1176-51-104Bjoern Muetzel* (bjorn.mutzel@gmail.com), Eckerd College, Department of Mathematics,
4200 54th avenue South, Saint Petersburg, FL 33711, Peter Buser (peter.buser@epfl.ch),
EPFL Lausanne, Department of Mathematics, Station 8, 1015 Lausanne, Vaud, Switzerland, and
Eran Makover (makovere@ccsu.edu), Central Connecticut State University, Department of
Mathematics, 1615 Stanley Street, New Britain, CT 06050. Short homology bases for hyperelliptic
hyperbolic surfaces.

Given a hyperelliptic hyperbolic surface S of genus $g \ge 2$, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any $\lambda \in (0, 1)$ there exists a constant $C(\lambda)$ such that every such surface has at least $\lceil \lambda \cdot \frac{2}{3}g \rceil$ homologically independent loops of length at most $C(\lambda)$. This allows us to extend the constant upper bound obtained by B. Muetzel on the minimal length of a nonzero period lattice vector of a hyperelliptic Riemann surface to almost $\frac{2}{3}g$ linearly independent vectors. (Received January 16, 2022)