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Introduction and statement of results. This announcement describes an 
elementary method of constructing harmonic maps in some cases not 
covered by the general existence theory. Recall that given smooth 
Riemannian manifolds N and M, with N compact, then the energy 
functional E:H(N,M) -> R is defined on a suitable manifold of maps 
H(iV, M ) and is given by E{ f ) = \ \n \df |2. A map ƒ is said to be harmonic 
iff is a critical point of E; equivalently, if the tension field x(f) vanishes, 
where T is the Euler-Lagrange operator associated to E. 

The study of harmonic maps was initiated by Eells and Sampson, and 
the basic problem they consider is the following: given a homotopy class 
of maps between JV and M, is there a harmonic representative of rthat 
class? The case when M is compact is of particular interest, and under 
the assumption that all sectional curvatures of M are nonpositive, they 
succeeded in giving an affirmative answer to this question [2]. Their 
method was to find solutions of the heat equation T( ƒ ) — df/dt = 0 and 
obtain harmonic maps in the limit. More recently, the global theory of the 
calculus of variations has been successfully employed to recapture the 
existence theory [3], [4]. 

One may take the following as a starting point for the direct construc
tion approach given here: 

Observation. Let/:RW+1 -» Rm+1 be a map each of whose coordinates 
is given by a homogeneous harmonic polynomial of degree k. Suppose 
f(Sn) s Sm. Then ƒ = f/Sn:Sn -* Sm is harmonic. 

The examples of interest arise from putting two such maps together: 

THEOREM. Let f:Rp -* Rq and g:Rr-+Rs be homogeneous harmonic 
polynomial maps of degree I and k respectively which send sphere to sphere. 
Assume 

(1) k>((y/T- l)/2)(r - 2), 
(2) I > ((VT- l)/2)(p - 2). 

Further assume r, p ^ 2. Then there is harmonic map F:Sp+r J -• Sq+S 1 

which is given in Euclidean coordinates by 
(3) F(u, o) = ((g(«)/|«|*) cos ait), (f(v)/\v\l) sin oit)) 

where t = log(|w|/|i;|) and a is a smooth monotone function on the reals which 
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is asymptotic toO at t = — oo and asymptotic to n/2 at t = oo. A modified 
formulation holds ifr= 1 or p = 1. 

COROLLARY. Let g be as above, with (1) satisfied. Then the ith suspension 
of the map of spheres defined by g can be harmonically realized for i = 
1,...,6. 

EXAMPLES, (a) Let g ; C -» C be z \—• zk. Suspension gives harmonic 
maps of Sn to Sn of degree k for n — 2 , . . . , 7. 

(b) Let g be the harmonic polynomial map which defines the Hopf 
map of S3 to S2. Suspension gives essential harmonic maps of Sn+l to 
Sn for n = 3 , . . . , 8. 

(c) Similarly for the g which gives the Hopf map of S7 to S4. Suspensions 
yield essential harmonic maps of Sn+3 to Sn for n = 5, . . . , 10. Furthermore, 
if we take ƒ : C — • C to be z i—• z\ then ƒ and g can be combined to get 
harmonic representatives for n9(S

6) = Z24. 
It is not yet possible to suspend (harmonically) the last Hopf map, due 

to requirement (1); that this map is itself harmonic follows from the 
Observation, or otherwise. For the sake of completeness, also note the 
following: 

Observation. Let g:S2 i—• S2 be z i—• zk on the Riemann sphere and 
let h : S3 -* S2 be the standard form of the Hopf map. Then g o h is har
monic (and has Hopf invariant fc2). 

REMARKS. (1) The Morse index of these maps (considered as critical 
points of the energy) has not yet been computed. However, it is certainly 
expected that the index of those of degree k on Sn will be positive (n ̂  3) 
since the energy takes arbitrarily small values in each component of the 
mapping space [2]. Incidentally, what can be shown is that index(ids2) = 0 
and index(idSn) = n + 1 for n > 3, using known facts about the spectrum 
ofS". 

(2) Although this announcement only discusses essential harmonic 
maps, there is ample opportunity here for constructing others which are 
inessential but geometrically interesting. For example, the standard 
nontrivial minimal immersions of Sn in higher spheres are given by har
monic polynomials. 

I would like to take this opportunity to thank my official and unofficial 
supervisors David Elworthy and James Eells for their valuable help 
throughout this project, and also to express gratitude to Larry Markus 
and David Chillingworth for their insight on differential equations. 

Methods. The problem is reduced to analyzing an ordinary differential 
equation for the function a of the Theorem. That such a reduction is 
possible is rather special to the polynomial framework; even suspensions 
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of harmonic maps are not easily handled in general. The study of this 
equation is then facilitated by a physical analogy. 

Firstly, note that if/: M -• Sn is a map of a Riemannian manifold M, 
then ƒ is harmonic if and only if the induced map/:M -» Rn+l satisfies 

(4) A / - | d / | 2 / = 0 . 

Here A is the Laplacian of M for functions. Applying this to (3) yields the 
necessary condition 

m + TT-=-,Ur - 2)e" - (P - 2KW) 
e + e V 

(5 ) • 
+ (/(/ + p - 2 y - *(fc + r - 2)<T') S l n^a ( r )j = 0. 

Thinking of t as a time parameter, we see that (5) is the equation of motion 
of some sort of pendulum. Notice that "gravity" is positive for t » 0 and 
negative for t « 0, so that one can look for an exceptional trajectory in 
which the pendulum is standing on end at t = oo (aœ = n/2) and hanging 
straight down at t = - oo (a.*, = 0). 

The existence of such a solution is established in the intuitively obvious 
way. Fix t0 to be the time when gravity vanishes and manipulate the initial 
conditions <x0 and a0. For a given a0 € (0, n/2), throw the pendulum just 
hard enough (<x0 = <XQ(OL0)) that a(t) ~ n/2 as t -• oo; similarly, choose 
&Ô(«o)to 8et a(0 ~ 0 as r -• — oo. Then AQ and àô are continuous in a0. 
Further, <x£ -* 0 as a0 -• n/2 and àô -• 0 as a0 -* 0. On the other hand, to 
show that ao is bounded away from 0 for a0 near 0 (and that &Ô is bounded 
away from 0 for a0 near n/2) requires recourse to a second order com
parison theorem [1, p. 210] and essential use of the fact that (5) is under-
damped for large |t|, using (1) and (2). Having done this, it follows that there 
is some a0 such that âo (a0) = ào(a0), and existence is proved. 

REMARK. The unpleasantly restrictive assumptions (1) and (2) occur 
crucially only here, and it is not known to what extent they might be 
circumvented. For example, if (5) is symmetrical, with fc = 1 and p = r, 
they can be ignored. 

There remains the difficult problem of regularity. It must be shown that 
the function F actually extends to a C2 mapping of the sphere. This re
quires estimating the asymptotic behavior of a. Having done this (via a 
series of ad hoc comparison theorems), one can demonstrate the required 
smoothness of F on Rp+r — (0) by exercising suitable care. 

REMARKS. With reference to the Observation regarding 7r3(S
2), it is to 

be noted that the most natural direct approach to the remaining homotopy 
classes fails. The relevant equation is quite stable, but a nonconservation 
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of energy argument shows that no solution of the desired form exists. 
For this reason, the existence or nonexistence of a harmonic map of 
Hopf invariant 2 is an interesting unresolved case. 

The pendulum approach has further applicability, for example to 
two-dimensional toroids and ellipsoids of revolution. Harmonic maps of 
degree k in the latter case will be holomorphic with respect to the induced 
complex structure. 
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