1176-52-254 Leah Wrenn Berman* (lwberman@alaska.edu), University of Alaska Fairbanks, Department of Mathematics & Statistics, PO Box 756660, Fairbanks, AK 99775-6660, Gábor Gévay (gevay@math.u-szeged.hu), Szeged, Hungary, and Tomaž Pisanski (pisanski@upr.si), Ljubljana, Slovenia. Bounds on the existence of (n_5) , (n_6) , and (n_k) configurations.

A geometric (n_k) configuration is a collection of points and straight lines, typically in the Euclidean plane, so that each line passes through k of the points and each of the points lies on k of the lines. In a series of papers, Branko Grünbaum showed that geometric (n_4) configurations exist for all $n \ge 24$, using a series of geometric constructions later called the "Grünbaum Calculus". In this talk, we will show that for each k > 4, there exists an integer N_k so that for all $n \ge N_k$, there exists at least one (n_k) configuration, by generalizing the Grünbaum Calculus operations to produce more highly incident configurations. We further refine the general bounds in the case where k = 5 or k = 6, by using additional information about systematic and ad hoc constructions for 5- and 6-configurations, which reduces the bounds significantly. (Received January 24, 2022)