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0. Introduction. In this note we announce energy decays locally like 
t'2 + K for solutions of hyperbolic equations, with coefficients that depend 
upon both position and time, in the exterior of star-shaped domains in 
R3. Here K is a positive constant, depending on the coefficients, defined 
explicitly by (8) below. Our results generalize those of Zachmanoglou [4]. 
He considered a class of equations with time-independent coefficients (see 
(12) below) and proved under hypotheses roughly analogous to ours that 
in Rn (n ^ 3) energy decays locally like t~1+fÀ (1 > fi ^ 0). A more 
important difference between the equations we consider here and those 
considered by Zachmanoglou in [4] is that we treat equations with 
solutions whose total energy may grow algebraically with t while the total 
energy of solutions of the equations considered in [4] is conserved. In [1] 
we proved that the energy of solutions with bounded total energy decays 
locally like t~ 2, but under more stringent hypotheses than those used here. 

We now set the scattering problem whose solutions we investigate. 
Let V be the exterior of a closed, bounded subset BofR3, and let n be the 
outward unit normal to dB. We assume that the origin lies interior to B 
and that dV = dB is star-shaped: 

(1) min — ^ 0, 
xedV r 

where x = (x l5 x2, x3) and r2 = x • x. Let Q = (V u dV) x [0, oo). We 
use the notation V(3) = {d/dxl9 d/dx2, d/dx3), V = (V(3), d/dt). We take as 
given a symmetric 3 x 3 matrix £ , 1 x 3 matrices a and b, and functions 
c and d which satisfy the following hypothesis: 

m th ' w ï (a) ^' c ' andE are in Cl(Q)\ a and dare in C2(Q), { ypo esis j ^ ^ s^^e ^ ^ 0^ j ^ ^ ^ ^ ^ ^ ^ ^ Q 

Let the transpose of a matrix M (or m) be MT (or mT). We suppose that E is 
uniformly elliptic in Q, namely that there exist positive constants c0 and 
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C0 such that 
C0 > max ÇE£ 

° - 151 = 1 

Finally we adopt the notation 

* - ( " ) • 

and 

C') = 
A

ll min ÇEÇT > c 
I5l = i ~ 

»-(î : 
(•) 

min I ElT ' 

We consider solutions of the mixed initial boundary value problem 

(2) V(A(Vu)T) + (b- at) • V
(3)w + ^dt - c)ut = 0 (x e V, t > 0), 

(3) u{x, 0 = 0 {xedV9t^ 0), 

(4) u{x, 0) = f(x)9 ut{x9 0) = g{x) (x e V\ 

where ƒ and g are functions in C\V u dV) with compact support. 

1. Norms and constants. We use the following norms: 

N{-) = max | • | and N'(-) = max N(-). 

We shall assume that the coefficients c, d and the matrix coefficients a, b, 
and E are such that the following are positive numbers: 

ax = 2N'{rdJd) + 2N\raJd) + N\r{dt - c)/d)9 

a2 = 2tf'(r£r) + 2N\râr) + 4AT(r(a, - 5)) + AT(r(^ - £)) 
( 5 ) + %N{r-2)N'\r\^dt - c\ - V(3) • {at - 6))]iV'(î), 

a ; = JV'(rf>/d) + N'{tc/d), a'2 = AT(*Êf) + AT(fb). 

In addition to the smoothness conditions on the coefficients already 
imposed, this hypothesis imposes decay rates on the coefficients in (1) and 
on their time and space derivatives. 

Let Q be defined by the equation 

/ n {1 + N'(â) + N'(r-2)N'(î)[4N'(r3dr) + 2N\r\dt - c))] 
(6) 

+ 4{N'{r-*)yl2N'{\)N'(r2a) + 2N'(â)}Q = \. 

Again we shall assume that the coefficients of (1) are such that the above 
norms are well defined. 

For any e e (0, 1), each T > 0, and some small ô > 0, we define 

(7) 9(T) = {x | r S e&T} n V9 

(8) K = (1 - £)~1[max(a1, a2) + (1 + (sQ)2)max((x'l9 a2)] 



1973] ENERGY DECAYS LOCALLY 971 

(9) s = max[N'(tÊt) + AT(ffi), N'(tb/d) + N\tcld)~\, 

and 

(10) q = -1 + Ô + s. 

Note that if the differential equation (2) is the wave equation, then K = 0. 

2. Local energy decay. We make the following major hypothesis: 
(Hypotheses H2) The N'-norm of each of the following is a positive 

number: 

r3 + q{E - dl), r4 +«£ r , r*+qdr, r*+q(dt - c), r3+qa, 

r4+qar9 r4+q{at - b)9 r*+q[2(dt - c) + dt - 2V(3) • a], 

r5+q(dt - c\ - 2V(3) • (at - b)9 tEt9 r*+qEt9 tb9 and t4+qc. 

Let SXoc{x9 0 = 2 ƒ* ldu? + V(3)«JS(V(3)«)r] dx9 and let ^(x, 0) be the 
total initial energy associated with u. 

THEOREM 1. Suppose that dV is star-shaped, E is uniformly strongly 
elliptic, Hypothesis H t is satisfied and the initial data (ƒ, g) in (4) are smooth 
and have compact support in V. Then the unique solution to Problems 
(2)-(4) has compact support. Moreover, suppose T0 = T0(e) is so large that 
dV a @(T0)9 where Si is defined by (7) and Hypothesis H2 is satisfied by the 
coefficients of the differential equation (2). Then, for each s e (O, 1), there 
exist positive constants M, K, and K, with K defined by (8), such that for 

The theorem holds even if for each positive number p there exists a 
t > p for which the quadratic form associated with the matrix D defined 
by (1) fails to be negative semidefinite on V u dV. The negative semi-
definiteness of D was a major hypothesis in [1]. 

COROLLARY 1. If the quadratic form associated with D is negative semi-
definite on (V u dV) x [T0, oo), then the energy decay estimate (11) holds 
with ai and a2, which enter into the definition of K, both zero and with the 
exponent q in Hypothesis H2 equal to — 1 + ö. 

In the case of the wave equation our decay estimate reduces to (9(t~2), 
which is the same as that obtained by C. S. Morawetz in [2]. E. C. 
Zachmanoglou [4] proved energy decays locally like r 1 + M ( l > \x ^ 0) 
for solutions of hyperbolic equations of the form 

(12) V(3)(£(x)(V(3)i/)r) - c(x)u - d(x)utt = 0 
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by generalizing the argument used by Morawetz in [3] in treating the 
wave equation. To establish a faster rate of energy decay as t -> oo than 
the rate Zachmanoglou establishes in [4], we have to impose Hypothesis 
H2 , which is more stringent by a factor of r than his analogous conditions. 
But the total energy of solutions of equations of the form (2) satisfying 
Hypothesis H 2 may grow algebraically with t. In [1] we considered 
equation (2) with E = E(x, t), c = 0, and d = 1 under the hypotheses 
that Et S 0, c0 ^ 1, and for t ^ N and r ^ et + c, |rV(3)£| = (9{r2~3), 
\x(E - I)\ = 0( r 1 _ < 5 ) , and \rEr\ = 0{t~2~ö) for some positive c and Ô. 

Our methods of proof in [1] and of Theorem 1 are similar; the estimates 
we use to prove Theorem 1 are much sharper. Both results are based on 
the divergence identity 

V[(a- Vu)(Aw) - aT(VuAw)/2 + u(yA + B)w + C ru2 /2] 

= [a • Vu + yu](S7(Aw)) + (V • C)u2/2 + u[C + (Vy)4 + V • B] • Vw 

+ Vu[yA - (V • a)X/2 - (a • V)A/2 + Va,4]vv, 

where J? is an antisymmetric 4 x 4 matrix with Bl* = 0 (i = 1, 2, 3), 
w = (Vw)r, £4* = [-(j8 + t2r~2)x9 0]rf, a = (2xf, r2 + f2), y = 2f, C = 
(2 ta dr~2 + Ad, -d - t2 dr~2), /? is a solution of 

(rf0)r + S ^ r " 1 =3dr~1 + /(<t - c y - 1 + J2 J rr"2 , 

Va = (aï.), and Ad = 2t(b - at) - la + [(j8rf)t + (f2 rf)tr"
2]x - 2*x rfr~2. 

We integrate this identity over the space-time domain bounded by the 
planes t = T0, t = T (T > T0), and the surface dV x [T0, T ] , apply the 
divergence theorem, and estimate carefully to prove Theorem 1. 
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