
THE DOUBLE COSETS OF A FINITE GROUP1 

J. S. FRAME 

1. Introduction. It is the purpose of this paper to study some of the 
properties of the double cosets of a finite group and to prove two 
main theorems which generalize the results of two previous papers by 
the author,2 giving some relations between the double cosets and the 
irreducible components of the permutation group generated by a 
given subgroup. We let H be an arbitrary but fixed subgroup of order 
h of a finite group G of order g, g — nh, and we let GH be the permuta
tion group of degree n induced by right multiplication of the cosets 
HSi, i = l, 2, • • • , n, by elements of G. When written as a group of 
permutation matrices and completely reduced, the group GH will 
have r' distinct irreducible components I \ of degree ni and multi
plicity ixf, and we may write 

(1.1) GH= X > f l Y 

Multiplication of a right coset HGk on the left by a single element of G 
does not in general produce a right coset, but if each coset HGk is 
multiplified on the left by all the elements of a right coset HSt and 
the products are added, a transformation is obtained which carries 
each of the n right cosets HGk into a collection of right cosets 
Y^d=iHStHeGk in which, as we shall see in §4, each of the kt cosets 
occurs dt = h/kt times. Its matrix dtVt is permutable with each of the 
matrices of GH- Certain cosets, which we shall call associated cosets, 
are permuted among themselves when multiplied on the right by ele
ments of H. Each of these produces the same matrix Vt. The totality 
Kt of elements belonging to a complete set of kt associated cosets, 
each counted once, will be called a double coset, whereas the term 
weighted double coset will refer to the complex of h2 elements HStH 
in which each element of the double coset Kt occurs dt = n/kt times. 
The integer dt will be called the density. The number of distinct 
double cosets Kt will be denoted by r, and the elements St, 
t=\, 2, • • • , r, one from each, will be said to generate the double 

1 Presented to the Society, September 12, 1940. 
2 J. S. Frame, The degrees of the irreducible components of simply transitive permuta

tion groups, Duke Mathematical Journal, vol. 3 (1937), pp. 8-17. 
J. S. Frame, On the decomposition of transitive permutation groups generated by the 

symmetric group, Proceedings of the National Academy of Sciences, vol. 26 (1940), 
pp. 132-139. 

458 



DOUBLE COSETS OF A FINITE GROUP 459 

cosets. The double coset which contains the inverses of the elements 
of Kt will be denoted by Kt'. 

In §2 a number of elementary properties of double cosets are stated, 
mostly without proof. In §3 a study is made of self-inverse double 
cosets, Kt — Kt>, and their number is shown to equal (l/g)22xCR2)> 
where x(^2) is the trace of R2 in the permutation group GH, and where 
the sum is taken for all R in G. Using the results of a paper of Fro-
benius3 we then prove the first principal theorem, which generalizes 
a result obtained by the author for the symmetric group.4 

THEOREM A. The number of self-inverse double cosets of a finite group 
G with respect to a subgroup H is equal to the sum of the multiplicities 
of those irreducible components of GH which have a symmetric bilinear 
invariant minus the sum of the multiplicities of those which have an al
ternating bilinear invariant. 

The Hermitian invariants of GH associated with the matrices Vt are 
studied in §4.5 Two bases consisting of r independent invariants are 
found, the one obtained directly from the r double cosets, and the 
other from the r=y^2r

i'=1(jif)
2 Hermitian invariants6 which come into 

evidence when GH is completely reduced. The complex multiplication 
of the double cosets plays an important role in the discussion which 
culminates in the proof of Theorem B, which includes as a special case 
a theorem conjectured but only partially proved in a previous paper.7 

THEOREM B. Given a transitive permutation group GH of degree n in 
which the subgroup II leaving one symbol fixed permutes the n symbols 
in r transitive sets of kt symbols, / = 1, 2, • • • , r. Let K be the product 
Yit-iikt) and let N, Ar=XIï=iwiM^)2» denote the product of the degrees ni 
of the distinct irreducible components Ti of GH each raised to a power 
equal to the square of its multiplicity in GH- Then nr~2K / N = PiPi, where 
Pi is an algebraic integer in the field of the characters of the components 
of GH. 

3 G. Frobenius and I. Schur, Über die reellen Darstellungen der endlichen Gruppen, 
Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1906 (I), pp. 186-
208, especially p. 197. The author is indebted to G. de B. Robinson for referring him 
to this article. 

4 J. S. Frame, Proceedings of the National Academy of Sciences, loc. cit. 
5 A study of these matrices was made by I. Schur, Zur Theorie der einfach transi-

tiven Permutations gruppen, Sitzungsberichte der Preussischen Akademie der Wissen
schaften, 1933, pp. 598-623. 

6 This relation is well known in group theory. See, for example, W. Burnside, 
Theory of Groups, 1911, p. 275. 

7 J. S. Frame, Duke Mathematical Journal, loc. cit. 
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In §5 a study of the bilinear invariants of the components of GH 
which are irreducible in the real domain leads to an alternate proof 
of Theorem A, based on methods similar to those of §4. 

2. Elementary properties of double cosets. The set of elements per
mutable with a coset HSi form a group JV» called the normalizer of 
the coset, whose intersection with H is a group Di of order di leaving 
HSi fixed in the permutation group GR. We let DiH^ be the ki = h/di 
cosets of H with respect to D{ and note that for each j the elements 
HSiDiHij = H(SiHij) form a different coset HS3 associated with HS{. 
Hence there are kt distinct cosets each occurring dt times in the 
weighted double coset HStH. If H is invariant in G, then each Dt = H, 
each kt = l, and each coset is a double coset. I t is convenient to select 
the Sj for associated cosets so that SiHi3==Sj and then to define 
Hji = Sj~lSi = Hyl, when obtaining the cosets of H with respect to its 
subgroup Dj = HylDiHij, which is permutable with HSj. I t is seen im
mediately that the subgroups Di, Dj, • • • which are permutable with 
the right cosets HSi, HSj, • • • of a double coset HStH are all of the 
same order dt and form a complete set of conjugate subgroups of H. 

The following four properties of double cosets are simple enough to 
be given here without proof.8 

THEOREM 2.1. Each element of G lies in one and only one double 
coset of G with respect to a given subgroup H. 

THEOREM 2.2. A double coset may be generated by any one of its ele
ments. 

THEOREM 2.3. The inverses HJXST1HT1 of the elements HiStH3 of the 
double coset Kt form a double coset Kt' generated by ST1, which has the 
same density as Kt. 

If Kt = Kt>, the double coset is called self-inverse. 

THEOREM 2.4. A double coset which contains a self-inverse element is 
self-inverse. In particular the double coset H=Ki is self-inverse. 

The next three theorems show that the elements of a class of con
jugates, of a left coset, and of the set of inverses of a right coset, are 
equally distributed among the right cosets of their double coset. 

THEOREM 2.5. Each coset of a double coset Kt contains the same num-
8 Several of the theorems in §2 are implied in the discussion of cosets in the stand

ard texts on group theory. Nowhere has the author found them collected as properties 
of double cosets as such. They are stated here for convenience of reference for the later 
proofs. 
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ber gt\ of the g\ elements forming the class C\ of conjugate elements in G.9 

PROOF. Let H$Si be a common element of HSi and C\, and let the 
subgroup of Di which is permutable with the element HeSi be of index 
gi\ in Di. Then there will be ga distinct elements each counted di/gi\ 
times among the elements ô^iHeS^d^ bK in Di. Each of these dis
tinct elements of HSi is transformed by H^ into a different element 
of HSjy so the numbers gi\, gj\, • • • are the same for all the cosets 
of Kf and may be denoted by gt\. 

THEOREM 2.6. The h elements of the left coset (HeSi)H are equally 
distributed among the ki right cosets associated with HSi, just di elements 
lying in each right coset. 

PROOF. Each element of H can be written uniquely in the form 
dKHij, where SK is in Di. For each j we obtain di elements HeSibKHa 
= (HeSidnSf^Sj in HS3-. 

If we note further that the inverses of the elements of a right coset 
HSi form a left coset S^H, then we obtain the following : 

THEOREM 2.7. The inverses of the elements of a right coset are equally 
distributed among the ki cosets of the inverse double coset, with di ele
ments in each. Furthermore each coset of a self-inverse double coset Kt 

contains just dt of its own inverses. 

THEOREM 2.8. Each element of the normalizer N\ of H transforms a 
double coset Kt into itself or into a double coset NrlKtNi having the same 
distribution of elements among the classes C\ as Kt does. 

These double cosets may be called conjugate double cosets. 
PROOF. Each element is transformed into a conjugate element in 

the double coset generated by NrlStN\. 

THEOREM 2.9. (a) The number of times, kiuv, that the identity element 
E occurs among the ¥ elements HStHSuHSv depends only on the double 
cosets to which Stl Su, and Sv belong. 

(b) The constant ktuv is unchanged by an even permutation of the 
double cosets Kt, Ku, Kv, or by an odd permutation coupled with a change 
to inverse double cosets. 

(c) The number of the h elements SUHSV which lie in the double coset 
Kt' is ktuv/dt, and 2ÜL \ ktUv/dt — h. 

(d) For t = \, we have kiuv = kUvi = hduôuvr. 

9 D. E. Littlewood, Theory of Group Characters, 1940, p. 149. Littlewood shows, 
if we change his notation to ours, that the characters in GH of the elements of C\ 
are ngi\/g\. 
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(e) The product of the double cos ets KtKu is given by the equation 

(2.10) KtKu = (h/(dtdu)) £ ktU9>K,. 

To prove the various parts of Theorem 2.9, let us assume that 
Ha, Hbl and Hc are elements of H which satisfy the equation 
HaStHbSuHcSv = E. The equation is still valid if we permute the 
six elements cyclicly, or if we interpose between two adjacent ones 
the product of an element of H and its inverse, thus replacing an ele
ment by another element in its double coset, or if we replace all six 
elements by their inverses in the opposite order. The remainder of 
the proof depends on eliminating the weighting factors from the 
weighted double cosets HStH, etc., but may be left to the reader. 

3. The number of self-in verse double cosets. We shall now apply 
the theorems of §2 to obtain expressions for the number of self-inverse 
double cosets of a group. 

THEOREM 3.1. The number NH of self-inverse double cosets Kt of G 
with respect to H is 1/g times the number of solutions of the equation 

SjR2 = HkSh j = 1, 2, • • • , ti] Hk in 2J, R in G. 

We rewrite the equation in the form Hk~
l(SjRSf1) = (SjRS]-l)~1

1 

which states that the inverse of the element SjRSy1 = T belongs to 
its own right coset. For each of the kt cosets of Kt there are dt avail
able values of 7\ by Theorem 2.7. For each of these h — dtkt values of 
T we may choose n generators Sj to determine an element R = SjlTSj 
conjugate to T. Thus for each self-in verse double coset we obtain 
g = nh solutions of the given equation, and the theorem is proved. 

Now the permutation matrix corresponding to R2 in GH has a unit 
in the principal diagonal for every right coset which remains fixed 
by R2, that is, for every solution of the equation SjR2 = HkSj; Hk in H, 
j = l, 2, • • • , n. Its trace is the number of these solutions for fixed R. 
When we sum these for all R in G and apply Theorem 3.1, we obtain 
the following theorem. 

THEOREM 3.2. The number NH of self-inverse double cosets of G with 
respect to H is given by the formula 

(3.3) NH = (1/g) £ x(#2), 
R in G 

where x(S) is the trace of the matrix S in the permutation group GH. 

This theorem may be applied to the results of a paper by Frobenius 



I 9 4i] DOUBLE COSETS OF A FINITE GROUP 463 

and Schur10 to obtain the fundamental Theorem A of §1. It is known 
in the theory of group characters that for an irreducible representa
tion T{ with character x*(^) the quantity 

(3.4) X U x W + xW}/(2g) 
R 

is 1 or 0 according as I \ has or has not a symmetric bilinear invariant, 
and that 

(3.5) Z { [ x W - x W } / ( 2 g ) 
B 

is 1 or 0 according as I \ has or has not an alternating bilinear in
variant. Following Frobenius10 we set c» = 1, — 1, or 0 according as Ti
nas a symmetric, an alternating, or no bilinear invariant. We shall 
call these respectively "symmetric," "quaternion," and "rotary" rep
resentations. Then 

(3.6) ( l / « ) E x W ^ 
R 

Now let GH be reduced into irreducible components I \ with multi
plicities juf. Then 

(3.7) GH = E « r* x(R) = E /ifxW 
i i 

Hence, by (3.3), (3.7), and (3.6), we have 

0.8) NH = (i/g) E xCR2) = (i/g) E E /*fxW = E <w*f • 

This formula is equivalent to Theorem A of §1. 

4. A theorem derived from a unitary reduction of a group and its 
double cosets. When a group G is represented in two ways as a regular 
permutation group of degree g, using cosets with respect to the iden
tity subgroup E, the one GE obtained by the right multiplication of 
cosets by the elements of G, and the other GE by left multiplication, 
the matrices of GE form a basis for all matrices permutable with those 
of GE, and vice versa. In that case each of the elements of G forms a 
double coset. But when cosets are taken with respect to a subgroup 
Hy^E, a basis for the matrices permutable with those of the right 
multiplication permutation group GH is found in the double cosets of 
the left multiplication group. The matrices Vt described in §1 are 

10 G. Frobenius and I. Schur, loc. cit. 
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those of a complete set of invariant Hermitian forms of GH on which 
all others are linearly dependent. For let Xi, Xi = x(HSi)> i = l,2, • • •, n, 
be the variables permuted by GH- Then the matrix R of GH transforms 
the product x(H)x(HSt) into x(HR)x(HStR), and if we write R = HjGk 
and sum over all R in G, we obtain an Hermitian form invariant under 
the right multiplications of GH- Since the subgroup Dt of H leaves 
HSt fixed, each term of this form will contain the factor dt. Dividing 
by dt and writing Kt~HStH/dt, we obtain the simpler invariant 
Hermitian form ^kx(HGk)x(KtGk), whose matrix we have denoted 
by Vu The matrix V\ is the unit matrix. Each row and column of Vt 

contains kt l 's and the rest O's, and the sum of all the matrices Vt is a 
matrix consisting entirely of l's.11 To the inverse double coset Kt' cor
responds the transposed matrix VI, which will be denoted by Vt>. 
Self-in verse double cosets have symmetric matrices Vt. 

Now let U be a unitary matrix which completely reduces the group 
GH into its irreducible components I \ of degree fii and multiplicity 
fif, so that all equivalent components of U~lGHUa.re actually identical 
and so that the invariant Hermitian form for each component is a 
diagonal form with unit matrix £t- of degree n^ Then for the set of /xf 
equal components I \ we have (MF)2 linearly independent Hermitian 
forms whose matrices ^apE?pf3 are obtained as the direct product 
of Ei with an arbitrary matrix (pf3) of degree fxf. The r matrices 
Mt= U~lVtU, obtained by transforming the Hermitian invariants of 
GH, must be expressible as linear combinations of the r matrices Ef3. 
I t is convenient to arrange the symbols E"^ in some arbitrary order 
starting with £ " = £ 1 , and to assign to each a single subscript 7. We 
write 

E cK/3 of/3 

Eypyt) where Ey = £t- and pyt = pi (Kt)'y 

7, t = 1, 2, • • • , r. 
Since the matrices Mt and Ey each form a basis for the invariant 
Hermitian forms of U~lGHU, the matrix (pyt) is nonsingular. 

The Mt combine according to a rule similar to the rule of combina
tion for the inverse double cosets Ky, as given in 2.10, namely, 

(4.2) MtMu - ^ctuvMv1 ctuv = kt<u'v/{dtdu). 

Since this is also the rule of combination for the matrices p^(Kt) 
corresponding to a given I \ , these matrices give that representation 
for the left multiplication of double cosets which is associated with I \ . 

11 J. S. Frame, Duke Mathematical Journal, loc. cit. 
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Now when GE and GÉ are simultaneously reduced, the component 
of GÉ on the same variables as the tii components I \ of GE consists 
of the direct product of £»• with a representation equivalent to 17. 
When the matrices of this representation are summed over all ele
ments in each double coset, the resulting set of r matrices when reduced 
will contain the component of degree juf ^w», expressible in terms of 
the variables of GH, which is equivalent to the matrices p^{Kt). 
Hence the p^(Kt) are expressible in terms of the matrices of I \ ' . 

The rule (4.2) is also the rule of combination for the matrices Vt,
12 

so the coefficients ctUv must be integers, and the character of the prod
uct Mt>Mu is given by the formula 

(4.3) x(MfMu) = ncvux = nktôtu, 

in view of Theorem 2.9 (d). Since U is unitary, the matrix Mt> is the 
transposed conjugate Ml of Mt. We shall denote by Ey> the trans
posed conjugate of Ey, and by ny the degree of the corresponding irre
ducible representation. 

Next consider the matrices (Mfu) and (IVs) of degree r whose ele
ments are 

(4.4) Mvu = %{MvMu) = x{Vt>Vu) - nUtu, 

(4.5) Ey>5 = x(ErEô) = nySy8. 

We obtain a relation between {Mt'u) and (Ey>8) as follows: 

(4.6) Mt'u = X( ]C PtyEy> ^ E8pôu J = 22 PtyEy'tP&u-

Denoting the determinant of (p5w) by P , we have, by (4.4), (4.5), (4.6), 

(4.7) Û (nkt) = ( fi "y) PP = ( II nf") PP. 
*=1 \ 7=1 / \ t = l / 

Since ^tpyt = nôyi, the determinant P may be written in the form 
nPi, where Pi is the minor of pu in P . Factoring n2 from both sides 
of (4.7) and using the notation of Theorem B, we have 

(4.8) n~2K = NTiPu where K = f[ kt9 N = I I n ^ • 
J = l i = l 

Since for each i the matrices p" (i£*) give a representation of the ring 
of matrices Vt in which the coefficients of combination are integers, 
the matrix Pi is an algebraic integer. I t belongs to the field of char-

J. S. Frame, Duke Mathematical Journal, loc. cit. 
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acters of the IV This completes the proof of Theorem B. It will be 
noted that if the representations I \ have rational characters, which 
will certainly be true if their degrees are all distinct, then the quotient 
nr~2K/N will be a perfect square. 

5. A theorem derived from a real orthogonal reduction of a group 
and its double cosets. Let us now consider the reduction of GH by a 
real orthogonal matrix O into a form which is irreducible in the real 
domain. The component representations are of three types: (1) Those 
"symmetric" representations I^+) which are absolutely irreducible in 
the complex domain and have a symmetric bilinear invariant. 
(2) Those "quaternion" representations 2I\(~) which consist of two 
equivalent complex components of even degree each with real char
acters and each with an alternating but not a symmetric bilinear in
variant. The pair together have a third alternating bilinear invariant 
and a symmetric bilinear invariant. The matrices of the four invari
ants, suitably normalized, combine like the quaternion units. (3) Those 
"rotary" representations r ^ + T ^ which have two non-equivalent 
conjugate complex absolutely irreducible components, each having 
complex characters, but having no bilinear invariant. Taken together 
they have an alternating and a symmetric bilinear invariant which, 
when suitably normalized, combine like the real and imaginary units. 

The matrices 0~lVt0 form a basis for the invariant bilinear forms, 
but in place of the other basis matrices E7 used in §4, we now use 
matrices Ey which for the symmetric representations of type 1 are like 
the old Ey, for the quaternion representations of type 2 come in sets 
of four which multiply like the quaternion units, and for the rotary 
representations of type 3 come in pairs which multiply like the real 
and imaginary units. Those of type 2 are as follows: 

(5.1) 

e% 

0 

0 

0 

0 

ei 

0 

0 

et 

0 

0 

-ei 

0 

0 

0 

0 

ei 

0 

0 

0 

0 

0 

0 

0 

e% 

0 

0 

e 

0 

0 

ei 

0 

0 

0 

0 

0 

0 

0 

-ei 

0 

0 

ei 

ei 

0 

0 

0 

0 

— e{ 

0 

0 

ei 

0 

0 

ei 

0 

0 

0 0 - ^ 0 0 0 0 

where ei denotes the unit matrix of degree ni/2. 
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We next normalize each of the matrices Vt and Ey by dividing by 
the square root of the sum of the squares of its coefficients. From the 
new normalized matrices V? and ET*, thought of as of degree n, we 
form a new set of matrices of degree r defined by 

vl = xivlvt), v*,u = xiyVvl), 
( 5 ' 2 ) E*s = x(E*E*t), E*., = x(£*'-E*)-

Then (F*J and (E*,8) are each the unit matrix, whereas (VZ) = (f>t'u) 
is a matrix whose trace is the number NH of self-inverse double cosets, 
and (£*ô) is a matrix whose trace is X X i ^ f > since each component 
r i

(+) of type 1 contributes + 1 , each real component 2Ti
(_) of type 2 

containing a pair of equivalent irreducible representations contributes 
+ 1 — 1 —1 — 1 = — 2, and each real component of type 3 contributes 
+ 1 - 1 = 0 . Now let 

(5.3) 0"VÎ0 = E 4 ^ 
y 

define a matrix Q which changes the basis of the bilinear forms of 
0~lGH0. Then 

vt = x(v*vl) = xicrVtO-crWlo) = x( E E*q,t- £ 4zJ) 
(5.4) ^ V , . / 

= Z ^ qytEytqôu-
7,8 

Similarly, since (F*w) and (£*,s) are unit matrices, we have 

(5.5) Vt'u — i_j qy't'Ey'iqtu = 2^ qwqhu = 8*'«. 
7,5 

Hence Q is an orthogonal matrix, and (5.4) may be written in the form 

(5.6) (Vl) =Q~\E%)Q. 

By equating the traces of (VZ) and (£*$) given above, an alternate 
proof of Theorem A is obtained. 
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