with coefficients that depend upon both position and time, in the exterior of star-shaped domains in \boldsymbol{R}^{3}. Here κ is a positive constant, depending on the coefficients, defined explicitly by (8) below. Our results generalize those of Zachmanoglou [4]. He considered a class of equations with time-independent coefficients (see (12) below) and proved under hypotheses roughly analogous to ours that in $\boldsymbol{R}^{n}(n \geqq 3)$ energy decays locally like $t^{-1+\mu}(1>\mu \geqq 0)$. A more important difference between the equations we consider here and those considered by Zachmanoglou in [4] is that we treat equations with solutions whose total energy may grow algebraically with t while the total energy of solutions of the equations considered in [4] is conserved. In [1] we proved that the energy of solutions with bounded total energy decays locally like t^{-2}, but under more stringent hypotheses than those used here.

We now set the scattering problem whose solutions we investigate. Let V be the exterior of a closed, bounded subset B of \boldsymbol{R}^{3}, and let n be the outward unit normal to ∂B. We assume that the origin lies interior to B and that $\partial V \equiv \partial B$ is star-shaped:

$$
\begin{equation*}
\min _{x \in \partial V} \frac{n \cdot x}{r} \geqq 0 \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $r^{2}=x \cdot x$. Let $Q=(V \cup \partial V) \times[0, \infty)$. We use the notation $\nabla^{(3)}=\left(\partial / \partial x_{1}, \partial / \partial x_{2}, \partial / \partial x_{3}\right), \nabla=\left(\nabla^{(3)}, \partial / \partial t\right)$. We take as given a symmetric 3×3 matrix $E, 1 \times 3$ matrices a and b, and functions c and d which satisfy the following hypothesis:

$$
\begin{array}{ll}
\left(\text { Hypothesis } \mathrm{H}_{1}\right) & \text { (a) } b, c \text {, and } E \text { are in } C^{1}(Q) ; a \text { and } d \text { are in } C^{2}(Q), \\
\text { (b) for some } d_{0}>0, d(x, t) \geqq d_{0} \text { if }(x, t) \in Q .
\end{array}
$$

Let the transpose of a matrix M (or m) be M^{T} (or m^{T}). We suppose that E is uniformly elliptic in Q, namely that there exist positive constants c_{0} and

[^0]C_{0} such that
$$
C_{0} \geqq \max _{|\xi|=1} \xi E \xi^{T} \geqq \min _{|\xi|=1} \xi E \xi^{T} \geqq c_{0}
$$

Finally we adopt the notation

$$
A=\left(\begin{array}{cc}
E & a^{T} \\
a & -d
\end{array}\right), \quad D=\left(\begin{array}{cc}
E_{t} & b^{T} \\
b & -c
\end{array}\right)
$$

and

$$
(\hat{\cdot})=\frac{(\cdot)}{\min _{|\dot{|j|}|=1} \xi E \xi^{T}} .
$$

We consider solutions of the mixed initial boundary value problem

$$
\begin{gather*}
\nabla\left(A(\nabla u)^{T}\right)+\left(b-a_{t}\right) \cdot \nabla^{(3)} u+\frac{1}{2}\left(d_{t}-c\right) u_{t}=0 \quad(x \in V, t>0), \tag{2}\\
u(x, t)=0 \quad(x \in \partial V, t \geqq 0) \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \quad(x \in V) \tag{4}
\end{equation*}
$$

where f and g are functions in $C^{1}(V \cup \partial V)$ with compact support.

1. Norms and constants. We use the following norms:

$$
N(\cdot) \equiv \max _{V \cup \partial V}|\cdot| \quad \text { and } \quad N^{\prime}(\cdot) \equiv \max _{t \geqq 0} N(\cdot)
$$

We shall assume that the coefficients c, d and the matrix coefficients a, b, and E are such that the following are positive numbers:

$$
\begin{align*}
\alpha_{1}= & 2 N^{\prime}\left(r d_{r} / d\right)+2 N^{\prime}\left(r a_{r} / d\right)+N^{\prime}\left(r\left(d_{t}-c\right) / d\right), \\
\alpha_{2}= & 2 N^{\prime}\left(r \hat{E}_{r}\right)+2 N^{\prime}\left(r \hat{a}_{r}\right)+4 N^{\prime}\left(r\left(\hat{a}_{t}-\hat{b}\right)\right)+N^{\prime}\left(r\left(\hat{d}_{t}-\hat{c}\right)\right) \\
& +8 N\left(r^{-2}\right) N^{\prime}\left[r^{4}\left(\frac{1}{2}\left(d_{t}-c\right)_{t}-\nabla^{(3)} \cdot\left(a_{t}-b\right)\right)\right] N^{\prime}(\hat{1}), \tag{5}\\
\alpha_{1}^{\prime}= & N^{\prime}(t b / d)+N^{\prime}(t c / d), \quad \alpha_{2}^{\prime}=N^{\prime}\left(t \hat{E}_{t}\right)+N^{\prime}(t \hat{b}) .
\end{align*}
$$

In addition to the smoothness conditions on the coefficients already imposed, this hypothesis imposes decay rates on the coefficients in (1) and on their time and space derivatives.

Let Ω be defined by the equation

$$
\begin{align*}
&\left\{1+N^{\prime}(\hat{d})+N^{\prime}\left(r^{-2}\right) N^{\prime}(\hat{1})\left[4 N^{\prime}\left(r^{3} d_{r}\right)+2 N^{\prime}\left(r^{3}\left(d_{t}-c\right)\right)\right]\right. \\
&\left.+4\left(N^{\prime}\left(r^{-4}\right)\right)^{1 / 2} N^{\prime}(\hat{1}) N^{\prime}\left(r^{2} a\right)+2 N^{\prime}(\hat{a})\right\} \Omega=\frac{1}{2} . \tag{6}
\end{align*}
$$

Again we shall assume that the coefficients of (1) are such that the above norms are well defined.

For any $\varepsilon \in(0,1)$, each $T>0$, and some small $\delta>0$, we define

$$
\begin{gather*}
\mathscr{D}(T)=\{x \mid r \leqq \varepsilon \Omega T\} \cap V \tag{7}\\
\kappa=(1-\varepsilon)^{-1}\left[\max \left(\alpha_{1}, \alpha_{2}\right)+\left(1+(\varepsilon \Omega)^{2}\right) \max \left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)\right] \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
s=\max \left[N^{\prime}\left(t \hat{E}_{t}\right)+N^{\prime}(t \hat{b}), N^{\prime}(t b / d)+N^{\prime}(t c / d)\right] \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q=-1+\delta+s \tag{10}
\end{equation*}
$$

Note that if the differential equation (2) is the wave equation, then $\kappa=0$.
2. Local energy decay. We make the following major hypothesis:
(Hypotheses H_{2}) The N^{\prime}-norm of each of the following is a positive number:

$$
\begin{aligned}
& r^{3+q}(E-d I), \quad r^{4+q} E_{r}, \quad r^{4+q} d_{r}, \quad r^{4+q}\left(d_{t}-c\right), \quad r^{3+q} a, \\
& r^{4+q} a_{r}, \quad r^{4+q}\left(a_{t}-b\right), \quad r^{4+q}\left[2\left(d_{t}-c\right)+d_{t}-2 \nabla^{(3)} \cdot a\right], \\
& r^{5+q}\left(d_{t}-c\right)_{t}-2 \nabla^{(3)} \cdot\left(a_{t}-b\right), \quad t E_{t}, r^{4+q} E_{t}, t b, \quad \text { and } \quad t^{4+q} c .
\end{aligned}
$$

Let $\mathscr{E}_{\text {loc }}(x, t)=\frac{1}{2} \int_{\mathscr{D}}\left[d u_{t}^{2}+\nabla^{(3)} u E\left(\nabla^{(3)} u\right)^{T}\right] d x$, and let $\mathscr{E}(x, 0)$ be the total initial energy associated with u.

Theorem 1. Suppose that ∂V is star-shaped, E is uniformly strongly elliptic, Hypothesis H_{1} is satisfied and the initial data (f, g) in (4) are smooth and have compact support in V. Then the unique solution to Problems (2)-(4) has compact support. Moreover, suppose $T_{0} \equiv T_{0}(\varepsilon)$ is so large that $\partial V \subset \mathscr{D}\left(T_{0}\right)$, where \mathscr{D} is defined by (7) and Hypothesis H_{2} is satisfied by the coefficients of the differential equation (2). Then, for each $\varepsilon \in(0,1)$, there exist positive constants M, K, and κ, with κ defined by (8), such that for $T>T_{0}$

$$
\begin{equation*}
\mathscr{E}_{1 \mathrm{oc}}(x, T) \leqq \frac{K \mathscr{E}(x, 0)}{T^{2}}\left\{1+\left(\frac{T}{T_{0}}\right)^{\kappa} e^{M / T_{0}}\left[1-\left(\frac{T_{0}}{T}\right)^{\kappa}+\frac{M}{(1+\kappa) T_{0}}\right]\right\} \tag{11}
\end{equation*}
$$

The theorem holds even if for each positive number p there exists a $t>p$ for which the quadratic form associated with the matrix D defined by (1) fails to be negative semidefinite on $V \cup \partial V$. The negative semidefiniteness of D was a major hypothesis in [1].

Corollary 1. If the quadratic form associated with D is negative semidefinite on $(V \cup \partial V) \times\left[T_{0}, \infty\right)$, then the energy decay estimate (11) holds with α_{1}^{\prime} and α_{2}^{\prime}, which enter into the definition of κ, both zero and with the exponent q in Hypothesis H_{2} equal to $-1+\delta$.

In the case of the wave equation our decay estimate reduces to $\mathcal{O}\left(t^{-2}\right)$, which is the same as that obtained by C. S. Morawetz in [2]. E. C. Zachmanoglou [4] proved energy decays locally like $t^{-1+\mu}(1>\mu \geqq 0)$ for solutions of hyperbolic equations of the form

$$
\begin{equation*}
\nabla^{(3)}\left(E(x)\left(\nabla^{(3)} u\right)^{T}\right)-c(x) u-d(x) u_{t t}=0 \tag{12}
\end{equation*}
$$

by generalizing the argument used by Morawetz in [3] in treating the wave equation. To establish a faster rate of energy decay as $t \rightarrow \infty$ than the rate Zachmanoglou establishes in [4], we have to impose Hypothesis H_{2}, which is more stringent by a factor of r than his analogous conditions. But the total energy of solutions of equations of the form (2) satisfying Hypothesis H_{2} may grow algebraically with t. In [1] we considered equation (2) with $E=E(x, t), c=0$, and $d=1$ under the hypotheses that $E_{t} \leqq 0, c_{0} \geqq 1$, and for $t \geqq N$ and $r \geqq \varepsilon t+c,\left|r \nabla^{(3)} E\right|=\mathcal{O}\left(t^{-2-\delta}\right)$, $|x(E-I)|=\mathcal{O}\left(t^{-1-\delta}\right)$, and $\left|r E_{r}\right|=\mathcal{O}\left(t^{-2-\delta}\right)$ for some positive c and δ.

Our methods of proof in [1] and of Theorem 1 are similar; the estimates we use to prove Theorem 1 are much sharper. Both results are based on the divergence identity

$$
\begin{aligned}
& \nabla\left[(\alpha \cdot \nabla u)(A w)-\alpha^{T}(\nabla u A w) / 2+u(\gamma A+B) w+C^{T} u^{2} / 2\right] \\
& \quad \equiv[\alpha \cdot \nabla u+\gamma u](\nabla(A w))+(\nabla \cdot C) u^{2} / 2+u[C+(\nabla \gamma) A+\nabla \cdot B] \cdot \nabla u \\
& \quad+\nabla u[\gamma A-(\nabla \cdot \alpha) A / 2-(\alpha \cdot \nabla) A / 2+\nabla \alpha A] w,
\end{aligned}
$$

where B is an antisymmetric 4×4 matrix with $B^{i *}=0(i=1,2,3)$, $w=(\nabla u)^{T}, B^{4^{*}}=\left[-\left(\beta+t^{2} r^{-2}\right) x, 0\right] d, \alpha=\left(2 x t, r^{2}+t^{2}\right), \gamma=2 t, C=$ $\left(2 t x d r^{-2}+\Delta d,-d-t^{2} d r^{-2}\right), \beta$ is a solution of

$$
(d \beta)_{r}+3(d \beta) r^{-1}=3 d r^{-1}+t\left(d_{t}-c\right) r^{-1}+t^{2} d_{r} r^{-2}
$$

$\nabla \alpha=\left(\alpha_{x_{i}}^{j}\right)$, and $\Delta d=2 t\left(b-a_{t}\right)-2 a+\left[(\beta d)_{t}+\left(t^{2} d\right)_{t} r^{-2}\right] x-2 t x d r^{-2}$. We integrate this identity over the space-time domain bounded by the planes $t=T_{0}, t=T\left(T>T_{0}\right)$, and the surface $\partial V \times\left[T_{0}, T\right]$, apply the divergence theorem, and estimate carefully to prove Theorem 1.

References

1. C. O. Bloom and N. D. Kazarinoff, Energy decay in nonhomogeneous media, Proc. Sympos. on Analysis (Rio de Janeiro August 15-24, 1972), Hermann, Paris (to appear).
2. Cathleen S. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math. 15 (1962), 349-361. MR 27 \#1696.
3. -, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961), 561-568. MR 24 \# A2744.
4. E. C. Zachmanoglou, The decay of solutions of the initial-boundary value problem for hyperbolic equations, J. Math. Anal. Appl. 13 (1966), 504-515. MR 32 \#6055.

Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226

[^0]: AMS (MOS) subject classifications (1970). Primary 35B05, 35L10. 78A45; Secondary 35P25, 78A05.

 Key words and phrases. Energy decay, star-shaped obstacle, second order hyperbolic equations, variable coefficients, divergence identity.

