
GROUP DECOMPOSITION BY DOUBLE COSET MATRICES 

J. SUTHERLAND FRAME 

1. Introduction. We are concerned in this paper with a study of 
some important properties of the matrices V of the commuting ring 
of a finite intransitive group of permutation matrices R whose 
transitive constituents we denote by R8, Rl, • • • . In particular we 
shall find an explicit method for obtaining the degrees and characters 
of the common irreducible components of two permutation represen
tations R* and R* of a group G. 

Our interest in this subject was first aroused in connection with the 
study of molecular structure, in which theoretical chemists have 
made use of the theory of groups. The potential energy of the mole
cule is approximated by a quadratic form whose matrix V must be 
commutative with all the matrices of the symmetry group of the 
molecule. Its characteristic roots are closely related to the molecular 
spectrum. This suggests the general problem: "What matrices are 
permutable with a given intransitive symmetry group?" 

Let G then be any finite group of order g, represented by an in
transitive permutation group R, 

(1.1) R = Rl+ • • • + R8 + R' + • • -, 

which is the direct sum of transitive constituents R8, R\ • • • . The 
rectangular matrices Vu which intertwine R% and R8, 

(1.2) R*V" = Vt8R8, 

are submatrices of the matrices V which commute with JR. One basis 
for these matrices Vt8 is supplied by the fx8t double coset matrices 
V'J described in §2. An example is given in §3 to illustrate the theory 
at this point. 

After a change of basis by suitable unitary transformations 
U8, £ / ' , - • • obtained in §4, the permutation groups i?*, R* are re
written as completely reduced groups, 

(1.3) -RÎr = (UY'R'U8 = • E Fi X î\ 
i 

which are the direct sums of ( /^-d imensional square blocks placed 
consecutively along the diagonal. In each block R!v is the direct 
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product of an irreducible representation Fj of degree ƒ,• by a unit 
matrix I) of degree juj. Under this same change of basis the double 
coset matrices Vjf of the set Vts are transformed into rectangular 
basis matrices $£ of the transformed linear set <£'*, 

(i.4) *:* = (u)-y:u'=• z //x *«„ 
where 7° is the unit matrix of degree /y=M? (corresponding to the 
identity subgroup H°) and where $% are rectangular matrices whose 
coefficients 4>%,p<r (p = l • • • /x}; cr = l • • • JU-J) we shall call double coset 
coefficients. Theorem 1 in §3 gives an explicit formula for the double 
coset coefficients in terms of the entries of the irreducible components 
Fj. Later we try in reverse to obtain information about the Fj by 
first computing the double coset coefficients. 

The double coset coefficients define a transformation from the basis 
$„ of $ts to a new basis E** described in §5. We use the single sub
script 7j to replace the subscripts j , p, a arranged in dictionary order. 

( 1 - 5 ) <£« = Z2 ParjFr, *, Par, = #aj\p<r. 
V 

We shall prove in Theorem 2 of §5 that the double coset coefficients 
p ^ satisfy a set of orthogonality relations, which include as a special 
case the well known orthogonality relations among the coefficients of 
the irreducible representations Fj of G. 

Similarly in §6 the double coset traces rl
ai and their associated fac

t o r s ^ , 

(1»6) Taj = 2-d<t>ctj,<TOy 
<r 

( 1 . 7 ) Vaj = Taj/TalTljl ^a l = 1, 

are shown to satisfy orthogonality relations including the well known 
relations among the group characters. The double coset traces are 
proved in Theorem 3 to be algebraic integers, and certain group char
acters are obtained as linear combinations of the ^ . 

In §7 we assume that some properties of the permutation groups 
R* and R' and the related subgroups H8 and H' are known, but not 
the irreducible representations Fj. The problem is to find the degrees 
and characters of those Fj which are common components of R* and 
R'. The answer is given in terms of the double coset traces and the 
numbers &«x which define the number of elements of G common to a 
double coset H% and a class of conjugates C\. For subgroups of rela-
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tively small index in G, for which fx8t is small, the double coset co
efficients can easily be determined by factoring a determinant of 
order ix8t using our principal Theorem 4. The characters of the F3- can 
then be obtained by a direct and unambiguous computation. 

2. Double coset matrices and the commuting ring. Let 71 = 1, 
72, • • • , yg be the elements of a finite group G, which is represented 
as the intransitive group of permutation matrices (1.1). Let H8 denote 
the subgroup consisting of the h8 elements of G which leave in
variant the first symbol permuted by the matrices of R*f and let 
6\ (i = 1, 2, • • • , n8) be the right coset element in the group ring of G 
which is the sum of the elements of the right coset H8yi. In particular, 
6{ represents the sum of the elements in the subgroup H', and 6{/h8 

is an idempotent of the group ring. If h% denotes the order of the 
intersection of y~lH*ya and H*f and rfc the index of this subgroup in 
G, then we define the double coset element 0f of the group ring by1 

(2.1) 6a = SaSl/ha = ^«Ml /g = 0l7«0l/*« • 

This element 0* is the sum of h*/h% distinct right coset elements 0£. 
Each element of G occurs as a summand in exactly one of the 0f, and 
occurs there with coefficient 1. We form a column vector d' of nl rows 
having 6\ in the ith. row, and a column vector 6 oî nl+n2+ - ' - rows 
which is the direct sum of 01, 02, • • • . The transitive groups of 
matrices R* and their intransitive direct sum R can then be defined: 

(2.2) 

(2.3) Ô T , = 

Ô1! 

fl2 

Yi = 

0<<y.- = * '(7<)«'. 

# ( 7 * ) 0 • • • 0 

0 £ 2 ( Y * ) • • • 0 

r 6»M 

02 

= *(7<)9-

By applying the associative law and (2.3) to the product dyf/j wè 
verify that R is homomorphic with G, since 

(2.4) R(yi)R(yù = *(Ym). 

The double coset matrix F« is defined by the formula 

(2.5) 
St t 

Bad 
7 t^Tt8^8 

hVad . 
1 A. Speiser, Die Theorie der Gruppen von endlicher Ordnung. The notion of double 

cosets is explained on p. 63. 
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The entries of V%consist of h*/h% l 's in each of its nl rows, and h8/h% 
Vs in each of its n* columns, all other entries being O's. There are r?l 
l 's altogether in a particular F£. Since the sum over a of 0„ is the 
same as the sum of all elements of G, the sum over a of all F« is a 
rectangular matrix of l 's. 

The fact that F« intertwines the matrices Rl{yi) and R9(y%) is seen 
by combining (2.2) and (2.5). The scalar 0£ is permutable with the 
matrix R'iji) and we have 

(2.6) 
*W-*V t . . S* f 8 t t , . * 

i? (7<)M = 0«i? (7«)« 
St t ,t U 8 

M 7* = hVaSyi 

Comparing coefficients of hW8, we have an equation similar to (1.2) : 

(2.7) R\yi)Va^ VaR\yi), 

If V is any matrix in the commuting ring of R we have 

(2.8) RV = VR where V = 

It has been shown in an earlier paper2 that the submatrix Vts of (2.8) 
which satisfies (1.2) can be expressed as a linear combination of the 
ixs* double coset matrices V^, 

711 

721 

V*1 

yti 

yu . . 
722 . . 

ys2. . 

yti. . 

yi8 

72* 

yss 

yts 

yu.. . 
ytt. . . 

yst . . . 

ytt. . . 

(2.9) 
ts ^ n u 

Furthermore the transpose of the matrix V% is the matrix V%' 
which corresponds to the inverse double coset £[„>, 

(v:y - K. (2.10) 

The identity element of G will occur in the product H$HZ only if 
(3= a. Hence the trace (tr) of the product V£V$ is zero unless a = /3. 
I t is then equal to wf, the number of l 's in the matrix F«s. Thus 

(2.11) /TTt8 8t 8t 
t r (VaVp>) = Occfltlct. 

2 J . S. Frame, Double coset matrices and group characters, Bull. Amer. Math. Soc. 
vol. 49 (1943) pp. 81-92. 
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3. An example of double cosets. In order to fix ideas we illustrate 
the theory with an example in which G is the symmetric group of 
degree 4 and order 24 whose elements Y< we denote by writing them 
as permutations on 4 digits. Let Bl = I+(13) and 0î = I + ( 1 3 ) + (24) 
+ (13) (24), so that H' and Hl are subgroups of order 2 and 4 respec
tively. Then the right cosets and double cosets are as follows. 

(3.1) Right cosets 

0i = I + (13) 

0*2 = (143) + (34) 

0*3 = (134) + (14) 

04 = (123) + (23) 

0*6 = (132) + (12) 

06 = (12) (34) + (1432) 

(3.2) Double cosets 

0i2 = (13) (24) + (24) 

0n = (234) + (1423) 

0Îo = (142) + (1342) 

09 = (243) + (1243) 

08 = (124) + (1324) 

0*7 = (14) (23) + (1234) 

c 
0i 

el = e 
el = e 

t 
04 = 

t 
06 = 

I 

06 = 

1 + 012 

+ 0n 
8 8 

#3 + 010 

04 + 09 
8 8 

06 + 08 
8 8 

06 + 07 

88 8 

0i = 0 i 
88 8 8 

02 = 02 + 03 
88 8 8 

03 = 04 + 05 
88 8 8 

04 = 06 + 07 

06 = 08 + 09 
88 8 8 

06 = 010 + 011 
88 8 

07 = 012 

0*l' 

02*' 

el' 
el' 

= 01 + 012 
8 8 8 8 

= 02 + 03 + 08 + 0 9 
8 8 8 8 

= 04 + 05 + 010 + 011 
8 8 

= 06 + 07 

J8 J 
01 = 0 1 

is t t 
02 = 02 + 03 

ts t t 
03 = 04 + 05 

ta t 
04 = 06 

J1 J 
01 = 0 1 

tt t t t t 
02 = 02 + 03 + 04 + 05 

tt t 
03 = 06 

Typical permutation matrices Ra(y) and R'iy) for y = (143) are 

(3.3) R'(y) -

0 1 0 
0 0 1 
1 0 0 

0 

0 

0 

0 0 

0 0 1 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 1 0 0 

0 0 

0 

0 

0 

0 0 1 
1 0 0 
0 1 0 
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0 1 0 
0 0 1 
1 0 0 

0 

0 

0 0 1 
1 0 0 
0 1 0 

R'(y) = 

In writing the general double coset matrix V it will be easier to print 
and to read if we replace the arbitrary parameters c[s • • • cs

7
s by letters 

A B C D E F G, replace <£ • • • c? by X Y Z W, replace 4s • • • cf 
by x y z w, and replace 4f, 4'» 4f> hy a b c respectively. Then the 
matrix V becomes 

(3.4) F = 

A B B C C D 

B A B E D C 

B B A D E E 

C F D A C F 

C D F C A B 

D C F EBA 

D F C B E G 

F D C F G E 

F C D G F C 

E E G D B B 

EG E B D F 

D E E F F G 

E D C F G F 

C C D G F F 

B E G D B E 

F G E B D E 

G F C B E D 

A C F E B D 

C A B E D B 

E B A D E B 

F F D A C C 

B D F C A C 

G E E F F D D B B C C A 

X Y Y Z Z W 

Y X Y Z WZ 

Y Y X WZ Z 

ZYWXZY 

Z WYZ X Y 

WZ Y Z Y X 

WYZ Y Z X 

Y WZ Y X Z 

Y Z W X Y Z 

Z Z XWY Y 

Z X Z Y WY 

X Z Z Y Y W\ 

y y z z w 
x y y w z 

y % w y y 

z w x z z 

w z z x y 

w y y z z x a b b b b c 

y w z z x z b a b b c b 

z z w x z z b b a c b b 

y y x w y y b b c a b b 

z x y y w y b c b b a b 

x z z y y w c b b b b a 

A particular double coset matrix is obtained by setting one of the 
letters in (3.4) equal to 1 and all the rest 0. 

4. The transformation to irreducible components. A finite group G 
with k classes of conjugates C\ has exactly k non-equivalent sets of 
irreducible representations as a group of unitary transformations of 

w z z y y x 
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a vector space over a field K of characteristic 0 which includes the 
gth roots of unity. Let Fj of degree fj be a particular unitary repre
sentation in the jth set, and denote by fj,99{y%) the entry in the pth 
row and <rth column of the matrix representing y4 in Fj. We order the 
g = ]£ƒ? s e t s °f three indices j , p, cr in dictionary order and assign to 
them the single index rj. Given rj we shall write rj* to denote the sub
script j of the corresponding Fj. The complete set of coefficients in 
all the selected Fj for each 7» may then be written in a gXg matrix Z 
with entries 

(4.1) Zi, = fjtP*(yi). 

From Z we derive a unitary matrix T with entries 

(4.2) tn-zuVr/g)1'* 

which completely reduces both the right and left regular representa
tions of G.z 

From T in turn we shall derive a decompossable unitary matrix 

(4.3) Ul = ixY'TQ' - ( ^ J) 

which is adapted to the subgroup J3* and contains in its upper left 
corner an n*Xn* matrix U* which reduces R* according to (1.3). This 
we do as follows. 

Denoting by 0° a column vector whose entries are the elements 
71 • • • y g of G, and by y an arbitrary element of the group ring of <•?, 
the regular representations R° and L are given by 

(4.4) 0°Y = R%y)6°\ yd* = L(y)0\ 

We define a new basis vector e such that 6° = Te. Then 

(4.5) €7 = r-*R°(7)r€; 7* = T~lL{y)Te. 

We further define Jy to be the idempotent matrix which vanishes 
except for ƒƒ 1 's as diagonal entries where rj* =7. Then 

/ ^ V ( 7 ) r / , = F7<7)- xil 
(4.6) _i 0 

IjT L(x)TI, = Ir XFj(y) 
where Ij is a unit matrix of degree fj and where • X denotes the left 
direct product in which the submatrices consist of the first matrix 

8 J. S. Frame, On the reduction of the conjugating representation of a finite group. 
Bull. Amer. Math. Soc. vol. 53 (1947) p. 589. 
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multiplied by an entry from the second,4 and the prime denotes the 
transposed matrix. Now Fj(d{/h8) is an idempotent matrix of rank 
y', so we may find a suitable unitary matrix ($ which will bring it to 
the form JJ = diag (1, 1, • • • , 1, 0, • • -, 0). The matrices 

(4.7) F'(Y) = (G',)~V,(T)$ 

will be said to be adapted to the subgroup H*. The direct sum of the 
products I)*X(QSj) is now multiplied by a permutation matrix to 
give a product Q* which assembles the »*=Mj/y nonvanishing entries 
of the idempotents for H* so that the matrix 

(4.8) L' = (QTlT-lL(£/h') TQ' = ^ ° ) 

is a diagonal idempotent having Ts in its first n8 diagonal entries, 
and 0's elsewhere. 

Furthermore TQ8 transforms R°(y) into a matrix having the sub-
matrix R8 in the upper left corner. I t is permutable with L8 and hence 
decomposable. 

Having adapted the irreducible representations Fj to the subgroup 
H8 we next adapt the basis vector 0° to H8. Let P8 be a permutation 
matrix such that in the vector (P8)""1^0 the qih element of the *>th 
right coset of H8 in G occupies the i~(q — l)n8-\-v row. Set 

(4.9) X8 = P8Y8, Y8 = I - XT8 

where Y8 is the left direct product of a unit matrix of degree n8 with 
the unitary matrix T8 of degree h8 which completely reduces the 
regular representation of H8. In its first n8 columns the matrix 
(h8)1,2Y8 contains I9 repeated h8 times. The conjugate transposed 
matrix is (h9)11*^)-1. This collects the coset elements of (P*)-^0 

together, so that the new basis vector 

(4.10) f = (AO1 7 2^)-1»0 

contains in its first n8 rows the subvector d8 previously defined, and 
contains in its other rows ring elements which are annihilated on 
left multiplication by d{ or any 0«. From (2.5) and (4.10) we obtain 

( Va 0\ 8 . t - l i J t /^v - l /S /^A-M^ 0 

4 C. C. MacDuffee, Theory of matrices, Chelsea Press, 1947. 
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Expressing 9° in terms of f* by (4.10) and comparing coefficients we 
have 

(4.i2) (o
Fl'°) = {xrL(e>:)x\h'hr'\ 

Using the X8 of (4.9) we define the unitary matrix U% = {X8)-lTQ8 

as in (4.3), and then multiply each member of (4.12) on the left by 
(Z7*)"1 and on the right by U*. Thus we have 

(4.is) (^)-I(O
F1' °y* = ( ö rr^wcfcVr 1 ' 2 . 

Since the right member of (4.13) belongs to the left ideal generated 
by the idempotent L8 of (4.8) and to the right ideal generated by L\ 
it follows that the unitary matrices U% and U* are decomposable as 
indicated in (4.3). I t can be shown by a straightforward computation 
that the submatrix U8 reduces R8 as in (1.3). Also by (4,13) we may 
express the transformed double coset matrices <£« of (1.4) in terms of 
the coefficients in Fj by the equation 

(4.14) ( f °) - (QY^He'Mik'kY1". 

Since T is a unitary matrix which completely reduces L as shown in 
(4.6) it follows that both members of (4.14) actually are reduced, as 
was stated in the second part of (1.4). Consequently $% is a jujXjur 
dimensional submatrix of the matrix 

(4.15) (.QhF'itâ/ih'hTtâ. 
Taking the transpose of (4.15) and using (4.7) we have 

(416) (o o)-(o o) ( e ' ) f ' (""' ) e ' (o o) 
where 

(4.17) *i - O W V . ' 
THEOREM 1. The transpose of the /*}X^-dimensional submatrix $% 

of the double coset matrix <£« may be 'expressed in terms of the coefficients 
of the irreducible representation Fj of G by equation (4.16). 

The factor p«x in (4.16) is a mean proportion between the number of 
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right cosets of H* and the number of left cosets of H% in the double 
coset jffj. The group element ya is any element in this double coset. 

5. Orthogonality relations. Having transformed R and V by the 
unitary matrix U which is the direct sum of the matrices U' defined in 
(4.3) we now investigate certain algebraic properties of the double 
coset matrices <£«. We express the latter in terms of the new basis 
matrices E* defined by (1.5). 

The matrix £*' consists entirely of O's except for fj l 's forming a 
unit matrix J° in the rows corresponding to the pth occurrence of Fj 
as a component of R\;, and columns correspond to the ath. occurrence 
of Fj as a component of 2?^. The number of distinct matrices E* for 
fixed ts is X^MÎM*- This is equal to the number fi8t of double cosets 
V% which has been called the transitive factor of the two subgroups 
H° and J?'.» 

Solving for E^ in terms of $« we write 

(5-1) tf-5>W, 
defining (crfp) to be the inverse matrix of (p^). Denoting by Ef the 
transpose of the real matrix Ej?, and taking the transposed conjugates 
in (5.1) we have 

(5.2) Ev = 5>t f** ' 

where $j£ and $£ correspond to inverse double cosets. 
The trace of the product El* Ep is / ,*5^, whereas the trace of the 

product $«EJ/ may be expressed in two ways, by using first (1.5) and 
then (5.2) and (2.11). 

tr ( * « £ r ) = £ P«i tr (JE, £ r ) = pot/{. 
»? 

(5.3) = E ^ t r ( ^ ; ^ ) 
p 

<rf/3 tr (FaF/3') = crf«wa. 

Hence 

(5.4) p«r/f* — *r«w«-

Two sets of orthogonality relations follow from (5.4). 
6 D. E. Littlewood, The theory of group characters, Oxford, 1940, p. 165. L. E. 

Dickson, Algebras, and their arithmetics, Chicago, 1923, 
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(5.5) 

(5.6) 

]C Kpanpat = (g//r«)S,r-
a 

JL /r*P«r- /sr = \g/ha)oap = naoa^ 
r 

Equations (S.S) and (5.6) both reduce to the orthogonality relations 
among coefficients of Fj if H* =H* = 1. They may be expressed by the 
statement : 

THEOREM 2. The ^dimensional square matrix, whose entries are the 
modified double coset coefficients Paf(/r*/wa)1/2> is a unitary matrix. 

6. The double coset traces. Although the double coset coefficients 
may depend on the particular choice of matrices QJ which are used 
to adapt the representation Fj to the subgroup H\ the traces r%

aj of 
the double coset submatrices $% of (1.4) and (4.16) are invariants 
of the group and are uniquely determined. They were defined in (1.6). 

THEOREM 3. The double coset traces are algebraic integers. 

PROOF. The determinant | ] ^ £ « ^ " | is a form of degree nl in the 
parameters p%

a with integral coefficients. After transforming the basis 
by U\ the new matrix <£" breaks up into the direct sum of sub-
matrices $>^ of degree JJLJ and multiplicity ƒ/. Hence 

(6.1) X ^ trrtt 

a 
= 

a = n 
i 

a 

fi 

The absolutely irreducible factors | X)^a*«i| °f t n e rational integral 
form | 2Z^L^a| must have coefficients which are algebraic integers 
in the extension field K in which the latter form factors. Expanding 
a given irreducible factor in powers of p[, and noting that $y is a unit 
matrix, we have 

(6.2) zpw:i\ = (p[f + (p\rii:paT
t
aJ+ 

a * l 

Hence T^J is an algebraic integer for ce 7^1. The trace of the jutj-dimen-
sional unit matrix is the integer r^=/ i j . Q. E. D. 

Orthogonality relations for the double coset traces can be derived 
from (5.5) by setting s = t and summing over values of rj and f cor
responding to diagonal elements in $^ . We obtain 

(6.3) S haTajTak = (gV>j/fj)ajk. 

These become the usual relations for group characters if Hl is the 
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identity subgroup. Since 

(6.4) TIJ = ixh and rai = h/ha = njn , 

it is convenient whenever /zJ^O to introduce the associated trace 
factors tfaj, 

t t t t t 

(6.5) yf/aj = Taj/raiTlh where ^«i = 1. 

We may then rewrite (6.3) in the form 

(6.6) £ r'ajfrlk = (n/fut», if M ƒ ^ 0 . 
a 

This equation will be useful later in finding the degrees ƒ,-. 
We define the following quantities 

Xx = trace of Fj(y) for y in the class C\. 

g\ = number of elements of G in C\. 
(6.7) 

g«x = number of elements of C\ in the right coset H'ya. 

tfak — Ùx'fau number of elements of C\ in the double coset H". 

Using the expression (4.15) for s~t and thus computing the trace TaJ 

of the juj-dimensional matrix $% we find a relation between the double 
coset traces and group characters. 

(6.8) Taj = Z) (ka\/h )XX = TaX X) {gct\/h )XX-
X X 

Solving for \f/at from (6.8) and (6.5), we substitute in (6.6) and multi
ply by h'. 

(6.9) X) Z«nT«ân = rik(g/fj)hik. 

Multiplying by Xx in (6.9) and employing the orthogonality of group 
characters, we have after summing over k and solving for Xx> 

(6.10) xx' - (ft/S») E *lx*l/-
a 

This equation expresses the group characters in terms of the associ
ated trace factors. 

7. Determination of the degrees and characters of the irreducible 
representations. In a paper entitled Double coset matrices and group 
characters (abbreviated DCM)2 the author defined the non-negative 
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integral multiplication constants c«^ for the double cosets by 

and denoted by K8i the matrix whose elements in row a and column ]8 
are the linear functions Z ^ S ^ i of the parameters b{: 

(7.2) x*'=(zc*;). 

It was stated erroneously on p. 82 of DCM that the determinant of 
^K81 factors into irreducible factors which are linear in the param
eters b\. The irreducible factors are indeed linear in the new 
parameters a\ when we replace b\ by 

(7.3) b\ = 23*Jxax 
x 

and this was the statement made on p. 90 of DCM in the principal 
theorem of the paper. But for multiplicities ix)>\ the corresponding 
irreducible factors are of degree fx) and reduce to linear factors only 
when the b\ are suitably restricted as in (7.3). 

The correct general statement of the factoring of the determinant is 
given by the following theorem. 

THEOREM 4. The determinant of the matrix of linear combinations 
^a^a^aPa °f double coset structure constants, in which p%

a are 
arbitrary parameters and p, a represent row and column indices, can be 
factored into the irreducible double coset factors \ 2 « £ « ^ l of degree 
JJLJ occurring with multiplicities juj. The numerical coefficient of the fi9t 

power of p{ is the product of the n% and this is equal to the product of fj 
to the power ix]ii) multiplied by an integer which is divisible by n8nK 
This integer is the squared absolute value of the determinant \paV\ • 

Furthermore, after making the substitution 

(7.4) pi = £ g l x a x 
x 

the factors of degree j/j each reduce to a power of a factor which is 
linear in the group characters; thus 

(7.5) | X ) pa$aj| = f Z) axgxXxV' • 

Stated in formulas we have 
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(7.6) 

(7.7) 

„ tat it t 
2 ^ Cpaaflapa 

„ tat tt t 
2Lt op<Tanaga\(i\ 

8 * A8t TT /J>M V^ J ^u 

j I a 

= nn A8 I I ( ƒ/ X) <MxXx 
ƒ \ x 

A w 

0' 
where -4 s ' is the integer 
, _ ^ v ,8t I at I I at \ , a t 

(7.8) 4 = I Pai, | | P« , | / »» . 

PROOF OF THEOREM 4. Following the line of argument of pp. 87 
and 89 of DCM we evaluate the trace (tr) of a matrix in two ways. 
Taking p%

a as arbitrary parameters we have 

(7.9) 
Xp<r(/>) = tr f V..V, X ) PaVa J = tr ( 2 J C^Vf'Vapa) 

E tst tt t 
CpaaWa Pa» 

Transforming by [ /and applying (1.5) we have 

at. . ( t a at x-^ t tt\ 

Xpff(p) = trl$p>$9 2lpa$a\ 

E 8t at f ta at -̂—v t ti\ 

pptP<X7] tr ( £ r £ , 2 ^ P«$« ) 

(7.10) 

where as usual the subscripts rj and f each stand for three indices 
j , Xju, and so on. Now the trace in (7.10) vanishes for all pairs of values 
f, rj except those corresponding to the same j and X. If f is j , \v and rj 
is j , XJU we obtain a nonvanishing trace only from the component of 
<££, in the juth set of ƒ,• rows and the pth set of ƒ,- columns. The trace 
is then equal to ƒ y X ^ a ^ , ^ - For each j there are JUJ values of X. 
Hence the matrix X^iP) may be written as the product of three 
matrices in which the first and last factors are (p^) and its trans
posed conjugate, and the second matrix is the direct sum of the 
matrices ƒ,- X^a^a i e a c n occurring as a summand with multiplicity 
JUJ. Comparing determinants of (7.9) and (7.10) and using the formula 
(7.8) which was proved in DCM, we obtain the first stated result. 

If the p^ are expressed as linear combinations of a\ by (7.4), how
ever, then the matrices ^2pl

a^% become diagonal matrices and their 
determinants factor into linear factors (7.5) as proved in DCM. The 
comparison of numerical coefficients is immediate,6 since p[ occurs 

6 J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc. vol. 47 
(1941) p. 459, Theorem B. 



754 J. S. FRAME [August 

only along the principal diagonals of Xs^(p) and of ^pl^aj- Q.E.D. 
To apply Theorem 4 to the determination of group characters let us 

suppose that H8 and Hl are two large subgroups of G such that the 
number of common irreducible components Fj of R* and R' is small, 
and fx8t is small, possibly not more than 5 or 6, preferably smaller 
yet. Then if the structure of the group G is known it is not difficult 
to obtain the constants ^ « from the multiplication of double cosets. 
Factoring the determinant as in (7.6) we obtain the double coset 
traces Tl

ai as coefficients of (p\)m~lpa in an irreducible factor of degree 
m=juj in which (p[)m has coefficient 1. The associated factors tyl

ai are 
found from (6.5), the degrees fj from (6.6), and finally the characters 
themselves from (6.10). 

In simple cases where a subgroup Hl has only three or four double 
cosets we may even compute the double coset traces directly without 
using the multiplication constants ^ a . We must then have ^ = ri^ = 1, 
X ^ a ^ O for cc^ l , and we know the r ^ from (6.4). We substitute 
from (6.5) into (6.6) and try to find algebraic integers rx

ai for which 
rltj and i/4t are orthogonal {j^k) and for which 

(7.11) ƒ* = 
7 J TajTctj/ Ta\ 

is an integer. If no two irreducible components Fj occurring in Rs
v 

are algebraically conjugate, the r ^ will be rational integers such that 
2 > L , = 0 f o r 7 V l . 

In the example on pp. 190-192 in DCM we had ju" = 2, w' = 45. Ex
pressed in the terms of parameters pa the two linear factors of 
the determinants (7.6) are then equal to (pi + 12p2+32pz) and 
(pi+3p2 — 4£3). Hence the matrices (r^) and (ypaJ) are 

(7.12) (r.y) = 

1 

12 

32 

1 1 

3 

- 4 1 
Uai) 

1 1 

1 1/4 

1 - 1 / 8 

and we find immediately / i - l , ƒ* = 45/ (1+9/12 + 16/32) = 20, 
xi2) = 20(g1x+3g2x-4gsx). 

Similarly, considering the permutation group of the 27 lines on the 
cubic surface, we have just three double cosets, with r l1 = l, 10, 16. 
Hence ju" = 3. Either r23 or r33 is non-negative. Suppose it is m-
Setting Tn=x and r&=y we must find non-negative integral solutions 
(x, y) of the equation 

(7.13) 1 - y(x + 1)/10 - x(y + 1)/16 = 0, or I3xy + 5* + Sy = 80. 



1948] EQUAL SUMS OF LIKE POWERS 755 

Hence xy<6, and y(x + l)^0 (mod 5). The solutions for (x, y) are 
(0, 10), (16, 0) and (4, 1). Only the last choice gives integral values 
for f3 and we then have by (6.5) and (7.11), 

(7.14) ( T . , ) « 

1 

0 

6 

1 

- 5 

4 

1 1 

1 

- 2 

, (t'a,) = 

I 1 

1 

1 1 

1 

- 1 / 2 

1/4 

1 

1/10 

- 1 / 8 

ƒ* = 

ƒ3 = 

27 

Ti" 
27 

= 6, 

= 20. 

The irreducible components have degrees 1, 6, 20, and the characters 
may be found by applying (6.10). 

MICHIGAN STATE COLLEGE 

EQUAL SUMS OF LIKE POWERS 

E. M. WRIGHT 

Let sj£2 and let P(k, s) be the least value of j such that the equa
tions 

(1) Z h yç-\ h 

= ]Eö* (IShSk) 

have a nontrivial solution in integers, that is, a solution in which no 
set {din} is a permutation of another set {a*v}. I t was remarked by 
Bastien [ l ] 1 tha t P(k, 2) ^ £ + 1 and this is true a fortiori for general s. 
The only upper bound for P(fe, s) for general k and s which I have 
found in the literature is due to Prouhet [5] who (in 1851) gave solu
tions of (1) wi th . /= 5*, so thatP(&, s)^sk. He allocates each of the 
numbers 0, 1, • • • , sk+1 — l to the set {#<•«} if the sum of its digits in 
the scale of s is congruent to u (mod s). Recently Lehmer [4] took 
m\, • • • , nik+i any k + 1 integers, let each of b\, • • • , bk+i run through 

Presented to the Society, October 25, 1947; received by the editors September 23, 
1947. 

1 Numbers in brackets refer to the bibliography at the end of the paper. 


