
SOME ASPECTS OF THE SEQUENTIAL DESIGN 
OF EXPERIMENTS 

HERBERT ROBBINS 

1. Introduction. Until recently, statistical theory has been re­
stricted to the design and analysis of sampling experiments in which 
the size and composition of the samples are completely determined 
before the experimentation begins. The reasons for this are partly 
historical, dating back to the time when the statistician was con­
sulted, if a t all, only after the experiment was over, and partly in­
trinsic in the mathematical difficulty of working with anything but 
a fixed number of independent random variables. A major advance 
now appears to be in the making with the creation of a theory of the 
sequential design of experiments, in which the size and composition 
of the samples are not fixed in advance but are functions of the ob­
servations themselves. 

The first important departure from fixed sample size came in 
the field of industrial quality control, with the double sampling in­
spection method of Dodge and Romig [ l ] . Here there is only one 
population to be sampled, and the question at issue is whether the 
proportion of defectives in a lot exceeds a given level. A preliminary 
sample of n\ objects is drawn from the lot and the number x of de­
fectives noted. If x is less than a fixed value a the lot is accepted with­
out further sampling, if x is greater than a fixed value b (a<b) the 
lot is rejected without further sampling, but if aSxSb then a second 
sample, of size w2, is drawn, and the decision to accept or reject the 
lot is made on the basis of the number of defectives in the total sample 
of Wi+n2 objects. The total sample size n is thus a random variable 
with two values, n\ and ni+n2, and the value of n is stochastically 
dependent on the observations. A logical extension of the idea of 
double sampling came during World War II with the development, 
chiefly by Wald, of sequential analysis [2], in which the observations 
are made one by one and the decision to terminate sampling and to ac­
cept or reject the lot (or, more generally, to accept or reject whatever 
statistical "null hypothesis" is being tested) can come at any stage. 
The total sample size n now becomes a random variable capable in 
principle of assuming infinitely many values, although in practice a 
finite upper limit on n is usually set. The advantage of sequential 
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over fixed-size sampling lies in the fact that in some circumstances 
the judicious choice of a sequential plan can bring about a con­
siderable reduction in the average sample size necessary to reduce the 
probability of erroneous decision to a desired low level. The theory of 
sequential analysis is still very incomplete, and much work remains 
to be done before optimum sequential methods become available for 
treating the standard problems of statistics. 

The introduction of sequential methods of sampling freed sta­
tistics from the restriction to samples of fixed size. However, it is 
not only the sample size that is involved in the efficient design of an 
experiment. Most statistical problems met with in practice involve 
more than one population, and in dealing with such problems we 
must specify which population is to be sampled at each stage. An 
example will serve to clarify this point. Suppose we are dealing 
with two normally distributed populations with unknown means 
Mi» M2 and variances of, of, and that we wish to estimate the value of 
the difference Mi~"M2- In order to concentrate on the point at issue 
we shall suppose that the total sample size, w, is fixed. There remains 
the question of how the n observations are to be divided between the 
two populations. If #1, #2 denote the means of samples of sizes #1, n2 

from the two populations, then #1 — x2 is an unbiased estimator of 
Mi~M2, with variance a-2 = (o^/wi) +(02/^2). For fixed n=ni+ti2, a2 i sa 
minimum when ni/fi2 = Ö I / 0 * If the latter ratio is known in advance, 
all is well. If this ratio is not known, but if the sampling can be done 
in two stages, then it would be reasonable to draw preliminary 
samples of some size m from each of the two populations and to use 
the values so obtained to estimate 0-1/0-2; the remainder of the n—2m 
observations could then be allocated to the two populations in ac­
cordance with the sample estimate of o*i/(r2. The question then be­
comes, what is the best choice for m? If m is small, no accurate esti­
mate of <ri/(T2 can be made. If m is large, then the remaining n — 2m 
observations may be too few to permit full utilization of the approxi­
mate knowledge of cri/o^. (This kind of dilemma is characteristic of 
all sequential design problems.) More generally, we could consider 
schemes in which the observations are made one by one, with the de­
cision as to which population each observation should come from 
being allowed to depend on all the previous observations; the total 
sample size n could be fixed or could be a random variable dependent 
on the observations. 

Despite the total absence of theory, a notable pioneering venture in 
the spirit of sequential design was carried out in 1938 by Mahalanobis 
[3] to determine the acreage under jute in Bengal. Preliminary sur-
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veys were made on a small scale to estimate the values of certain 
parameters, a knowledge of which was essential to the efficient de­
sign of a subsequent large scale census. In a subsequent publication 
[4] Mahalanobis called attention to the desirability of revising the 
design of any experiment as data accumulates. The question, of 
course, is how best to do this. 

We are indebted to Wald for the first significant contribution to the 
theory of sequential design. His book [5] states the problem in full 
generality and gives the outline of a general inductive method of 
solution. The probability problems involved are formidable, since 
dependent probabilities occur in all their complexity, and explicit 
recipes are not yet available for handling problems of practical inter­
est. Nevertheless, enough is visible to justify a prediction that future 
results in the theory of sequential design will be of the greatest im­
portance to mathematical statistics and to science as a whole. 

In what follows we shall discuss a few simple problems in sequential 
design which are now under investigation and which are different 
from those usually met with in statistical literature. Optimum solu­
tions to these problems are not known. Still, it is often better to have 
reasonably good solutions of the proper problems than optimum solu­
tions of the wrong problems. In the present state of statistical theory 
this principle applies with particular force to problems in sequential 
design. 

2. A problem of two populations. Let A and B denote two sta­
tistical populations (coins, urns, manufacturing processes, varieties 
of seed, treatments, etc.) specified respectively by univariate cumula­
tive distribution functions F(x) and G(x) which are known only to 
belong to some class D. We shall suppose that the expectations 

xdF(x), P = I xdG(x) 
-00 J -00 

exist. How should we draw a sample x\, #2, • • • , #n from the two 
populations if our object is to achieve the greatest possible expected value 
of the sum S „ = x i + • • • +xn? 

For example, let A and B denote two coins of unknown bias, and 
suppose that we are allowed to make n tosses, with the promise of 
getting $1 for each head but nothing for tails. If #,- = 1 or 0 according 
as heads or tails occurs on the ith. toss, then Sn denotes the total sum 
which we are to receive, and a and /? (0 :ga, /? ^ 1) are the respective 
probabilities of obtaining heads on a single toss of coins A and B. 

As a general intuitive principle, whenever we feel pretty sure from 



530 HERBERT ROBBINS [September 

the results of previous observations that one of the two numbers a, 
j8 is the greater, we shall want to devote more of our future observa­
tions to that population. Note that there is no terminal decision to 
make; that is, we are not interested in estimating a—fi or in testing 
the hypothesis that a= /3 , etc., after the sample is drawn. The whole 
problem lies in deciding how to draw the sample. There certainly exist 
practical situations in which the present problem represents more 
nearly what one wants to solve than would any formulation in terms 
of testing hypotheses, estimating parameters, or making terminal 
decisions. In fact, the problem represents in a simplified way the 
general question of how we learn—or should learn—from past experi­
ence. A reasonably good solution of the problem must therefore be 
found if mathematical statistics is to provide a guide to what has 
been called by Neyman [ô] inductive behavior. 

To begin with we shall consider the special case already mentioned 
in which A and B are coins and the unknowns a and /3 are the respec­
tive probabilities of obtaining heads ( x t = l ) on a single trial. Let us 
take as an example of a possible sampling rule the following. 

Rule R\. For the first toss choose A or B a t random. Then, for 
/ = 1, 2, • • •, if the ith toss results in heads, stick to the same coin for 
the (i+l)th toss, while if the ith toss results in tails, switch to the 
other coin for the (i+l)th toss. 

What are the operating characteristics of the rule Ri? The succes­
sive tosses represent the evolution of a simple Markov chain with 
four states, (A, H), (A, T), (B, H), (B, T), and with transition prob­
abilities which are easily written down; for example, the probability 
of a transition from (A, H) on the ith toss to {A, T) on the ( i + l ) t h 
toss is 1 — a. Let pi denote the probability of obtaining heads on the 
ith toss. To avoid trivialities we shall suppose that a and /3 are not 
both 0 or both 1; then | a + / 3 — l | < 1 . I t is easy to show that 

(2) pi+1 « (« + 0 - l)p{ +(a + p~ 2aP), 

from which it follows that 

(3) p{ = ( a + 0 - l)«-i px — 1 + î: 1 , 
V 2 - (a + fi) J T 2 - (a + fi) 

and hence that 

(4) lim _ " + ff-2«ft_ g' 
•™ 2 - ( « + /3) y I - 7 ' 

where we have set 
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(5) 7 - * " ' ' 
2 

I t follows that in using the rule Ri, 

Hm E ( — ) = lim ( — ) = y + — 
n-*<» \ n / n->» \ ft / 1 

(6) 

Now, if we knew which of the two numbers ce, /3 is the greater, then 
by using the corresponding coin exclusively we could achieve the 
result 

(7) E ^ = m a x ( < * , / 3 ) = 7 + 5. 

Hence it is natural to take the difference 

(8) L(A, B% Ri) - (7 + 8) - ( T + YZr) = 5[* ~ 73"] ~ ° 

as a measure of the asymptotic loss per toss, by a person who uses Ri, 
due to ignorance of the true state of affairs. I t is easy to show that 
L(A, B, Ri) has its maximum value, Mi = 3 - 2 3 / 2 £ U 7 2 , when a = 0 
and /3 = 2 — 21 / 2^.586 or vice versa. Thus a person using Ri will, for 
large n, lose on the average at most 17.2 cents per toss due to ig­
norance of which is the better coin. On the other hand, consider the 
rule Ro which consists in choosing one of the two coins A, B a t random 
and then sticking to it, come what may (or in tossing the two coins 
alternately). The corresponding quantity L(A, Bf Ro) is easily 
seen to have the value (7 + 8)— 7=sS, which has its maximum, M0 

= 1/2, when a = 0 and /3 = 1 or vice versa. Clearly, Ri is considerably 
better than R0. 

The rule Ro makes the choice of the coin for the ith. toss inde­
pendent of the results of previous tosses, while Ri makes this choice 
depend on the result of the (i — l) th toss only. For the most general 
rule R the choice of the coin for the ith toss will depend on the results 
# ! , • • • , Xi-i of all the previous tosses. For any such rule R let 

(9) Ln(A, B, R) == max (a, 0) - E ® 
where E denotes expectation computed on the basis of a1 fi> and R, 
and let 

(10) Mn(R) = max [Ln(A, B, R)] , 
(«.0) 
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(11) <t>M = min [Mn(R)]. 
(R) 

I t would be interesting to know the value of <j>{n) and the explicit 
description of any "minimax" rule R for which the value <j>(n) is 
attained. 

A much simpler problem is : do there exist rules R such that 

(12) lim Ln(A, B, R) = 0 for every A, B? 
n-*oo 

We shall see in the next paragraph that the answer is yes, not only 
in the case of the coins but for any two populations. 

Returning to the general case in which A and B are arbitrary 
statistical populations for which the values (1) exist, consider the 
sampling rule R defined as follows: let 

1 = ai < a2 < • • • < an < • • • , 

2 = 6i < b2 < • • • < bn < • • • 

be two fixed, disjoint, increasing sequences of positive integers of 
density 0; that is, such that the proportion of the integers 1, 2, • • • , n 
which are either a's or Vs tends to 0 as n—» <*>. We define inductively: 
if the integer i is one of the a's> take the ith observation, xiy from 
population A, if i is one of the ô's, take %i from B, and if i is neither 
one of the a's nor one of the b's> take Xi from A or B according as the 
arithmetic mean of all previous observations from A exceeds or does 
not exceed the arithmetic mean of all previous observations from B. 
It can be shown to follow from the strong law of large numbers that 
with probability 1, 

O fi 

(14) lim — = max (a, j3). 
n->» ft 

This in turn can be shown to imply the relation 

(15) lim E ( — ) = max (a, 0), 
n-*oo \ n / 

so that 

(16) lim Ln(A, B, R) = max (a, 0) - lim E ( — ) = 0 
n—>oo n—»» \fl / 

for any A, B such that a> /3 exist. 

3. Some other problems of sequential design. The problem of 
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§2 can be generalized in various ways. For one thing, we can let the 
total sample size n be a random variable, either independent of the 
observations or dependent on them. As an example of the latter case, 
suppose in the problem of the two coins that we have to pay a fixed 
amount c for the privilege of making each toss. We may then decide 
to stop tossing whenever it seems pretty certain that max (a, &)<c; 
this amounts to a special case of a problem of three populations. We 
can even consider the case of a continuum of populations. Suppose 
we can apply a certain treatment to some plant or animal at any 
intensity 0 in some interval, and let F(x, 0) be the cumulative dis­
tribution function of the response x to the treatment of intensity 0. 
The expected value 

ƒ 00 

xdF(x, 0), 

the "regression" of x on 0, is assumed to be unknown. Let {0t} de­
note any sequence of 0 values, chosen sequentially by the experi­
menter, and let {xi} denote the corresponding sequence of responses, 
so that each Xi has the distribution Pr [ x t ^ x ] = F(x, 0t). (I) Suppose 
a(0) has a unique maximum at some unknown point 0O. How should 
the experimenter choose the sequence {di} in order to maximize the 
expected value of the sum Sn=xi+ • • • +xn or, alternatively, in 
order to estimate the value of 0O? (II) Suppose a(6) is an increasing 
function of 0 which takes on a given value a0 a t some unknown point 
0O. How should the experimenter choose the sequence {di} in order to 
estimate the value of 0o? Problem I is the problem of the experi­
mental determination of the maximum of a function when the ob­
servations are subject to a random error; Problem II is fundamental 
in sensitivity testing and bioassay. 

I t is clear that in both of these problems the choice of each 0t-
should be made to depend on the responses xi, • • • , #i_i at the previ­
ous levels 0i, • • • , 0;_i of the treatment, so that we are dealing with 
problems of sequential design. The non-sequential study of Problem 
I was initiated by Hotelling [7] (see also [8]), but no sequential 
theory has yet been published. Problem II has been considered by 
Robbins and Monro [9]; their method is as follows. Let {an} be a 
sequence of positive constants such that 

00 00 

(18) Z ) « n < 0 0 , 2 an = °°, 
1 1 

let 0i be arbitrary, and set 
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(19) 0w+i - On + an(aQ - xn) (» » 1, 2, • • • )• 

Then under certain mild restrictions on F(x, 0) it can be shown that 

(20) lim 0n = So in probability. 

In this and other problems, any sequential design with reasonably 
good properties is likely to find an appreciative audience. This will 
encourage the use of random sampling methods to find empirical 
approximations to the operating characteristics of sequential designs 
when a full mathematical solution is difficult. An empirical study of 
the rapidity of convergence in (20) has been made by Teichroew [10]. 

4. The problem of optional stopping. To fix the ideas, let x be 
normally distributed with unknown mean 0 and unit variance. Sup­
pose we wish to test the null hypothesis, Ho, that 0 = 0 against the 
alternative, Hi, that 0>O. The standard statistical test based on a 
sample of fixed size n is the following. Let Sn~xi+ • • • +xn and 
reject H0 in favor of Hi if and only if 

(21) Sn > an1'2, 

where a is some constant. The probability of rejecting H0 when it is 
true will then be 

(22) c(a) « 1 - *(«), 

where we have set 

(23) *(*) = f tr*i*dt, 

and by choosing a large we can make e(a) as small as we please. For 
example, if a = 3.09 then €(a)S.001. 

Suppose now that Ho is true but that an unscrupulous experimenter 
wishes to get an unwary statistician to reject it. If the sample size n 
has not been agreed upon in advance the experimenter could adopt 
the technique of stopping the sampling as soon as the inequality (21) 
is verified. The law of the iterated logarithm of probability theory 
implies that with probability 1 the inequality (21) will hold for in­
finitely many values of n if the sampling continues indefinitely, no 
matter how large the value of a. Hence the experimenter is "sure" to 
come eventually to a value of n for which (21) holds, and by stopping 
the experiment at this point he will cause the statistician to reject Ho 
even though it is true. This fact immediately vitiates the use of (21) 
as a test of H0 if there is any possibility that optional stopping may be 
involved. 

The simplest way for the statistician to guard against the effect 
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of optional stopping is to insist that the size of the sample be fixed in 
advance of the experimentation. Such a restriction would often be 
too rigid for practical use. The statistician might therefore content 
himself with setting limits ni rg n ^ n^ on the sample size which will be 
flexible enough to meet the contingencies of experimentation but 
narrow enough to eliminate the worst effects of optional stopping. To 
this end the statistician would like to know the value of the function 

(24) g{n\y ni, a) = Pr [Sn > an112 for some »i, 5* n ^ w2], 

where the %i are independent and normal (0, 1). It is quite easy to 
establish the inequality 

1 — $(a) fi2 
(25) g(ni, fi2, a) < ; where X = — > 

> 1 / 0 " v ni / X1'2 - 1 \ 

V (x - i)W 
which is useful when X is not too large, and sharper inequalities can 
no doubt be devised. 

The problem of optional stopping has received little attention in 
statistical theory. (See, however, [ l l ] , especially pp. 286-292.) One 
need not assume that the experimenter is consciously trying to de­
ceive the statistician—the two are often the same person—to recog­
nize the desirability of devising methods of statistical analysis which 
would be relatively insensitive to the effects of optional stopping. 

BIBLIOGRAPHY 

1. H. F . Dodge and H. G. Romig, A method of sampling inspection. Bell System 
Technical Journal vol. 8 (1929) pp. 613-631, and Single sampling and double sampling 
inspection tables, ibid. vol. 20 (1941) pp. 1-61. 

2. A. Wald, Sequential analysis, New York, Wiley, 1947. 
3. P. C. Mahalanobis, A sample survey of the acreage under jute in Bengal with dis­

cussion of planning of experiments, Snakhyâ vol. 4 (1940) pp. 511-531. 
4. , On large-scale sample surveys, Philos. Trans. Roy. Soc. London, Ser. B 

vol. 231 (1944) pp. 329-451. 
5. A. Wald, Statistical decision functions, New York, Wiley, 1950. 
6. J . Neyman, First course in probability and statistics, New York, Holt, 1950. 
7. H. Hotelling, Experimental determination of the maximum of a function, Ann. 

of Math. Statist, vol. 12 (1941) pp. 20-45. 
8. M. Friedman and L. J. Savage, Planning experiments seeking maxima, Chap. 3 

of Selected techniques of statistical analysis, New York, McGraw-Hill, 1947. 
9. H. Robbins and S. Monro, A stochastic approximation method, Ann. of Math. 

Statist, vol. 22 (1951) pp. 400-407. 
10. D. Teichroew, unpublished. 
11. W. Feller, Statistical aspects of ESP, Journal of Parapsychology vol. 4 (1940) 

pp. 271-298. 

UNIVERSITY OF N O R T H CAROLINA 


