Conference Board of the Mathematical Sciences
 SURVEY OF UNDERGRADUATE PROGRAMS in the
 MATHEMATICAL SCIENCES AND COMPUTER SCIENCE 1990

GENERAL INSTRUCTIONS

You are asked to report on programs in the mathematical sciences (including applied mathematics, statistics, operations research) and computer science under the cognizance of your department. This questionnaire is being sent to each department in the mathematical sciences or computer science on your campus. It is not being routinely sent to computer centers or to non-departmental groups or programs.

Do not include data for branches or campuses of your institution that are geographically or budgetarily separate.

Because departments vary in course offerings and faculty composition, some questions (or parts of questions) may not be applicable to your department. Please read the instructions carefully and complete all pertinent questions. In some departments information for this survey might be obtained from other sources, e.g., undergraduate officer or librarian.

If you have any questions, please call Monica Foulkes at 1-800-321-4267.

Please return your completed questionnaire by November 1, 1990, to:
CBMS Survey
Attn: Monica Foulkes American Mathematical Society

PO Box 6248
Providence, RI 02940-6248
\square

Name of your department:
2. A. Your department offers programs leading to the following degrees (check all boxes that apply):
Mathematical sciences
B. Your academic calendar is:
\square Semester \square Trimester \square Quarter \square 4-1-4 \quad Other (specify)
3. Regular Undergraduate Program Courses, Fall 1990

Instructions for question 3:

- The undergraduate courses in column (1) in the following tables are listed in four groups corresponding roughly to a division into mathematics, statistics, operations research, and computer science. Within each group the courses are listed in approximate "catalog order" for your convenience in locating a listing that is a reasonable approximation to your offerings. If some of your courses do not fit our descriptions, or you have different levels of the same course, find the best approximation and enter your total fall 1990 enrollment and number of sections. Please do not double count. Additional spaces are provided to permit you to write in names of courses that do not fit reasonably under some listed title.
- Enter in column (2) the total number of students enrolled for fall 1990 and in column (3) the total number of sections of the course in the fall of 1990. If a course is not being taught in the fall of 1990 enter "0" (zero) in column (2). For advanced courses there is an additional column on frequency of offering. For some calculus-level courses and computer science courses there are additional columns asking for further information.

Name of Course (or equivalent) 0)	Total Number of Students Enrolled Fall 1990 (2)	Total Number of Sections (3)
3.A. MATHEMATICS		
Remedial level		
1. Arithmetic		
2. General Mathematics (basic skills, operations)		
3. Elementary Algebra (high school)		
4. Intermediate Algebra (high school)		
Precalculus-level		
5. College Algebra		
6. Trigonometry		
7. College Algebra \& Trigonometry, combined		
8. Elementary Functions, Precalculus Mathematics		
9. Mathematics for Liberal Arts		
10. Finite Mathematics		
11. Business Mathematics (including Introduction to Calculus)		
12. Mathematics for Elementary School Teachers		
13. Analytic Geometry		
14. Other Precalculus		

Please do not write in this space
3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

Name of Course (or equivalent) 0)	Total Number of Students Enrolled Fall 1990 (2)	Total Number of Sections (3)\qquad	Of the number in column (3) how many sections -			
			assign group projects (4)	use graphing calculators (5)	include writing components (6)	require computer assignments (7)
Calculus-level						
15. Mainstream* Calculus I						
16. Mainstream* Calculus II						
17. Mainstream* Calculus III (and IV, etc.)						
18. Non Mainstream Calculus I						
19. Non Mainstream Calculus II (and III, etc.)						
20. Differential Equations						
21. Discrete Mathematics						
22. Introduction to Mathematical Logic						
23. Linear Algebra or Matrix Theory						
24. Other Calculus-level						
Advanced Level $0)$	(2)	(3)	If n offere	t offered d in 1989 for sp	fall 1990 90 or is it ing 1991?	was it cheduled No
25. Transition (Introduction) to Proofs						
26. Modern Algebra						
27. Number Theory						
28. Combinatorics						
29. Graph Theory						
30. Coding Theory						
31. Actuarial Mathematics						
32. Foundations of Mathematics						
33. Set Theory						
34. Discrete Structures						

[^0]3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

Name of Course (or equivalent) (1)	Total Number of Students Enrolled Fall 1990 (2) \qquad	Total Number of Sections (3)	If not offered in fall 1990, was it offered in $1989-90$ or is it scheduled for spring 1991? Yes (4) No
35. History of Mathematics			\square
36. Geometry			\square
37. Mathematics for Secondary School Teachers (methods, etc.)			\square
38. Mathematical Logic			
39. Advanced Calculus			
40. Advanced Mathematics for Engineering and Physics			\square
41. Vector Analysis, Advanced Linear Algebra			\square
42. Advanced Differential Equations			
43. Partial Differential Equations			\square
44. Numerical Analysis			\square
45. Applied Mathematics, Mathematical Modeling			\square
46. Complex Variables			
47. Real Analysis			
48. Topology			\square
49. Senior Seminar/Independent Study in Mathematics			\square
50. Other Mathematics			
3.A TOTAL NO. OF MATHEMATICS SECTIONS			

Please do not write in this space
3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

Name of Course (or equivalent) 0)	Total Number of Students Enrolled Fall 1990 (2)	Total Number of Sections (3)	Of the number in column (3) how many sections require regular computer assignments? (4)
3.B. STATISTICS			
Elementary Level			
51. Elementary Statistics (no Calculus prerequisite)			
52. Probability and Statistics (no Calculus prerequisite)			
53. Probability (no Calculus required)			
Upper Level			If not offered in fall 1990, was it offered in $1989-90$ or is it sched uled for spring 1991? Yes (4) No
54. Mathematical Statistics (Calculus)			
55. Probability (Calculus)			
56. Stochastic Processes			
57. Applied Statistical Analysis			
58. Design and Analysis of Experiments			
59. Regression (and Correlation)			
60. Senior Seminar/Independent Studies in Statistics			\square
61. Other Statistics			
3.B TOTAL NO. OF STATISTICS SECTIONS			
3.C. OPERATIONS RESEARCH			
62. Introduction to Operations Research			\square
63. Introduction to Linear Programming			
64. Other Operations Research			\square
3.C TOTAL NO. OF OPERATIONS RESEARCH SECTIONS			

Please do not write in this space
3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

In columns (4) - (8) answer YES or NO for each scheduled course.
a A closed laboratory is a regularly scheduled laboratory session (usually from 1 to 3 hours/week) during which students work on lab projects under direct supervision of a lab instructor.
${ }^{b}$ An open laboratory is used by students at their convenience (usually with assistance available).
c 78 refers to courses described in Curriculum 78, Communications of the Association for Computing Machinery, Vol. 22, No. 3 (March 1979) 147-166.
d '84 refers to courses described in Communications of the Association for Computing Machinery, Vol. 27, No. 10 (October 1984) 998-1001.
e ' 85 refers to courses described in Communications of the Association for Computing Machinery, Vol. 28, No. 8 (August 1985) 815-818.

Name of Course (or equivalent) (1)	Total Number of Students Enrolled Fall 1990 (2)	Total Number of Sections (3)	Required Closed ${ }^{a}$ Lab (4)		Required Open ${ }^{\text {b }}$ Lab (5)		Do students in this course use							
					Micro? (6)	Mini/ Mainframe? (7)		Sci Work Station? (8)						
			Yes	No			Yes	No	Yes	No	Yes	No	Yes	No
3.D. COMPUTER SCIENCE														
Lower Level														
65. Computers and Society														
66. Introduction to Software Packages														
67. Issues in Computer Science														
68. Computer Programming I (CS1 ${ }^{\prime} 78^{c}$ or CS1 ${ }^{\prime} 84^{d}$)														
69. Computer Programming II$\left(\operatorname{CS} 2^{\prime} 78^{C}\right)$														
70. Advanced Programming \& Data Structures (CS2 ${ }^{\prime} 85^{e}$)														
71. Database Management Systems														
72. Discrete Mathematics														
73. Other lower level service courses														
Middle Level														
74. Introduction to Computer Systems (CS3)														
75. Assembly Language Programming														
76. Introduction to Computer Organization														
77. Introduction to File Processing (CS5)														

3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

3. Regular Undergraduate Program Courses, Fall 1990 (Continued)

3.D. COMPUTER SCIENCE (CONTD.)

4. Last Year's Enrollment.

Responses to this question will be used to project total enrollment for this academic year, 1990-91, by the pattern of enrollment for the previous academic year, 1989-90.

The total student enrollment in your undergraduate courses was:

5. Instructional Formats.

In the table below are listed four courses from the list in question 3, with the number in parentheses below the course title the same as in question 3. For each course please enter the number of sections taught during the fall of 1990 in each of the formats listed in the column headings. The total for each course should equal the number of sections of this course reported in question 3. If a course was not offered by your department during fall 1990, leave blank.

	Number of sections of course being taught in fall 1990 in each format					
		Small class (less than 40)	Large class (40 to 80)	Lecture without quiz sections (over 80)	Lecture with (15) (oiz sections (over 80)	Other format
Mainstream Calculus I					Total	
Non mainstream (18) Calculus I						
Elementary Statistics (51)						
Computer Program- ming I						

6. Mathematical Sciences and Computer Science Faculty, Fall 1990

Some departments may have faculty in each of the following categories; others may not. For faculty members with joint appointments, include them if your department is primary. Please enter each member of your faculty (full or part-time) in one section only of 6.A, 6.B, 6C or 6.E, as relevant.
A. Full-time faculty teaching only departmental mathematical sciences courses.

Report the number of full-time faculty in your department who regularly teach only departmental mathematical sciences courses, including statistics (but not including computer science), by doctor's degree or other degree. Report all full-time faculty, including those on leave, whether tenured, tenureeligible, fixed term, etc. Do not include visitors.
B. Full-time faculty teaching only departmental computer science courses.

Report the number of full-time faculty in your department who regularly teach only departmental computer science courses by highest degree earned and subject field in which it was earned. Report all full-time faculty, including those on leave, whether tenured, tenure-eligible, fixed term, etc. Do not include visitors.

Highest degree	Subject field of degree	Mathematical sciences	Computer science
Doctor's degree		Other fields	
Other degrees			

6. Mathematical Sciences and Computer Science Faculty, Fall 1990 (Contd.)
C. Full-time faculty teaching both departmental mathematical sciences and computer science courses.

Report the number of full-time faculty in your department who regularly teach both mathematical sciences and computer science courses by highest degree earned and subject field in which it was earned. Report all full-time faculty, including those on leave, whether tenured, tenure-eligible, fixed term, etc. Do not include visitors.

Highest degree	Subject field of degree	Mathematical sciences	Computer science
Doctor's degree			Other fields
Other degrees			

D. For the full-time faculty reported in 6.A, 6.B, and 6.C above, how many have:
a private, fully enclosed office? \qquad
a two-person, fully enclosed office? \qquad
other?
E. Faculty teaching part-time.

Report the number of faculty teaching part-time in your department. Do not include teaching assistants.
$\left.\begin{array}{|ll|l|l|}\hline & & \text { Male } & \text { Female } \\ \hline \text { i. } & \text { Faculty teaching only departmental mathematical } \\ \text { sciences courses in fall 1990, part-time }\end{array}\right)$
F. Part-time Computer Science Faculty, as reported in question 6.E.ii above.

Report the number of faculty teaching computer science part-time in your department by highest degree and subject field in which it was earned.
(If the number is zero, check here: \qquad)

Highest degree	Subject field of degree	Mathematical sciences	Computer science
Doctor's degree		Other fields	
Other degrees			

6. Mathematical Sciences and Computer Science Faculty, Fall 1990 (Contd.)
G. Of the part-time computer science faculty reported in 6.F above, how many were
i. employed full-time by your university or college? \qquad
ii. employed full-time by some other university or college?
iii. employed full-time by a high school? \qquad
iv. employed full-time but not in an educational institution?
v. not employed full-time anywhere? \qquad
H. Number of current graduate teaching assistants in your department: \qquad
7. Report the total number of sections in each of the main groupings of courses in question 3 (Mathematics, 1-50; Statistics, 51-61; Operations Research, 62-64; Computer Science, 65-109) that were taught by your faculty as reported in $6 . A, 6 . B, 6 . C$, and $6 . E$, respectivel'y

Also include all sections taught by graduate students teaching their own courses.

By full-time faculty teaching only mathematical sciences courses				
By full-time faculty teaching only computer science courses				
By full-time faculty teaching both mathematical sciences and computer science courses (6.C)				
By part-time faculty (6.E)				
By teaching assistant teaching own course				
TOTALS*				

* Column totals should be the same as those obtained in 3.A, 3.B, 3.C and 3.D, respectively.

8. Faculty: Age and Tenure Status.

Report separately the number of male and female full-time faculty, as reported in questions $6 . A, 6 . B$ and 6 C , whose birth date falls within the calendar period specified.

		$\begin{gathered} \text { Before } \\ 1924 \end{gathered}$	1924-30	1931-35	1936-40	1941-45	1946-50	1951-55	1956-60	After 1960
A. Tenured faculty	Male									
	Female									
B. Untenured faculty	Male									
	Female									

8. C. Faculty: Sex and Racial/Ethnic Group.

Please report the number of your full-time faculty given in 6.A, 6.B and 6.C who are:

	Male	Female
American Indian/Alaskan native		
Asian/Pacific Islander		
Black, not of Hispanic origin		
Mexican American, Puerto Rican or other Hispanic		
White, not of Hispanic origin		

9. Teaching Load.

For fall 1990, report the expected (or typical) weekly teaching load in classroom contact hours for your full-time mathematical sciences and computer science faculty given in 6.A, 6.B and 6.C (excluding thesis supervision).

	Mathematical Sciences (other than statistics)	Statistics	Computer Science
A. Professors (Assistant, Associate, Full)			
B. Instructors and Lecturers			

10. Retirements and Deaths.

For the period September 1,1989to August 31, 1990, report the number of your regular departmental faculty who: retired from full-time service died \qquad
11. Departmental Bachelor's Degrees.
A. Report the number of bachelor's degrees with majors in a mathematical or computer science awarded by your department between July 1, 1989 and June 30, 1990: \qquad
B. Of the number in 11 .A, report the numberwino majored in:

	Male	Female
Mathematics (including Applied)		
Mathematics Education		
Computer Science		
Statistics		
Actuarial Mathematics		
Operations Research		
Joint Computer Science \& Mathematics		
Joint Mathematics and Statistics		
Joint Computer Science \& Statistics		
Other		

C. Of the number in 11.A, report how many completed the requirements for secondary level certification in your state:

Department Support.

12. Report the number of departmental support staff positions currently supported from institutional funds:
13. Report the total departmental travel funds expended from institutional funds during the last full fiscal year:
14. Services to departmental majors.

Please indicate which of the following are available to your departmental majors. Check YES or NO for each item.
A. Departmental or institutional math placement exams for entering (intended) majors
B. Honors calculus sections for (intended) majors
C. College credit for high scores on the advanced placement exams given by Educational Testing Service
D. College credit for high scores in departmental or institutional placement exams
E. Intern/cooperative program
F. Special lectures/colloquium
G. Special study areas
H. Active mathematics and/or computer science club
I. Regularly offer opportunity to solve problems, prepare for mathematical contest in modeling, actuarial exams, etc., with direct faculty involvement
J. Departmental or institutional honors program
K. Research projects
L. Comprehensive (senior) exam(s)
M. Senior project or thesis
N. Regular program of social activities involving majors and faculty
O. Graduate school advising
P. Other career advising

Available to departmental majors Yes No

15. Information on mathematical sciences major programs in your department.

This question pertains ONLY to mathematical sciences majors, not computer science or joint majors. Please interpret "require" and "requirements" to include courses taken by contract or by general consensus, even though occasional exceptions occur.
A. How many distinct options (or tracks, etc.)
do you offer for mathematical sciences majors in your department? \qquad
B. Of these options,
i. how many require at least six courses (semester length or equivalent) at the advanced junior-senior level?
ii. how many require a junior-senior level course in analysis/advanced calculus?
iii. how many require a junior-senior level course in modern algebra?
iv. how many require a junior-senior level course in geometry/topology?
v. how many require a junior-senior level course in linear algebra?
vi. how many require a junior-senior level course in problem solving and/or modeling?
vii. how many require at least one sequence of two (or more) courses?

Mathematical Sciences Library.

Questions $16-22$ are to be answered ONLY by the mathematics (or mathematical sciences) department, and are NOT to be answered by any other department(s), e.g., statistics, computer science, operations research.

For questions 16-22 "mathematical sciences library" means the main mathematical sciences collection used by the mathematical sciences faculty and are those titles with QA (Library of Congress) or 510-519 (Dewey) designation.
16. Description of mathematical sciences library.
A. Check the box that best describes your mathematical sciences library:

i. Part of a separate mathematical sciences and/or computer science library.
ii. Contained within a larger library unit.
iii. Other (describe):
B. If you checked box (ii) or (iii) above, do you have a departmental reading room?
C. Are all (or most) current unbound mathematical sciences journals
displayed separately (either in a library or reading room)?

No

17. The catalog of the mathematical sciences library is: (Check all boxes that apply)
A. in manual card form only

B. partly manual and partly online with access from faculty offices

C. completely online
 with access from faculty offices

D. in other form such as microform (describe)
18. Electronic products available inhouse in the mathematical sciences library are:
(Check all boxes that apply)
A. MathSci tapes (full database) \square with access from faculty offices \square
B. MathSci on CD ROM \square with access from faculty offices

C. Science Citation Index on CD ROM \square with access from faculty offices \qquad
19. Report the number of currently received mathematical sciences journal titles in the mathematical sciences library.
20. Report the approximate number of volumes in the mathematical science holdings (QA or 510-519) that are:
A. shelved in the mathematical sciences library
B. in remote storage
21. In a typical full (seven day) week in this academic year, approximately how many total hours is the mathematical sciences library open to students?
22. For the last five years, which best describes the overall effectiveness of the mathematical sciences library in these areas?

Improved
Little change
Deteriorated
A. collection of books and journals
B. physical facilities (including space)
C. staffing
D. hours of opening
E. budget

Questions 23-26 are to be answered ONLY by departments having a computer science major.
23. Of the number of students taking departmental courses using computers in fall 1990, report the average number of student enrollments per computer station (inc. terminals, pc's etc.) by checking the appropriate box:

24. Of the non computer science courses listed in question $3 A, 3 B$, and $3 C$, encircle (by code numbers in

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	

25. Report the total number of mathematical sciences credit hours (semester hours or equivalent) at the calculus level and above normally taken by computer science majors.
26. Please rate the accessibility of computer stations (including terminals, pc's etc.) both for students in your classes and for homework assignments. Check the appropriate box for each level of class given in question 3.D:

Class
Lower level (\#65-73)
Middle level (\#74-77)
Upper level (\#78-109)

Abstract

question 3) those required for computer science majors:

Class	Poor	Adequate	Good	Very good	Superb
Lower level (\#65-73)	\square	\square	\square	\square	\square
Middle level (\#74-77)	\square	\square	\square	\square	\square
Upper level (\#78-109)	\square	\square	\square	\square	\square

27. The approximate number of hours required to complete this questionnaire was: \qquad
If you have found some questions) difficult to interpret or answer, please let us know. We welcome comments or suggestions for future surveys.
\qquad
\qquad
\square

Information supplied by: \qquad

Title and Department:

Institution and Campus: \qquad

Street	City	State	Zip

Telephone: \qquad Date: \qquad
Please return completed questionnaire by
Thanks to all who helped in completing this survey; November 1, 1990, to:
American Mathematical Society, Attn: M. Foulkes, P.O. Box 6248, Providence, RI 02940-6248

[^0]: * A calculus course is mainstream if it leads to the usual upper division mathematical science courses.

